

Computational Intelligence

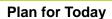
Winter Term 2017/18

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

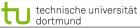
Fakultät für Informatik

TU Dortmund



Lecture 10

- Evolutionary Algorithms (EA)
 - Optimization Basics
 - EA Basics



G. Rudolph: Computational Intelligence • Winter Term 2017/18

2

Optimization Basics Image: Lecture 10 Image: Lecture 10</

input

system

output

G. Rudolph: Computational Intelligence • Winter Term 2017/18

Optimization Basics

Lecture 10

given:

objective function $f\colon X\to \mathbb{R}$

feasible region X (= nonempty set)

objective: find solution with minimal or maximal value!

optimization problem:

x* global solution

find $x^* \in X$ such that $f(x^*) = \min\{ f(x) : x \in X \}$

f(x*) global optimum

note:

 $\max\{f(x): x \in X\} = -\min\{-f(x): x \in X\}$

Optimization Basics

Lecture 10

local solution $x^* \in X$: $\forall x \in N(x^*): f(x^*) \leq f(x)$

if x* local solution then

f(x*) local optimum / minimum

neighborhood of $x^* =$ bounded subset of X

example: $X = \mathbb{R}^n$, $N_{\epsilon}(x^*) = \{ x \in X : ||x - x^*||_2 \le \epsilon \}$

remark:

evidently, every global solution / optimum is also local solution / optimum;

the reverse is wrong in general!

example:

f: [a,b] $\to \mathbb{R}$, global solution at \mathbf{x}^*

G. Rudolph: Computational Intelligence • Winter Term 2017/18

technische universität dortmund

Optimization Basics

Lecture 10

When using which optimization method?

mathematical algorithms

- problem explicitly specified
- problem-specific solver available
- problem well understood
- ressources for designing algorithm affordable
- solution with proven quality required

\Rightarrow don't apply EAs

technische universität

randomized search heuristics

- problem given by black / gray box
- no problem-specific solver available
- problem poorly understood
- insufficient ressources for designing algorithm
- solution with satisfactory quality sufficient

⇒ EAs worth a try

Optimization Basics

Lecture 10

What makes optimization difficult?

some causes:

- local optima (is it a global optimum or not?)
- constraints (ill-shaped feasible region)
- non-smoothness (weak causality) strong causality needed!
- discontinuities (⇒ nondifferentiability, no gradients)
- lack of knowledge about problem (⇒ black / gray box optimization)

$$f(x) = a_1 x_1 + \dots + a_n x_n \rightarrow \text{max! with } x_i \in \{0,1\}, a_i \in \mathbb{R}$$
add constaint $g(x) = b_1 x_1 + \dots + b_n x_n \le b$

 \Rightarrow $x_i^* = 1$ iff $a_i > 0$

⇒ NP-hard

add capacity constraint to TSP ⇒ CVRP

⇒ still harder

J technische universität dortmund

technische universität

dortmund

G. Rudolph: Computational Intelligence • Winter Term 2017/18

Evolutionary Algorithm Basics

Lecture 10

idea: using biological evolution as metaphor and as pool of inspiration

⇒ interpretation of biological evolution as iterative method of improvement

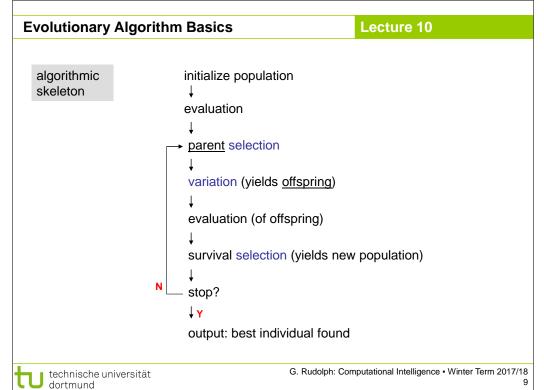
feasible solution $x \in X = S_1 \times ... \times S_n$ = chromosome of individual

multiset of feasible solutions = population: multiset of individuals

= fitness function objective function $f: X \to \mathbb{R}$

often: $X = \mathbb{R}^n$, $X = \mathbb{B}^n = \{0,1\}^n$, $X = \mathbb{P}_n = \{\pi : \pi \text{ is permutation of } \{1,2,...,n\} \}$ <u>also</u>: combinations like $X = \mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}^q$ or non-cartesian sets

⇒ structure of feasible region / search space defines representation of individual



G. Rudolph: Computational Intelligence • Winter Term 2017/18

Evolutionary Algorithm Basics

Lecture 10

Specific example: (1+1)-EA in \mathbb{R}^n for minimizing some $f: \mathbb{R}^n \to \mathbb{R}$

population size = 1, number of offspring = 1, selects best from 1+1 individuals

parent offspring

compact set = closed & bounded

- 1. initialize $X^{(0)} \in \mathbb{C} \subset \mathbb{R}^n$ uniformly at random, set t = 0
- 2. evaluate f(X^(t))
- 3. select parent: Y = X^(t) no choice, here
- 4. variation = add random vector: Y = Y + Z, e.g. $Z \sim N(0, I_n)$
- 5. evaluate f(Y)
- 6. selection: if $f(Y) \le f(X^{(t)})$ then $X^{(t+1)} = Y$ else $X^{(t+1)} = X^{(t)}$
- 7. if not stopping then t = t+1, continue at (3)

Evolutionary Algorithm Basics

Lecture 10

Specific example: (1+1)-EA in \mathbb{R}^n for minimizing some $f: \mathbb{R}^n \to \mathbb{R}$

population size = 1, number of offspring = 1, selects best from 1+1 individuals parent offspring

- 1. initialize $X^{(0)} \in \mathbb{B}^n$ uniformly at random, set t = 0
- 2. evaluate f(X^(t))
- 3. select parent: Y = X^(t)
- 4. variation: flip each bit of Y independently with probability $p_m = 1/n$
- 5. evaluate f(Y)
- 6. selection: if $f(Y) \le f(X^{(t)})$ then $X^{(t+1)} = Y$ else $X^{(t+1)} = X^{(t)}$
- 7. if not stopping then t = t+1, continue at (3)

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2017/18

no choice, here

Evolutionary Algorithm Basics

Lecture 10

Selection

- (a) select parents that generate offspring → selection for **reproduction**
- (b) select individuals that proceed to next generation \rightarrow selection for **survival**

necessary requirements:

- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)
- at least one selection step must favor better individuals

typically: selection only based on fitness values f(x) of individuals

seldom: additionally based on individuals' chromosomes x (→ maintain diversity)

11

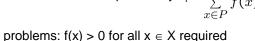
Lecture 10

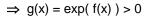
Selection methods

population $P = (x_1, x_2, ..., x_n)$ with μ individuals

two approaches:

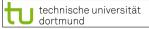
- 1. repeatedly select individuals from population with replacement
- 2. rank individuals somehow and choose those with best ranks (no replacement)
- uniform / neutral selection choose index i with probability 1/µ
- fitness-proportional selection choose index i with probability $s_i = \frac{f(x_i)}{\sum\limits_{x \in P} f(x)}$





but already sensitive to additive shifts g(x) = f(x) + c

almost deterministic if large differences, almost uniform if small differences



G. Rudolph: Computational Intelligence • Winter Term 2017/18

Evolutionary Algorithm Basics

Lecture 10

Selection methods

population $P = (x_1, x_2, ..., x_n)$ with μ individuals

rank-proportional selection

order individuals according to their fitness values assign ranks fitness-proportional selection based on ranks

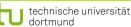
⇒ avoids all problems of fitness-proportional selection but: best individual has only small selection advantage (can be lost!)

• k-ary tournament selection

draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random)

⇒ has all advantages of rank-based selection and probability that best individual does not survive:

$$\left(1 - \frac{1}{\mu}\right)^{k\mu} \approx e^{-k}$$



G. Rudolph: Computational Intelligence • Winter Term 2017/18

Evolutionary Algorithm Basics

Lecture 10

Selection methods without replacement

population $P = (x_1, x_2, ..., x_n)$ with μ parents and population Q = $(y_1, y_2, ..., y_{\lambda})$ with λ offspring

- (μ, λ)-selection or truncation selection on offspring or comma-selection rank λ offspring according to their fitness select u offspring with best ranks
- \Rightarrow best individual may get lost, $\lambda \ge \mu$ required
- $(\mu+\lambda)$ -selection or truncation selection on parents + offspring or plus-selection merge λ offspring and μ parents rank them according to their fitness select μ individuals with best ranks
- ⇒ best individual survives for sure

Evolutionary Algorithm Basics

Lecture 10

Selection methods: Elitism

technische universität

Elitist selection: best parent is not replaced by worse individual.

- Intrinsic elitism: method selects from parent and offspring, best survives with probability 1

- Forced elitism: if best individual has not survived then re-injection into population, i.e., replace worst selected individual by previously best parent

method P{ select best } from parents & offspring intrinsic elitism neutral < 1 no no fitness proportionate nο no rank proportionate < 1 no no k-ary tournament < 1 no no $(\mu + \lambda)$ = 1 ves ves (μ, λ) no

Lecture 10

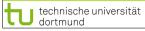
Variation operators: depend on representation

mutation

- → alters a single individual
- recombination → creates single offspring from two or more parents

may be applied

- exclusively (either recombination or mutation) chosen in advance
- exclusively (either recombination or mutation) in probabilistic manner
- sequentially (typically, recombination before mutation); for each offspring
- sequentially (typically, recombination before mutation) with some probability



G. Rudolph: Computational Intelligence • Winter Term 2017/18

· · · ·

Evolutionary Algorithm Basics

Lecture 10

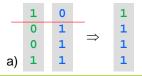
Variation in Bⁿ

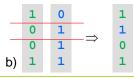
Individuals $\in \{0, 1\}^n$

- Recombination (two parents)
- a) 1-point crossover
- \rightarrow draw cut-point $k \in \{1,...,n-1\}$ uniformly at random; choose first k bits from 1st parent, choose last n-k bits from 2nd parent
- b) K-point crossover
- → draw K distinct cut-points uniformly at random; choose bits 1 to k₁ from 1st parent, choose bits k₁+1 to k₂ from 2nd parent, choose bits k₂+1 to k₃ from 1st parent, and so forth ...
- c) uniform crossover

technische universität

→ for each index i: choose bit i with equal probability from 1st or 2nd parent





G. Rudolph: Computational Intelligence • Winter Term 2017/18

Evolutionary Algorithm Basics

Lecture 10

Variation in ℝⁿ

Individuals $\in \{0, 1\}^n$

- Mutation
 - a) local \rightarrow choose index $k \in \{1, ..., n\}$ uniformly at random, flip bit k, i.e., $x_k = 1 x_k$
 - b) global \rightarrow for each index $k \in \{1, ..., n\}$: flip bit k with probability $p_m \in (0,1)$
 - c) "nonlocal" \rightarrow choose K indices at random and flip bits with these indices
 - d) inversion \rightarrow choose start index k_s and end index k_e at random invert order of bits between start and end index

1		1		0	\rightarrow	0		1
0	k=2	1		0	1/ 0	0	k_s	1
0		0		1	K=2	0		0
1		1		0	\rightarrow	0	k_{e}	0
1	a)	1	b)	1	c)	1	d)	1

G. Rudolph: Computational Intelligence • Winter Term 2017/18

1:

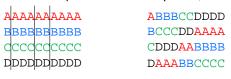
Evolutionary Algorithm Basics

Lecture 10

Variation in Bⁿ

Individuals $\in \{0, 1\}^n$

- Recombination (multiparent: ρ = #parents)
 - a) diagonal crossover $(2 < \rho < n)$
 - \rightarrow choose ρ 1 distinct cut points, select chunks from diagonals



can generate ρ offspring; otherwise choose initial chunk at random for single offspring

- b) gene pool crossover ($\rho > 2$)
 - \rightarrow for each gene: choose donating parent uniformly at random

Lecture 10

Variation in \mathbb{P}_n

Individuals $\in X = \pi(1, ..., n)$

Mutation

a) local

 \rightarrow 2-swap 1-translocation

53241 53241 \times 54231 52431

b) global

→ draw number K of 2-swaps, apply 2-swaps K times

K is positive random variable; its distribution may be uniform, binomial, geometrical, ...; E[K] and V[K] may control mutation strength expectation variance

G. Rudolph: Computational Intelligence • Winter Term 2017/18 21

Evolutionary Algorithm Basics

Lecture 10

Variation in \mathbb{P}_n

Individuals $\in X = \pi(1, ..., n)$

Recombination (two parents)

a) order-based crossover (OBX)

- select two indices k_1 and k_2 with $k_1 \le k_2$ uniformly at random

- copy genes k₁ to k₂ from 1st parent to offspring (keep positions)

- copy genes from left to right from 2nd parent, starting after position k₂

2 3 5 7 1 6 4

5 3 2 7 1 6 4

b) partially mapped crossover (PMX)

- select two indices k_1 and k_2 with $k_1 \le k_2$ uniformly at random

- copy genes k₁ to k₂ from 1st parent to offspring (keep positions)

- copy all genes not already contained in offspring from 2nd parent (keep positions)

- from left to right: fill in remaining genes from 2nd parent

x x x 7 1 6 x

x 4 5 7 1 6 x

3 4 5 7 1 6 2

technische universität J dortmund

G. Rudolph: Computational Intelligence • Winter Term 2017/18

Evolutionary Algorithm Basics

Lecture 10

Variation in ℝⁿ

Individuals $X \in \mathbb{R}^n$

Mutation

additive:

Y = X + Z(Z: n-dimensional random vector) offspring = parent + mutation

a) local

 \rightarrow Z with bounded support

 $f_Z(x) = \frac{4}{3} (1 - x^2) \cdot 1_{[-1,1]}(x)$

Definition

Let $f_7: \mathbb{R}^n \to \mathbb{R}^+$ be p.d.f. of r.v. Z. The set $\{x \in \mathbb{R}^n : f_7(x) > 0 \}$ is termed the support of Z.

b) nonlocal

technische universität

→ Z with unbounded support

 $f_Z(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$

most frequently used!

G. Rudolph: Computational Intelligence • Winter Term 2017/18

Evolutionary Algorithm Basics

Lecture 10

Variation in \mathbb{R}^n

Individuals $X \in \mathbb{R}^n$

Recombination (two parents)

a) all crossover variants adapted from \mathbb{B}^n

b) intermediate

$$z = \xi \cdot x + (1 - \xi) \cdot y \text{ with } \xi \in [0, 1]$$

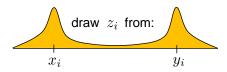
c) intermediate (per dimension)
$$\forall i: z_i = \xi_i \cdot x_i + (1 - \xi_i) \cdot y_i \text{ with } \xi_i \in [0, 1]$$

d) discrete

$$\forall i: z_i = B_i \cdot x_i + (1 - B_i) \cdot y_i \text{ with } B_i \sim B(1, \frac{1}{2})$$

e) simulated binary crossover (SBX)

→ for each dimension with probability p_c



G. Rudolph: Computational Intelligence • Winter Term 2017/18

Lecture 10

Variation in \mathbb{R}^n

Individuals $X \in \mathbb{R}^n$

• Recombination (multiparent), $\rho \ge 3$ parents

a) intermediate
$$z=\sum_{k=1}^{\rho}\xi^{(k)}\,x_i^{(k)}$$
 where $\sum_{k=1}^{\rho}\xi^{(k)}=1$ and $\xi^{(k)}\geq 0$

(all points in convex hull)

b) intermediate (per dimension)
$$\forall i: z_i = \sum_{k=1}^{\rho} \xi_i^{(k)} \, x_i^{(k)}$$

$$\forall i: z_i \in \left[\min_k \{x_i^{(k)}\}, \max_k \{x_i^{(k)}\}\right]$$

G. Rudolph: Computational Intelligence • Winter Term 2017/18

Evolutionary Algorithm Basics

Lecture 10

Theorem

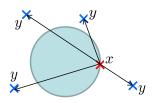
Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function and f(x) < f(y) for some $x \neq y$. If (y - x), $\nabla f(x) < 0$ then there is a positive probability that an offspring generated by intermediate recombination is better than both parents.

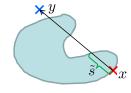
Proof:

If $d'\nabla f(x) < 0$ then $d \in \mathbb{R}^n$ is a direction of descent, i.e.

$$\exists \tilde{s} > 0 : \forall s \in (0, \tilde{s}] : f(x + s \cdot d) < f(x).$$

Here: d = y - x such that $P\{f(\xi x + (1 - \xi)y) < f(x)\} \ge \frac{\tilde{s}}{\|d\|} > 0$.





sublevel set $S_{\alpha} = \{x \in \mathbb{R}^n : f(x) < \alpha\}$

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2017/18

Evolutionary Algorithm Basics

Lecture 10

Theorem

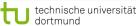
Let $f: \mathbb{R}^n \to \mathbb{R}$ be a strictly quasiconvex function. If f(x) = f(y) for some $x \neq y$ then every offspring generated by intermediate recombination is better than its parents.

Proof:

$$f \text{ strictly quasiconvex} \ \Rightarrow \ f(\xi \cdot x + (1 - \xi) \cdot y) < \max\{\ f(x), f(y)\ \} \text{ for } 0 < \xi < 1$$

$$\text{since } f(x) = f(y) \qquad \Rightarrow \ \max\{\ f(x), f(y)\ \} \ = \ \min\{\ f(x), f(y)\ \}$$

$$\Rightarrow \ f(\xi \cdot x + (1 - \xi) \cdot y) < \min\{\ f(x), f(y)\ \} \text{ for } 0 < \xi < 1$$



G. Rudolph: Computational Intelligence • Winter Term 2017/18