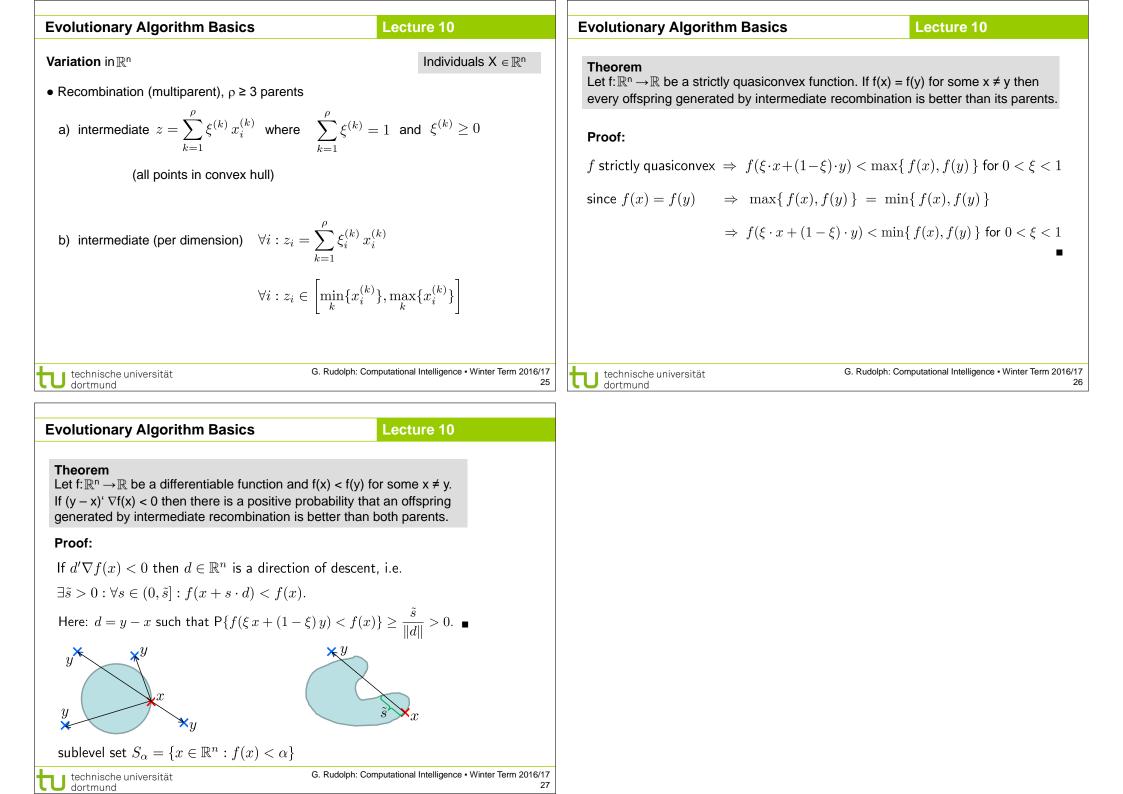

technische universität dortmund				Plan for Today	Lecture 10
Computationa Winter Term 2016/17	l Intellige	ence		 Evolutionary Algorithms (EA) Optimization Basics EA Basics 	
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Eng Fakultät für Informatik TU Dortmund	ineering (LS 11)			G. dortmund	Rudolph: Computational Intelligence • Winter Term 2016/17 2
					2
Optimization Basics		Lect	ure 10	Optimization Basics	Lecture 10
modelling	! →	?	! →	given: objective function f: $X \rightarrow \mathbb{R}$ feasible region X (= nonempty set)	
simulation	!→	l	?→	objective: find solution with <i>minimal</i> or maxi	mal value!
				optimization problem:	x* global solution
	?		!	find $x^* \in X$ such that $f(x^*) = min\{ f(x) : x \in X \}$	f(x*) global optimum
optimization		!		$\frac{\text{note:}}{\max\{ f(x) : x \in X \}} = -\min\{ -f(x) : x \in X \}$	
	input	system	output		
technische universität		G. Rudolph: Computation	al Intelligence • Winter Term 2016/17 3	technische universität G.	Rudolph: Computational Intelligence • Winter Term 2016/17 4

Optimization Basics	Lecture 10	Optimization Basics Lecture 10
local solution $x^* \in X$: $\forall x \in N(x^*): f(x^*) \leq f(x)$	if x* local solution then $f(x^*) \text{ local optimum / minimum}$ $X = \mathbb{R}^n, N_{\varepsilon}(x^*) = \{ x \in X : x - x^* _2 \le \varepsilon \}$	Optimization Basics Lecture 10 What makes optimization difficult?
evidently, every global solution / optime	um is also local solution / optimum;	
the reverse is wrong in general! example: f: [a,b] $\rightarrow \mathbb{R}$, global solution at x *		$ f(x) = a_1 x_1 + + a_n x_n \rightarrow max! \text{ with } x_i \in \{0,1\}, a_i \in \mathbb{R} $ $ add \text{ constaint } g(x) = b_1 x_1 + + b_n x_n \le b $ $ add \text{ capacity constraint to TSP} \Rightarrow CVRP $ $ add \text{ still harder} $
U technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2016/17 5	G. Rudolph: Computational Intelligence • Winter Term 201
Optimization Basics When using which optimization met	Lecture 10	Evolutionary Algorithm Basics Lecture 10 idea: using biological evolution as metaphor and as pool of inspiration
mathematical algorithms	randomized search heuristics	\Rightarrow <u>interpretation</u> of biological evolution as iterative method of improvement
 problem explicitly specified problem-specific solver available problem well understood 	 problem given by black / gray box no problem-specific solver available problem poorly understood 	feasible solution $x \in X = S_1 x \dots x S_n$ = chromosome of individualmultiset of feasible solutions= population: multiset of individuals
 ressources for designing algorithm affordable 	 insufficient ressources for designing algorithm 	objective function f: $X \to \mathbb{R}$ = fitness function
00		objective function f: $X \to \mathbb{R}$ = fitness function $\underline{often:} X = \mathbb{R}^n, X = \mathbb{B}^n = \{0,1\}^n, X = \mathbb{P}_n = \{\pi : \pi \text{ is permutation of } \{1,2,,n\} \}$ $\underline{also:}$ combinations like $X = \mathbb{R}^n \times \mathbb{B}^p \times \mathbb{P}_q$ or non-cartesian sets \Rightarrow structure of feasible region / search space defines representation of individual

Evolutionary Algorithm Basics	Lecture 10
Selection	
(a) select parents that generate offspring	\rightarrow selection for reproduction
(b) select individuals that proceed to next generation	\rightarrow selection for survival
necessary requirements:	
- selection steps must not favor worse individuals	
- one selection step may be neutral (e.g. select unifor	rmly at random)
- at least one selection step must favor better individu	uals
typically : selection only based on fitness values f(x)	of individuals
seldom : additionally based on individuals' chromos	omes x (\rightarrow maintain diversity)
	Computational Intelligence - Winter Term 2016/4

Evolutionary Algorithm Basics	Lecture 10	Evolutionary Algo	orithm Basics	Lect	ure 10
Selection methods		Selection method	S		
population P = ($x_1, x_2,, x_\mu$) with μ individuals		population P = ($x_1, x_2,, x_\mu$) with μ individuals			
<u>two approaches:</u> 1. repeatedly select individuals from population with 2. rank individuals somehow and choose those with • <i>uniform / neutral selection</i> choose index i with probability $1/\mu$ • <i>fitness-proportional selection</i> choose index i with probability $s_i = \frac{f(x_i)}{\sum\limits_{x \in P} f(x)}$ problems: $f(x) > 0$ for all $x \in X$ required \Rightarrow but already sensitive to additive shifts $g(x) = f(x)$ almost deterministic if large differences, almost up	• <i>rank-proportional selection</i> order individuals according to their fitness values assign ranks fitness-proportional selection based on ranks \Rightarrow avoids all problems of fitness-proportional selection but: best individual has only small selection advantage (can be lost!) • <i>k-ary tournament selection</i> draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random) \Rightarrow has all advantages of rank-based selection and probability that best individual does not survive: $\left(1 - \frac{1}{\mu}\right)^{k\mu} \approx e^{-k}$				
technische universität G. Rude dortmund	olph: Computational Intelligence • Winter Term 2016/17 13	technische universit dortmund	ät	G. Rudolph: Computation	al Intelligence • Winter Term 2016/17 14
Evolutionary Algorithm Basics	Lecture 10	Evolutionary Algo	orithm Basics	Lect	ure 10
Selection methods without replacement		Selection method	s: Elitism		
population P = $(x_1, x_2,, x_{\mu})$ with μ parents and population Q = $(y_1, y_2,, y_{\lambda})$ with λ offspring		Elitist selection: t	est parent is not	replaced by worse individ	ual.
 (μ, λ)-selection or truncation selection on offs rank λ offspring according to their fitness select μ offspring with best ranks ⇒ best individual may get lost, λ ≥ μ required 	spring or comma-selection	t - Forced elitism: i	est survives with f best individual h	om parent and offspring, probability 1 as not survived then re-inj selected individual by pre	
 (μ+λ)-selection or truncation selection on part 	ents + offspring or plus-selection	method	P{ select best }	from parents & offspring	intrinsic elitism
merge λ <u>offspring</u> and μ <u>parents</u> rank them according to their fitness select μ individuals with best ranks \Rightarrow best individual survives for sure	enter entering er procession	neutralfitness proportionaterank proportionatek-ary tournament $(\mu + \lambda)$ (μ, λ)	< 1 < 1 < 1 < 1 = 1 = 1	no no no yes no	no no no yes no
G. Rudo dortmund	olph: Computational Intelligence • Winter Term 2016/17 15	tu technische universit dortmund	ät	G. Rudolph: Computation	al Intelligence • Winter Term 2016/17 16

Evolutionary Algorithm Ba	asics	Lecture 10	Evolutionary A	Igorithm Basics		ecture 10
Variation operators: depend	on representation		• Mutation			Individuals $\in \{ 0, 1 \}^n$
mutation recombination	→ alters a <u>single</u> individu → creates single offsprir	ual ng from two or more parer	a) local	→ choose index $k \in A$ flip bit k, i.e., $x_k = A$ → for each index $k \in A$	$1 - x_k$	y at random, k with probability $p_m \in (0, 1)$
may be applied			c) "nonlocal"	\rightarrow choose K indices a	at random and flip b	pits with these indices
exclusively (either recombineexclusively (either recombine)	,		d) inversion	→ choose start index invert order of bits	k k _s and end index k s between start and	
 sequentially (typically, record sequentially (typically, record) 			1 0 1 1	1 k=2 1 1 a) 1 b)	$\begin{array}{ccc} 0 & \longrightarrow & 0 \\ 0 & & \mathbf{K=2} & 0 \\ 1 & & \mathbf{K=0} & 0 \\ 0 & \longrightarrow & 0 \\ 1 & & \mathbf{C} \end{pmatrix} 1 \end{array}$	1 k _s 1 0 k _e 0 d) 1
U technische universität dortmund	G. Rudolph: Con	nputational Intelligence • Winter Term 2	016/17 17 technische unive dortmund	ersität	G. Rudolph: Compute	
		nputational Intelligence • Winter Term 2	17 U dortmund	ersität	· ·	
U dortmund		-	17 Evolutionary A		· ·	
	asics	Lecture 10	17 Evolutionary A }n Variation in Bn		L	ecture 10
dortmund Evolutionary Algorithm Ba Variation in ^{®n} Recombination (two parents)	asics	Lecture 10 Individuals $\in \{0, 1$ n-1} uniformly at random; st parent,	$\frac{17}{17} \qquad \qquad$	Igorithm Basics (multiparent: $\rho = #parentpossover (2 < \rho < n)p = 1$ distinct cut points, s	nts) select chunks from	ecture 10 Individuals ∈ { 0, 1 } ⁿ diagonals
 dortmund Evolutionary Algorithm Bat Variation in Bⁿ Recombination (two parents) a) 1-point crossover – 	asics → draw cut-point k ∈ {1,,r choose first k bits from 1s choose last n-k bits from → draw K distinct cut-points choose bits 1 to k ₁ from 1 choose bits k ₁ +1 to k ₂ fro	Lecture 10 Individuals ∈ { 0, 1 n-1} uniformly at random; st parent, 2nd parent s uniformly at random; 1st parent,	17 Evolutionary A }n Evolutionary A }n • Recombination a) diagonal cro → choose p AAAAAAAA BBBBBBBB CCCCCCCCC DDDDDDDDD	Algorithm Basics(multiparent: $\rho = \# parenpssover (2 < \rho < n)\rho = 1 distinct cut points, sAAABBBCCDDBBBCCCDDAACCCDDDAABB$	nts) select chunks from DDD Can ge otherw at rand	ecture 10 Individuals $\in \{0, 1\}^n$
 dortmund Evolutionary Algorithm Bat Variation in Bⁿ Recombination (two parents) a) 1-point crossover – b) K-point crossover – 	asics → draw cut-point k ∈ {1,,r choose first k bits from 1s choose last n-k bits from → draw K distinct cut-points choose bits 1 to k ₁ from 1 choose bits k ₁ +1 to k ₂ fro	Lecture 10 Individuals ∈ { 0, 1 n-1} uniformly at random; st parent, 2nd parent s uniformly at random; 1st parent, om 2nd parent, om 1st parent, and so forth	17 Evolutionary A }n Variation in Bn • Recombination a) diagonal crophone → choose (AAAAAAAA BBBBBBBB CCCCCCCCC DDDDDDDDD b) gene pool c	Algorithm Basics(multiparent: $\rho = \# parenpssover (2 < \rho < n)\rho = 1 distinct cut points, sAAABBBCCDDBBBCCCDDAACCCDDDAABB$	nts) select chunks from DDD Can ge otherw at rand	Individuals $\in \{ 0, 1 \}^n$ diagonals enerate ρ offspring; ise choose initial chunk dom for single offspring
 dortmund Evolutionary Algorithm Bat Variation in Bⁿ Recombination (two parents) a) 1-point crossover – b) K-point crossover – 	 asics draw cut-point k ∈ {1,,r choose first k bits from 1s choose last n-k bits from 1 choose last n-k bits from 1 choose bits 1 to k₁ from 1 choose bits 1 to k₁ from 1 choose bits k₁+1 to k₂ fro choose bits k₂+1 to k₃ fro for each index i: choose b 	Lecture 10 Individuals ∈ { 0, 1 n-1} uniformly at random; st parent, 2nd parent s uniformly at random; 1st parent, om 2nd parent, om 1st parent, and so forth	17 Evolutionary A }n Variation in Bn • Recombination a) diagonal crophone → choose (AAAAAAAA BBBBBBBB CCCCCCCCC DDDDDDDDD b) gene pool c	Igorithm Basics(multiparent: $\rho = \# parenovpossover (2 < \rho < n)po - 1 distinct cut points, sAAABBBCCDDBBBCCCDDAACCCDDDAABBCDDAABBCCCrossover (\rho > 2)$	nts) select chunks from DDD Can ge otherw at rand	ecture 10 Individuals $\in \{0, 1\}^n$ diagonals merate ρ offspring; ise choose initial chunk fom for single offspring


Evolutionary Algorithm Basics	Lecture 10	Evolutionary Algorithm Basics Lectu	re 10
Variation in \mathbb{P}_n • Mutation a) local $\rightarrow 2$ -swap / 1-translocation 53241 $53241\swarrow 54231 52431$	Individuals $\in X = \pi(1,, n)$	Variation in \mathbb{P}_n Individu• Recombination (two parents)a) order-based crossover (OBX)- select two indices k_1 and k_2 with $k_1 \le k_2$ uniformly at random- copy genes k_1 to k_2 from 1st parent to offspring (keep positions)- copy genes from left to right from 2nd parent, starting after position k_2	uals $\in X = \pi(1,, n)$ 2 3 5 7 1 6 4 6 4 5 3 7 2 1 x x x 7 1 6 x 5 3 2 7 1 6 4
b) global → draw number K of 2-swaps, app K is positive random variable; its distribution may be uniform, E[K] and V[K] may control muta expectation variance	binomial, geometrical,;	 b) partially mapped crossover (PMX) select two indices k₁ and k₂ with k₁ ≤ k₂ uniformly at random copy genes k₁ to k₂ from 1st parent to offspring (keep positions) copy all genes not already contained in offspring from 2nd parent (keep positions) from left to right: fill in remaining genes from 2nd parent technische universität G. Rudolph: Computational I 	2 3 5 7 1 6 4 6 4 5 3 7 2 1 x x x 7 1 6 x x 4 5 7 1 6 x 3 4 5 7 1 6 2
Evolutionary Algorithm Basics	Lecture 10	Evolutionary Algorithm Basics Lectu	re 10
Variation in \mathbb{R}^n	Individuals $X \in \mathbb{R}^n$	Variation in \mathbb{R}^n	Individuals $X \in \mathbb{R}^n$
 Mutation <u>additive:</u> Y = X + Z (Z: n-dimensional offspring = parent + mutation 	al random vector)	 Recombination (two parents) a) all crossover variants adapted from Bⁿ 	
	efinition et $f_Z: \mathbb{R}^n \to \mathbb{R}^+$ be p.d.f. of r.v. Z. he set { $x \in \mathbb{R}^n : f_Z(x) > 0$ } is ermed the <u>support</u> of Z.	b) intermediate $z = \xi \cdot x + (1 - \xi) \cdot y$ with c) intermediate (per dimension) $\forall i : z_i = \xi_i \cdot x_i + (1 - \xi_i)$ d) discrete $\forall i : z_i = B_i \cdot x_i + (1 - B_i) \cdot$	$\cdot y_i$ with $\xi_i \in [0,1]$

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2016/17 23

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2016/17

24

