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Multiobjective Optimization

taste 

nutrients 

cooking time costs 

… 

Real-world problems: various demands on problem solution
⇒ multiple conflictive objective functions
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Multiobjective Optimization

Multiobjective Problem
f : S ⊆ Rn → Z ⊆ Rd, minx∈Rn f(x) = (f1(x), . . . , fd(x))

How to relate vectors?
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Pareto Dominance

partial order among vectors in Rd and thus in Rn

(1, 1) ≺ (5, 5) ≺ (8, 8)

(1, 8) ‖ (5, 5) ‖ (8, 1)

a � b, a weakly dominates b :⇐⇒ ∀i ∈ {1, . . . , d} : ai ≤ bi
a ≺ b, a dominates b :⇐⇒ a � b and a 6= b, i.e., ∃i ∈ {1, . . . , d} : ai < bi
a‖b, a and b are incomparable:⇐⇒ neither a � b nor b � a.
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Aim of Optimization

Pareto front: set of optimal solution vectors in Rd, i.e.,
PF = {x ∈ Z | @x′ ∈ Z with x′ ≺ x}

Aim of optimization: find Pareto front?
PF maybe infinitively large
PF hard to hit exactly in continuous space
⇒too ambitious!

Aim of optimization: approximate Pareto front!
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Scalarization

Isn’t there an easier way?

Scalarize objectives to single-objective function:
f : S ⊆ Rn → Z ⊆ R2 ⇒ fscal = w1f1(x) + w2f2(x)

Result: single solution
Specify desired solution by choice of w1, w2
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¦2
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¦2
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Scalarization

Previous example: convex Pareto front

Consider concave Pareto front
 only boundary solutions are optimal
⇒ scalarization by simple weighting is not a good idea

¦1

¦2

¦1

¦2

Nicola Beume (LS11) CI 2012 25.01.2012 7 / 28

Classification

a-priori approach
first specify preferences, then optimize

more advanced scalarization techniques (e.g. Tschebyscheff)
allow to access all elements of PF

remaining difficulty:
how to express your desires through parameter values!?

a-posteriori approach
first optimize (approximate Pareto front), then choose solution

⇒back to a-posteriori approach
⇒state-of-the-art methods: evolutionary algorithms
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Evolutionary Algorithms

Evolutionary Multiobjective Optimization Algorithms (EMOA)
Multiobjective Optimization Evolutionary Algorithms (MOEA)

initialization 

evaluation of 
population 

parent selection 
for reproduction 

variation 
(recombination/crossover, 

mutation) 

selection of 
succeeding 
population 

evaluation of 
offspring 

termination condition 

fulfilled? 
stop 

evolution 

What to change in case of multiobjective optimization?
Selection!
Remaining operators may work on search space only
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Selection in EMOA

Selection requires sortable population to choose best individuals

How to sort d-dimensional objective vectors?

Primary selection criterion:
use Pareto dominance relation to sort comparable individuals

Secondary selection criterion:
apply additional measure to incomparable individuals to enforce order
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Non-dominated Sorting

Example for primary selection criterion

partition population into sets of mutually incomparable solutions (antichains)

non-dominated set: best elements of set
NDS(M) = {x ∈M | @x′ ∈M with x′ ≺ x}

Simple algorithm:
iteratively remove non-dominated set until population empty
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NSGA-II

Popular EMOA: Non-dominated Sorting Genetic Algorithm II

(µ+ µ)-selection:

1 perform non-dominated sorting on all µ+ µ individuals

2 take best subsets as long as they can be included completely

3 if population size µ not reached but next subset does not fit in
completely:
apply secondary selection criterion crowding distance to that subset

4 fill up population with best ones w.r.t. the crowding distance
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NSGA-II

Crowding distance:
1/2 perimeter of empty bounding box around point
value of infinity for boundary points
large values good
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Difficulties of Selection

imagine point in the middle of the search space
d = 2: 1/4 better, 1/4 worse, 1/2 incomparable
d = 3: 1/8 better, 1/8 worse, 3/4 incomparable
general: fraction 2−d+1 comparable, decreases exponentially

⇒typical case: all individuals incomparable
⇒mainly secondary selection criterion in operation

Drawback of crowding distance:
rewards spreading of points, does not reward approaching the Pareto front
⇒NSGA-II diverges for large d, difficulties already for d = 3
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Difficulties of Selection

Secondary selection criterion has to be meaningful!

Desired: choose best subset of size µ from individuals

How to compare sets of partially incomparable points?
⇒use quality indicators for sets

One approach for selection
⇒for each point: determine contribution to quality value of set
⇒sort points according to contribution
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Hypervolumen (S-metric) as Quality Measure

dominated hypervolume:
size of dominated space bounded by reference point

      
          

f1

f2
r

v(2)

v(1)

v(3)

v(4)

v(5)

H(M, r) := Leb
(

m⋃
i=1

[v(i), r]

)

M = {v(1),v(2), . . . ,v(m)}
r reference point

to be maximized
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SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA

(µ+ 1)-selection

1 non-dominated sorting

2 in case of incomparability: contributions to hypervolume of subset
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Computational complexity of hypervolume

Lower Bound
Ω(m logm)

Upper Bound
O(md/2 · 2O(log∗ m))

proof: hypervolume as special case of Klee’s measure problem

f1

f2
r

⊂

f1

f2
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Conclusions on EMOA

NSGA-II
only suitable in case of d=2 objective functions
otherwise no convergence to Pareto front

SMS-EMOA
also effective for d > 2 due to hypervolume
hypervolume calculation time-consuming
⇒use approximation of hypervolume

Other state-of-the-art EMOA, e.g.

• MO-CMA-ES: CMA-ES + hypervolume selection

• ε-MOEA: objective space partitioned into grid, only 1 point per cell

• MSOPS: selection acc. to ranks of different scalarizations
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Conclusions

• real-world problems are often multiobjective

• Pareto dominance only a partial order

• a priory: parameterization difficult

• a posteriori: choose solution after knowing possible compromises

• state-of-the-art a posteriori methods: EMOA, MOEA

• EMOA require sortable population for selection

• use quality measures as secondary selection criterion

• hypervolume: excellent quality measure, but computationally intensive

• use state-of-the-art EMOA, other may fail completely
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