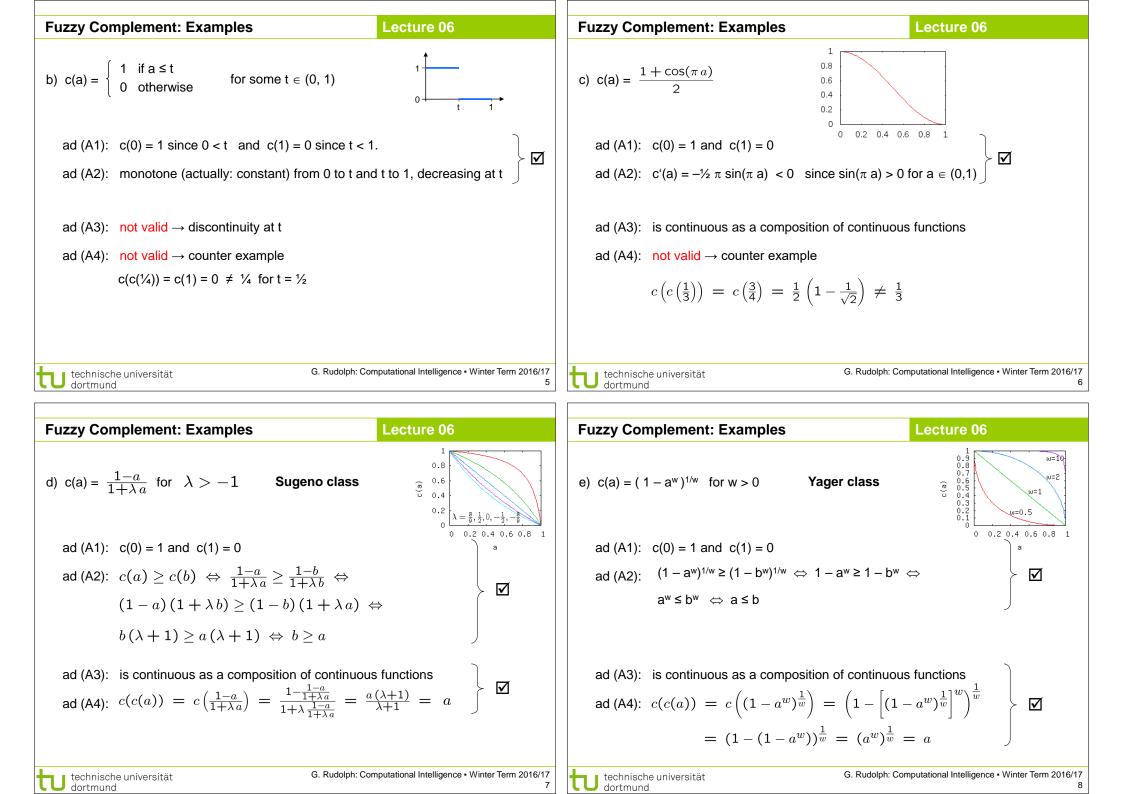
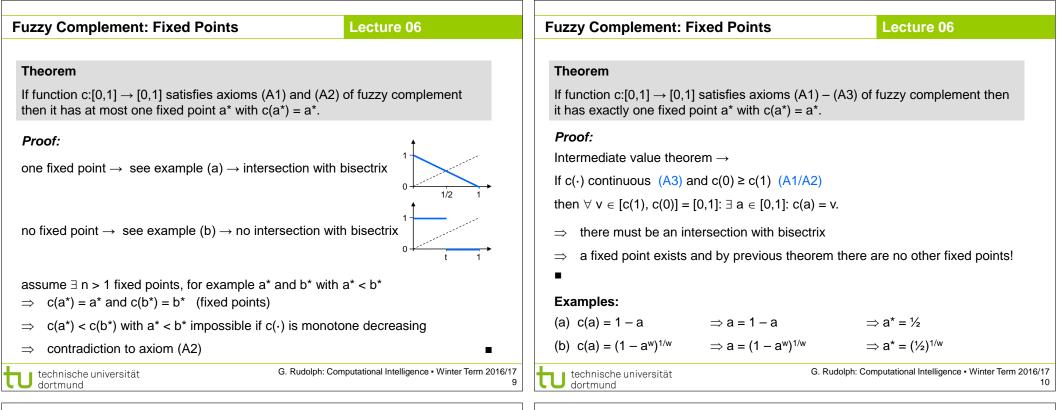
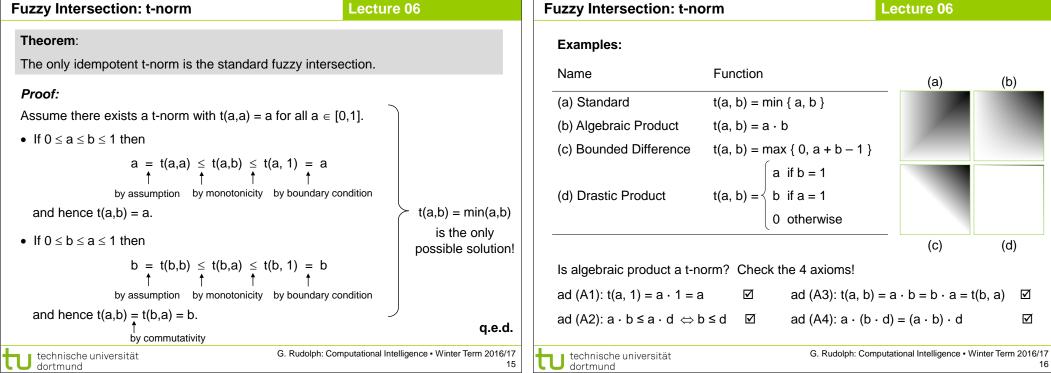
technische universität dortmund		Plan for Today	Lecture 06
Computational Intelligence Winter Term 2016/17		 Fuzzy sets Axioms of fuzzy comp Generators Dual tripels 	plement, t- and s-norms
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik			
TU Dortmund			
		technische universität	G. Rudolph: Computational Intelligence • Winter Term 2016/1
Fuzzy Sets	Lecture 06	Fuzzy Complement: Axioms	Lecture 06
Fuzzy Sets Considered so far:	Lecture 06	Fuzzy Complement: Axioms	
	Lecture 06	Gortmund Fuzzy Complement: Axioms Definition	Lecture 06
Considered so far:	Lecture 06	Fuzzy Complement: Axioms	Lecture 06
Considered so far: Standard fuzzy operators	Lecture 06	Fuzzy Complement: Axioms Definition A function c: $[0,1] \rightarrow [0,1]$ is a fuz	Lecture 06
Considered so far: Standard fuzzy operators • A ^c (x) = 1 - A(x)	Lecture 06	dortmundFuzzy Complement: AxiomsDefinitionA function c: $[0,1] \rightarrow [0,1]$ is a fuz(A1)c(0) = 1 and c(1) = 0.	Lecture 06
Considered so far: Standard fuzzy operators • $A^{c}(x) = 1 - A(x)$ • $(A \cap B)(x) = \min \{A(x), B(x)\}$ • $(A \cup B)(x) = \max \{A(x), B(x)\}$	Lecture 06	dortmundFuzzy Complement: AxiomsDefinitionA function c: $[0,1] \rightarrow [0,1]$ is a fuz $(A1)$ c(0) = 1 and c(1) = 0. $(A1)$ c(0) = 1 and c(1) = 0. $(A2)$ \forall a, b \in $[0,1]$: a \leq b \Rightarrow "nice to have":	Lecture 06
Considered so far: Standard fuzzy operators • $A^{c}(x) = 1 - A(x)$ • $(A \cap B)(x) = \min \{A(x), B(x)\}$ • $(A \cup B)(x) = \max \{A(x), B(x)\}$ \Rightarrow Compatible with operators for crisp sets		dortmundFuzzy Complement: AxiomsDefinitionA function c: $[0,1] \rightarrow [0,1]$ is a fuz $(A1)$ $c(0) = 1$ and $c(1) = 0$. $(A2)$ \forall a, b $\in [0,1]$: a \leq b \Rightarrow "nice to have":(A3) $(A3)$ $c(\cdot)$ is continuous.	Lecture 06 zzy complement iff $c(a) \ge c(b)$.
Considered so far: Standard fuzzy operators • $A^{c}(x) = 1 - A(x)$ • $(A \cap B)(x) = \min \{A(x), B(x)\}$ • $(A \cup B)(x) = \max \{A(x), B(x)\}$ \Rightarrow Compatible with operators for crisp sets	Lecture 06	dortmundFuzzy Complement: AxiomsDefinitionA function c: $[0,1] \rightarrow [0,1]$ is a fuz $(A1)$ c(0) = 1 and c(1) = 0. $(A1)$ c(0) = 1 and c(1) = 0. $(A2)$ \forall a, b \in $[0,1]$: a \leq b \Rightarrow "nice to have":	Lecture 06
Considered so far: Standard fuzzy operators • $A^{c}(x) = 1 - A(x)$ • $(A \cap B)(x) = \min \{A(x), B(x)\}$ • $(A \cup B)(x) = \max \{A(x), B(x)\}$ \Rightarrow Compatible with operators for crisp sets), 1 }	dortmundFuzzy Complement: AxiomsDefinitionA function c: $[0,1] \rightarrow [0,1]$ is a fuz $(A1)$ c(0) = 1 and c(1) = 0. $(A1)$ c(0) = 1 and c(1) = 0. $(A2)$ \forall a, b $\in [0,1]$: a \leq b \Rightarrow "nice to have": $(A3)$ c(·) is continuous. $(A4)$ \forall a $\in [0,1]$: c(c(a)) = a	Lecture 06 zzy complement iff $c(a) \ge c(b)$.
Considered so far: Standard fuzzy operators • $A^{c}(x) = 1 - A(x)$ • $(A \cap B)(x) = \min \{A(x), B(x)\}$ • $(A \cup B)(x) = \max \{A(x), B(x)\}$ \Rightarrow Compatible with operators for crisp sets with membership functions with values in $\mathbb{B} = \{0, 0\}$ \exists Non-standard operators? \Rightarrow Yes! Innumerable m), 1 }	dortmundFuzzy Complement: AxiomsDefinitionA function c: $[0,1] \rightarrow [0,1]$ is a fuz $(A1)$ $c(0) = 1$ and $c(1) = 0$. $(A2)$ \forall a, b $\in [0,1]$: a \leq b \Rightarrow "nice to have":(A3) $(A3)$ $c(\cdot)$ is continuous.	Lecture 06 zzy complement iff $c(a) \ge c(b)$. monotone decreasing involutive
Considered so far: Standard fuzzy operators • $A^{c}(x) = 1 - A(x)$ • $(A \cap B)(x) = \min \{A(x), B(x)\}$ • $(A \cup B)(x) = \max \{A(x), B(x)\}$ \Rightarrow Compatible with operators for crisp sets with membership functions with values in $\mathbb{B} = \{0, 0\}$), 1 }	dortmundFuzzy Complement: AxiomsDefinitionA function c: $[0,1] \rightarrow [0,1]$ is a fuz $(A1)$ c(0) = 1 and c(1) = 0. $(A1)$ c(0) = 1 and c(1) = 0. $(A2)$ \forall a, b $\in [0,1]$: a \leq b \Rightarrow "nice to have": $(A3)$ c(·) is continuous. $(A4)$ \forall a $\in [0,1]$: c(c(a)) = aExamples:	Lecture 06 zzy complement iff $c(a) \ge c(b)$. monotone decreasing involutive $c(a) = 1 - a$





Fuzzy Complement: 1 st Characterization	Lecture 06	Fuzzy Complement: 1st Characterization Lecture 06
Theoremc: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff \exists continuous function g: $[0,1] \rightarrow \mathbb{R}$ with• $g(0) = 0$ • strictly monotone increasing• $\forall a \in [0,1]$: $c(a) = g^{(-1)}(g(1) - g(a))$.Examplesa) $g(x) = x \qquad \Rightarrow g^{-1}(x) = x \qquad \Rightarrow c(a) = 1 - a$	defines an increasing generator g ⁽⁻¹⁾ (x) pseudo-inverse (Standard)	Examples d) $g(a) = \frac{1}{\lambda} \log_e(1 + \lambda a) \text{ for } \lambda > -1$ $\cdot g(0) = \log_e(1) = 0$ $\cdot \text{ strictly monotone increasing since } g'(a) = \frac{1}{1 + \lambda a} > 0 \text{ for } a \in [0, 1]$ $\cdot \text{ inverse function on } [0,1] \text{ is } g^{-1}(a) = \frac{\exp(\lambda a) - 1}{\lambda}$, thus $c(a) = g^{-1} \left(\frac{\log(1 + \lambda)}{\lambda} - \frac{\log(1 + \lambda a)}{\lambda} \right)$ $= \frac{\exp(\log(1 + \lambda) - \log(1 + \lambda a)) - 1}{\lambda}$
b) $g(x) = x^w \implies g^{-1}(x) = x^{1/w} \implies c(a) = (1 - a^2)^{-1}$ c) $g(x) = \log(x+1) \implies g^{-1}(x) = e^x - 1 \implies c(a) = \exp(16x)^{-1}$		$= \frac{1}{\lambda} \left(\frac{1+\lambda}{1+\lambda a} - 1 \right) = \frac{1-a}{1+\lambda a} $ (Sugeno Complement)
$g'(x) = \log(x+1) \rightarrow g'(x) = e^{x} - 1 \rightarrow c(a) = exp(a)$ $= \frac{1-a}{1+a}$		
U technische universität G. Rudolph dortmund	: Computational Intelligence • Winter Term 2016/17 11	technische universität G. Rudolph: Computational Intelligence • Winter Term 20 dortmund

Fuzzy Complement: 2 nd Characterization	Lecture 06	Fuzzy Intersection: t-norm	Lecture 06
Theorem		Definition	
c: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff		A function t:[0,1] x [0,1] \rightarrow [0,1] is a <i>fuzzy intersed</i>	etion or <i>t-norm</i> iff $\forall a,b,d \in [0,1]$
$\exists continuous function f: [0,1] \rightarrow \mathbb{R} \text{ with } $		(A1) $t(a, 1) = a$	(boundary condition)
• f(1) = 0	defines a	(A2) $b \le d \Rightarrow t(a, b) \le t(a, d)$	(monotonicity)
strictly monotone decreasing	b decreasing generator	(A3) $t(a,b) = t(b, a)$	(commutative)
• $\forall a \in [0,1]$: $c(a) = f^{(-1)}(f(0) - f(a))$.	f ⁽⁻¹⁾ (x) pseudo-inverse	(A4) $t(a, t(b, d)) = t(t(a, b), d)$	(associative)
Examples		"nice to have"	
a) $f(x) = k - k \cdot x$ (k > 0) $f^{(-1)}(x) = 1 - x/k$ $c(a) = 1$	$1 - \frac{k - (k - ka)}{k} = 1 - a$	(A5) t(a, b) is continuous	(continuity)
	10	(A6) t(a, a) < a for 0 < a < 1	(subidempotent)
b) $f(x) = 1 - x^w$ $f^{(-1)}(x) = (1 - x)^{1/w}$ $c(a) = f^{-1}(x)^{1/w}$	$(a^{w}) = (1 - a^{w})^{1/w}$ (Yager)	(A7) $a_1 < a_2$ and $b_1 \le b_2 \implies t(a_1, b_1) < t(a_2, b_2)$) (strict monotonicity)
		Note: the only idempotent t-norm is the standard f	uzzy intersection
U technische universität G. Rudolph: Con dortmund	nputational Intelligence • Winter Term 2016/17 13	technische universität G. Rudo dortmund	lph: Computational Intelligence • Winter Term 2016



Fuzzy Intersection: Characterization	Lecture 06	Fuzzy Union: s-norm	Lecture 06
Theorem		Definition	
Function t: [0,1] x [0,1] \rightarrow [0,1] is a t-norm ,		A function s:[0,1] x [0,1] \rightarrow [0,1] is a <i>fuzzy union</i> or	$\textit{s-norm} \text{ iff } \forall a,b,d \in [0,1]$
\exists decreasing generator f:[0,1] $\rightarrow \mathbb{R}$ with t(a, b) = f	- ¹ (min{ f(0), f(a) + f(b) }). ■	(A1) $s(a, 0) = a$	(boundary condition)
		(A2) $b \le d \Rightarrow s(a, b) \le s(a, d)$	(monotonicity)
Example:		(A3) $s(a, b) = s(b, a)$	(commutative)
f(x) = 1/x - 1 is decreasing generator since		(A4) s(a, s(b, d)) = s(s(a, b), d)	(associative)
f(x) is continuous			
• $f(1) = 1/1 - 1 = 0$		"nice to have"	
• $f'(x) = -1/x^2 < 0$ (monotone decreasing)		(A5) s(a, b) is continuous	(continuity)
inverse function is f ⁻¹ (x) = $\frac{1}{x+1}$; f(0) = ∞ \Rightarrow	<pre>min{ f(0), f(a) + f(b) } = f(a) + f(b)</pre>	(A6) $s(a, a) > a$ for $0 < a < 1$ (A7) $a_1 < a_2$ and $b_1 \le b_2 \implies s(a_1, b_1) < s(a_2, b_2)$	(superidempotent)) (strict monotonicity)
\Rightarrow t(a, b) = $f^{-1}\left(\frac{1}{a} + \frac{1}{b} - 2\right) = \frac{1}{\frac{1}{a} + \frac{1}{b} - 2}$	$\frac{1}{1} = \frac{ab}{a+b-ab}$	Note: the only idempotent s-norm is the standard fu	zzy union
technische universität G. Rudo dortmund	olph: Computational Intelligence • Winter Term 2016/17 17	C. Rudolp G. Rudolp dortmund	h: Computational Intelligence • Winter Term 2016/17 18
Fuzzy Union: s-norm	Lecture 06	Fuzzy Union: Characterization	Lecture 06

Examples:				
Name	Function	(a)	(b)	
Standard	s(a, b) = max { a, b }			
Algebraic Sum	$s(a, b) = a + b - a \cdot b$			
Bounded Sum	s(a, b) = min { 1, a + b }			
	$s(a, b) = \begin{cases} a \text{ if } b = 0\\ b \text{ if } a = 0\\ 1 \text{ otherwise} \end{cases}$			
Drastic Union	s(a, b) = b if $a = 0$			
	1 otherwise			
		(c)	(d)	
Is algebraic sum a t-	norm? Check the 4 axioms!			
ad (A1): s(a, 0) = a +	$0 - a \cdot 0 = a \blacksquare$		ad (A3): 🗹	
ad (A2): a + b – a ⋅ b	\leq a + d – a · d \Leftrightarrow b (1 – a) \leq d (1	–a)⇔b≤d ⊠	ad (A4): 🗹	
J technische universität dortmund	G. Rudolph: Co	mputational Intelligence • V	Vinter Term 2016/1 1	

Fuzzy Union: Characterization		Lecture 06
Theorem		
Function s: $[0,1] \times [0,1] \rightarrow [0,1]$ is a	s-norm ⇔	
$\exists \text{increasing generator g:} [0,1] \rightarrow \mathbb{R}$	with $s(a, b) = g^{-1}($	min{ g(1), g(a) + g(b) }). ■
Example:		
g(x) = -log(1 - x) is increasing gene	rator since	
 g(x) is continuous 		
• $g(0) = -\log(1 - 0) = 0$		
• $g'(x) = 1/(1 - x) > 0$ (monotone inc	reasing) 🗹	
inverse function is $g^{-1}(x) = 1 - \exp(-\frac{1}{2})$	x); g(1) = $\infty \Rightarrow \min$	{g(1), g(a) + g(b)} = g(a) + g(b)
\Rightarrow s(a, b= $g^{-1}(-\log(1-a) -$	$-\log(1-b))$	
$= 1 - \exp(\log(1-a) \cdot$	$+\log(1-b))$	
= 1 - (1 - a) (1 - b)	= a + b - a b	(algebraic sum)
technische universität	G. Rudolph: Cor	nputational Intelligence • Winter Term 2016/17 20

Combination of Fuzz	y Operations: Dual Tri	ples Lecture 06	Dual Triples vs. Non-Dual	Triples	Lecture 06
Background from cla	ssical set theory:				Dual Triple:
\cap and \cup operations are	e dual w.r.t. complement si	nce they obey DeMorgan's laws			- bounded difference
Definition		Definition			- bounded sum
Deminition		Demition			- standard complement
	nd s-norm $s(\cdot, \cdot)$ is said to				
dual with regard to th	e fuzzy complement $c(\cdot)$	iff of fuzzy complement $c(\cdot)$, s- and t-norm.			\Rightarrow left image = right
• c(t(a, b)) = s(c(a),	c(b))				image
• c(s(a, b)) = t(c(a),	c(b))	If t and s are dual to c	c(t(a, b))	s(c(a), c(b))	
for all a, $b \in [0,1]$.		then the tripel (c,s, t) is ■ called a <i>dual tripel</i> . ■			Non-Dual Triple:
					- algebraic product
Examples of dual trip	els				- bounded sum
t-norm	s-norm	complement			- standard complement
min { a, b }	max { a, b }	1 – a			
a∙b	a+b−a·b	1 – a			\Rightarrow left image \neq right
max { 0, a + b – 1 }	min { 1, a + b }	1 – a			image
U technische universität dortmund	G. Ru	dolph: Computational Intelligence • Winter Term 2016/1		G. Rudolph	: Computational Intelligence • Winter Term

Dual Triples vs. Non-Dual Triples

Lecture 06

Why are dual triples so important?

- allow equivalence transformations of fuzzy set expressions \Rightarrow
- required to transform into some equivalent normal form (standardized \Rightarrow input)
- e.g. two stages: intersection of unions \Rightarrow

hs
$$\bigcap_{i=1}^{n} (A_i \cup B_i)$$

 $\bigcup_{i=1}^{n} (A_i \cap B_i)$

i=1

or union of intersections

← not in normal form $A \cup (B \cap (C \cap D)^c) =$ ← equivalent if DeMorgan's law valid (dual triples!) $A \cup (B \cap (C^c \cup D^c)) =$ $A \cup (B \cap C^c) \cup (B \cap D^c)$ ← equivalent (distributive lattice!)

G. Rudolph: Computational Intelligence - Winter Term 2016/17 23