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Plan for Today 

●  Evolutionary Algorithms (EA) 

●  Optimization Basics 

●  EA Basics  
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Optimization Basics 
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Optimization Basics 

optimization problem: 

find x* ∈ X such that f(x*) = min{ f(x) : x ∈ X } 

note: 

max{ f(x) : x ∈ X } = – min{ – f(x) : x ∈ X }   

  x*    global solution 

f(x*)  global optimum 

objective: find solution with minimal or maximal value! 

given:  

objective function f: X →  

feasible region X  (= nonempty set) 
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Optimization Basics 

local solution x* ∈ X :  

∀x ∈ N(x*): f(x*) ≤ f(x) 

neighborhood of x* =  
bounded subset of X 

example:   X =   n,  Nε(x*) = { x ∈ X: || x – x*||2 ≤ ε } 

if x* local solution then  

f(x*) local optimum / minimum 

remark: 

evidently, every global solution / optimum is also local solution / optimum; 

the reverse is wrong in general! 

a b x* 

example:  
f: [a,b] →    , global solution at x* 
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Optimization Basics 

What makes optimization difficult? 

some causes: 

• local optima (is it a global optimum or not?) 

• constraints (ill-shaped feasible region) 

• non-smoothness (weak causality) 

• discontinuities (⇒ nondifferentiability, no gradients) 

• lack of knowledge about problem (⇒ black / gray box optimization) 

f(x) = a1 x1 + ... + an xn  → max!  with xi ∈ {0,1}, ai ∈  

add constaint   g(x) = b1 x1 + ... + bn xn ≤ b 
⇒ xi* = 1 iff ai > 0 

⇒ NP-hard 

add capacity constraint to TSP ⇒ CVRP ⇒ still harder 

strong causality needed! 
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Optimization Basics 

When using which optimization method? 

mathematical algorithms 

• problem explicitly specified 

• problem-specific solver available 

• problem well understood 

• ressources for designing  
  algorithm affordable 

• solution with proven quality 
  required 

⇒ don‘t apply EAs 

randomized search heuristics 

• problem given by black / gray box 

• no problem-specific solver available 

• problem poorly understood 

• insufficient ressources for designing  
  algorithm 

• solution with satisfactory quality 
  sufficient 

⇒ EAs worth a try 
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Evolutionary Algorithm Basics 

idea: using biological evolution as metaphor and as pool of inspiration 

⇒ interpretation of biological evolution as iterative method of improvement 

feasible solution x ∈ X = S1 x ... x Sn = chromosome of individual 

multiset of feasible solutions = population: multiset of individuals 

objective function f: X →  = fitness function 

often: X =   n,  X =   n = {0,1}n, X =   n = { π : π is permutation of {1,2,...,n} } 

also : combinations like X =   n x   p x   q or non-cartesian sets 

⇒ structure of feasible region / search space defines representation of individual 
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Evolutionary Algorithm Basics 

initialize population 

evaluation 

parent selection 

variation (yields offspring) 

survival selection (yields new population) 

evaluation (of offspring) 

stop? 

output: best individual found 
Y 

N 

algorithmic 
skeleton 
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Evolutionary Algorithm Basics 

population size = 1, number of offspring = 1, selects best from 1+1 individuals 

parent offspring 

1. initialize X(0) ∈   n uniformly at random, set t = 0 

2. evaluate f(X(t)) 

3. select parent: Y = X(t)  

4. variation: flip each bit of Y independently with probability pm = 1/n 

5. evaluate f(Y) 

6. selection: if f(Y) ≤ f(X(t)) then X(t+1) = Y else X(t+1) = X(t) 

7. if not stopping then t = t+1, continue at (3) 

no choice, here 

Specific example:   (1+1)-EA in   n for minimizing some f:   n →  
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Evolutionary Algorithm Basics 

population size = 1, number of offspring = 1, selects best from 1+1 individuals 

parent offspring 

1. initialize X(0) ∈ C ⊂    n uniformly at random, set t = 0 

2. evaluate f(X(t)) 

3. select parent: Y = X(t)  

4. variation = add random vector: Y = Y + Z,   e.g. Z ∼ N(0, In) 

5. evaluate f(Y) 

6. selection: if f(Y) ≤ f(X(t)) then X(t+1) = Y else X(t+1) = X(t) 

7. if not stopping then t = t+1, continue at (3) 

no choice, here 

compact set  =  closed & bounded 

Specific example:   (1+1)-EA in   n for minimizing some f:   n →  
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Evolutionary Algorithm Basics 

Selection 

(a) select parents that generate offspring   → selection for reproduction 

(b) select individuals that proceed to next generation  → selection for survival 

necessary requirements: 

- selection steps must not favor worse individuals 

- one selection step may be neutral (e.g. select uniformly at random) 

- at least one selection step must favor better individuals 

typically : selection only based on fitness values f(x) of individuals 

seldom : additionally based on individuals‘ chromosomes x  (→ maintain diversity) 
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Evolutionary Algorithm Basics 

Selection methods 

population P = (x1, x2, ..., xµ) with µ individuals 

• uniform / neutral selection 
  choose index i with probability 1/µ 

• fitness-proportional selection 
  choose index i with probability si = 

two approaches: 

1. repeatedly select individuals from population with replacement 

2. rank individuals somehow and choose those with best ranks (no replacement) 

problems: f(x) > 0 for all x ∈ X required  ⇒  g(x) = exp( f(x) ) > 0  

but already sensitive to additive shifts g(x) = f(x) + c 

almost deterministic if large differences, almost uniform if small differences 
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Evolutionary Algorithm Basics 

Selection methods 

population P = (x1, x2, ..., xµ) with µ individuals 

• rank-proportional selection 
  order individuals according to their fitness values 
  assign ranks 
  fitness-proportional selection based on ranks 
 

 ⇒ avoids all problems of fitness-proportional selection 
  but: best individual has only small selection advantage (can be lost!) 

• k-ary tournament selection 
  draw k individuals uniformly at random (typically with replacement) from P 
  choose individual with best fitness (break ties at random)   

⇒ has all advantages of rank-based selection and 
     probability that best individual does not survive:  
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Evolutionary Algorithm Basics 

Selection methods without replacement 

population P = (x1, x2, ..., xµ) with µ parents and 

population Q = (y1, y2, ..., yλ) with λ offspring 

• (µ, λ)-selection or truncation selection on offspring or comma-selection 
  rank λ offspring according to their fitness 
  select µ offspring with best ranks 
 

 ⇒ best individual may get lost, λ ≥ µ required 

• (µ+λ)-selection or truncation selection on parents + offspring or plus-selection 
  merge λ offspring and µ parents 
  rank them according to their fitness 
  select µ individuals with best ranks 
 

 ⇒ best individual survives for sure 
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Evolutionary Algorithm Basics 

Selection methods: Elitism 

- Intrinsic elitism:  method selects from parent and offspring,  
  best survives with probability 1 

- Forced elitism: if best individual has not survived then re-injection into population, 
  i.e., replace worst selected individual by previously best parent  

method P{ select best } from parents & offspring intrinsic elitism 
neutral < 1 no no 
fitness proportionate < 1 no no 
rank proportionate < 1 no no 
k-ary tournament < 1 no no 
(µ + λ) = 1 yes yes 
(µ , λ) = 1 no no 

Elitist selection:  best parent is not replaced by worse individual.  
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Evolutionary Algorithm Basics 

Variation operators: depend on representation 

mutation  →  alters a single individual 

recombination →  creates single offspring from two or more parents 

may be applied 

● exclusively (either recombination or mutation) chosen in advance 

● exclusively (either recombination or mutation) in probabilistic manner 

● sequentially (typically, recombination before mutation); for each offspring 

● sequentially (typically, recombination before mutation) with some probability 
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Evolutionary Algorithm Basics 

● Mutation 

Individuals ∈ { 0, 1 }n  

a) local  → choose index k ∈ { 1, …, n } uniformly at random, 
        flip bit k, i.e., xk = 1 – xk 

b) global → for each index k ∈ { 1, …, n }: flip bit k with probability pm ∈ (0,1) 

c) “nonlocal“ → choose K indices at random and flip bits with these indices  

d) inversion → choose start index ks and end index ke at random 
       invert order of bits between start and end index 

1 
0 
0 
1 
1 

1 
1 
0 
1 
1 a) 

k=2 
0 
0 
1 
0 
1 b) 

1 
1 
0 
0 
1 

ks 

ke 
d) 

0 
0 
0 
0 
1 c) 

K=2 

→ 

→ 

Variation in   n 



Lecture 10 

G. Rudolph: Computational Intelligence ▪ Winter Term 2016/17 
19 

Evolutionary Algorithm Basics 

● Recombination (two parents) 

a) 1-point crossover → draw cut-point k ∈ {1,…,n-1} uniformly at random; 
        choose first k bits from 1st parent, 
        choose last n-k bits from 2nd parent 

b) K-point crossover → draw K distinct cut-points uniformly at random; 
        choose bits 1 to k1 from 1st parent,  
        choose bits k1+1 to k2 from 2nd parent,  
        choose bits k2+1 to k3 from 1st parent, and so forth …   

c) uniform crossover → for each index i: choose bit i with equal probability 
        from 1st or 2nd parent  

1 
0 
0 
1 

0 
1 
1 
1 

1 
1 
1 
1 a) 

⇒ 

1 
0 
0 
1 

0 
1 
1 
1 

0 
0 
0 
1 c) 

⇒ 
1 
0 
0 
1 

0 
1 
1 
1 

1 
1 
0 
1 b) 

⇒ 

Individuals ∈ { 0, 1 }n  Variation in   n 
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Evolutionary Algorithm Basics 

● Recombination (multiparent: ρ = #parents) 

b) gene pool crossover (ρ > 2) 

Individuals ∈ { 0, 1 }n  

a) diagonal crossover (2 < ρ < n) 

AAAAAAAAAA 
BBBBBBBBBB 
CCCCCCCCCC 
DDDDDDDDDD 

→ choose ρ – 1 distinct cut points, select chunks from diagonals 
ABBBCCDDDD 
BCCCDDAAAA 
CDDDAABBBB 
DAAABBCCCC 

can generate ρ offspring; 
otherwise choose initial chunk 
at random for single offspring 

→ for each gene: choose donating parent uniformly at random 

Variation in   n 
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Evolutionary Algorithm Basics 

● Mutation 

a) local  → 2-swap         /        1-translocation 

b) global → draw number K of 2-swaps, apply 2-swaps K times 

5 3 2 4 1 

5 4 2 3 1 

5 3 2 4 1 

5 2 4 3 1 

K is positive random variable; 
its distribution may be uniform, binomial, geometrical, …; 
E[K] and V[K] may control mutation strength 

expectation variance 

Individuals ∈ X = π(1, …, n)  Variation in   n 
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Evolutionary Algorithm Basics 

● Recombination (two parents) 

Individuals ∈ X = π(1, …, n)  

b) partially mapped crossover (PMX) 
- select two indices k1 and k2 with k1 ≤ k2 uniformly at random 
- copy genes k1 to k2 from 1st parent to offspring (keep positions) 
- copy all genes not already contained in offspring from 2nd parent  
  (keep positions) 
- from left to right: fill in remaining genes from 2nd parent 

a) order-based crossover (OBX) 

- select two indices k1 and k2 with k1 ≤ k2 uniformly at random 
- copy genes k1 to k2 from 1st parent to offspring (keep positions) 
- copy genes from left to right from 2nd parent,  
  starting after position k2 

x x x 7 1 6 x 

5 3 2 7 1 6 4 

2 3 5 7 1 6 4 
6 4 5 3 7 2 1 

2 3 5 7 1 6 4 
6 4 5 3 7 2 1 

x x x 7 1 6 x 

x 4 5 7 1 6 x 

3 4 5 7 1 6 2 

Variation in   n 
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Evolutionary Algorithm Basics 

● Mutation 

a) local  → Z with bounded support Definition 
Let fZ:   n→   + be p.d.f. of r.v. Z. 
The set { x ∈   n : fZ(x) > 0 } is 
termed the support of Z. 

additive:  Y = X + Z (Z: n-dimensional random vector) 

offspring  =  parent  + mutation 

x 
0 

fZ 

0 

b) nonlocal → Z with unbounded support 
fZ 

x 
0 

0 

most frequently used! 

Variation in   n Individuals X ∈   n  
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Evolutionary Algorithm Basics 

● Recombination (two parents) 

b) intermediate   

c) intermediate (per dimension) 

d) discrete 

e) simulated binary crossover (SBX) 

→ for each dimension with probability pc  draw       from: 

Variation in   n Individuals X ∈   n  

a) all crossover variants adapted from   n 
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Evolutionary Algorithm Basics 

● Recombination (multiparent), ρ ≥ 3 parents 

a) intermediate                 where          and  

(all points in convex hull) 

b) intermediate (per dimension)
  

Variation in   n Individuals X ∈   n  
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Evolutionary Algorithm Basics 

Proof: 

■ 

Theorem 
Let f:   n →    be a strictly quasiconvex function. If f(x) = f(y) for some x ≠ y then 
every offspring generated by intermediate recombination is better than its parents. 
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Evolutionary Algorithm Basics 

Proof: 

■ 

Theorem 
Let f:   n →    be a differentiable function and f(x) < f(y) for some x ≠ y.  
If (y – x)‘ ∇f(x) < 0 then there is a positive probability that an offspring  
generated by intermediate recombination is better than both parents. 
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