

Computational Intelligence

Winter Term 2016/17

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

- Fuzzy Sets
 - Basic Definitions and Results for Standard Operations
 - Algebraic Difference between Fuzzy and Crisp Sets

Observation:

Communication between people is not precise but somehow <u>fuzzy</u> and <u>vague</u>.

"If the water is too hot then add a little bit of cold water."

Despite these shortcomings in human language we are able

- to process fuzzy / uncertain information and
- to accomplish complex tasks!

Goal:

Development of formal framework to process fuzzy statements in computer.

Consider the statement: "The wat

"The water is hot."

Which temperature defines "hot"?

A single temperature $T = 100^{\circ} C$?

No! Rather, an interval of temperatures: T ∈ [70, 120]!

But who defines the limits of the intervals?

Some people regard temperatures > 60° C as hot, others already T > 50° C!

Idea: All people might agree that a temperature in the <u>set</u> [70, 120] defines a hot temperature!

If $T = 65^{\circ}$ C not all people regard this as hot. It does not belong to [70,120].

But it is hot to some degree.

Or: $T = 65^{\circ}C$ belongs to set of hot temperatures to some <u>degree!</u>

⇒ Can be the concept for capturing fuzziness! ⇒ Formalize this concept!

A map F: $X \to [0,1] \in \mathbb{R}$ that assigns its *degree of membership* F(x) to each $x \in X$ is termed a **fuzzy set**.

Remark:

A fuzzy set F is actually a map F(x). Shorthand notation is simply F.

Same point of view possible for traditional ("crisp") sets:

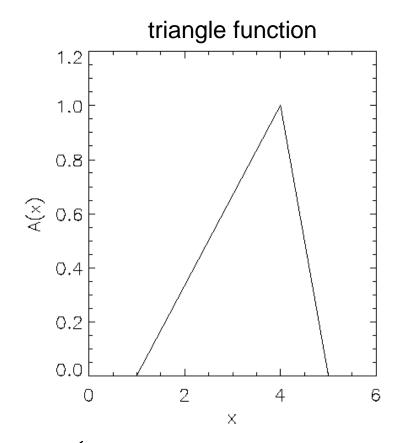
$$A(x):=\mathbf{1}_{[x\in A]}:=\mathbf{1}_A(x):=\left\{\begin{array}{ll} 1 & \text{, if } x\in A\\ 0 & \text{, if } x\notin A \end{array}\right.$$

characteristic / indicator function of (crisp) set A

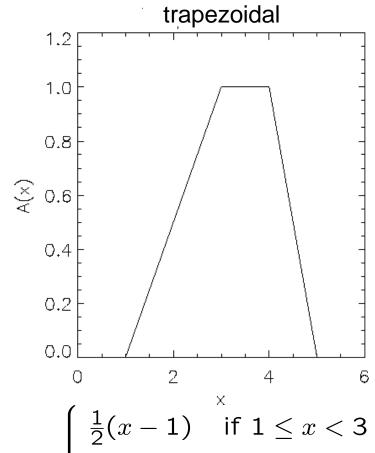
⇒ membership function interpreted as generalization of characteristic function

Fuzzy Sets: Membership Functions

Lecture 05



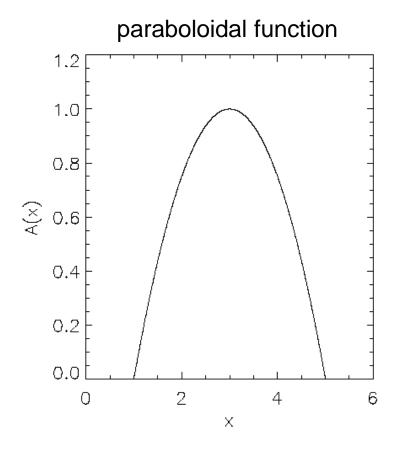
$$A(x) = \begin{cases} \frac{1}{3}(x-1) & \text{if } 1 \le x < 4\\ 5-x & \text{if } 4 \le x < 5\\ 0 & \text{otherwise} \end{cases}$$



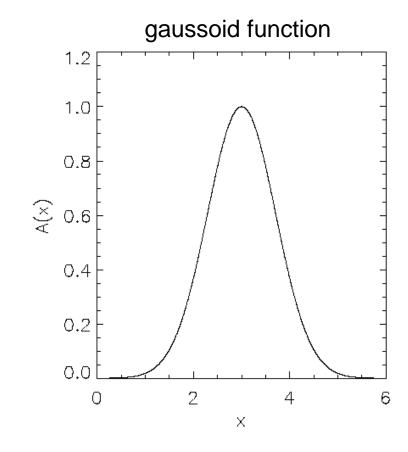
$$A(x) = \begin{cases} \frac{1}{3}(x-1) & \text{if } 1 \le x < 4 \\ 5-x & \text{if } 4 \le x < 5 \\ 0 & \text{otherwise} \end{cases} \qquad A(x) = \begin{cases} \frac{1}{2}(x-1) & \text{if } 1 \le x < 3 \\ 1 & \text{if } 3 \le x < 4 \\ 5-x & \text{if } 4 \le x < 5 \\ 0 & \text{otherwise} \end{cases}$$

Fuzzy Sets: Membership Functions

Lecture 05



$$A(x) = \begin{cases} -\frac{(x-1)(x-5)}{4} & \text{if } 1 \le x < 5\\ 0 & \text{otherwise} \end{cases}$$



$$A(x) = \exp\left(-\frac{(x-3)^2}{2}\right)$$

A fuzzy set F over the crisp set X is termed

- a) **empty** if F(x) = 0 for all $x \in X$,
- b) *universal* if F(x) = 1 for all $x \in X$.

Empty fuzzy set is denoted by \mathbb{O} . Universal set is denoted by \mathbb{U} .

Definition

Let A and B be fuzzy sets over the crisp set X.

- a) A and B are termed **equal**, denoted A = B, if A(x) = B(x) for all $x \in X$.
- b) A is a **subset** of B, denoted $A \subseteq B$, if $A(x) \le B(x)$ for all $x \in X$.
- c) A is a **strict subset** of B, denoted $A \subset B$, if $A \subseteq B$ and $\exists x \in X$: A(x) < B(x).

Remark: A strict subset is also called a proper subset.

Let A, B and C be fuzzy sets over the crisp set X. The following relations are valid:

- a) reflexivity : $A \subseteq A$.
- b) antisymmetry : $A \subseteq B$ and $B \subseteq A \Rightarrow A = B$.
- c) transitivity : $A \subseteq B$ and $B \subseteq C \Rightarrow A \subseteq C$.

Proof: (via reduction to definitions and exploiting operations on crisp sets)

ad a)
$$\forall x \in X$$
: $A(x) \leq A(x)$.

ad b)
$$\forall x \in X$$
: $A(x) \leq B(x)$ and $B(x) \leq A(x) \Rightarrow A(x) = B(x)$.

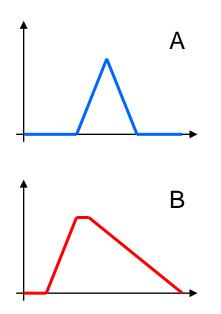
ad c)
$$\forall x \in X$$
: $A(x) \leq B(x)$ and $B(x) \leq C(x) \Rightarrow A(x) \leq C(x)$.

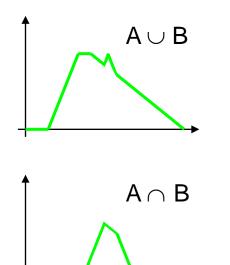
q.e.d.

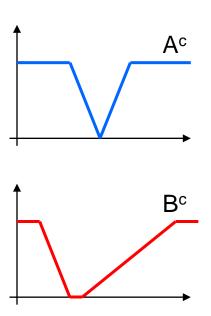
Remark: Same relations valid for crisp sets. No Surprise! Why?

Let A and B be fuzzy sets over the crisp set X. The set C is the

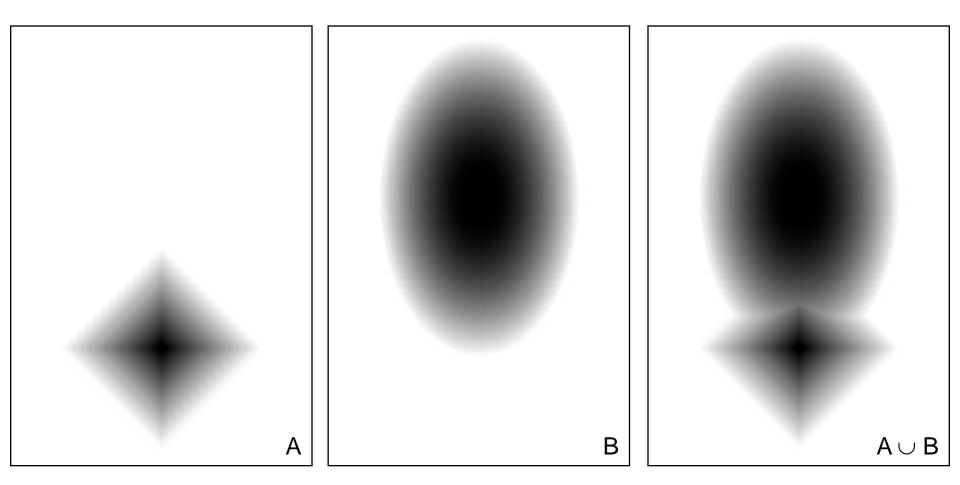
- a) *union* of A and B, denoted $C = A \cup B$, if $C(x) = max\{A(x), B(x)\}$ for all $x \in X$;
- b) *intersection* of A and B, denoted $C = A \cap B$, if $C(x) = min\{A(x), B(x)\}$ for all $x \in X$;
- c) **complement** of A, denoted $C = A^c$, if C(x) = 1 A(x) for all $x \in X$.





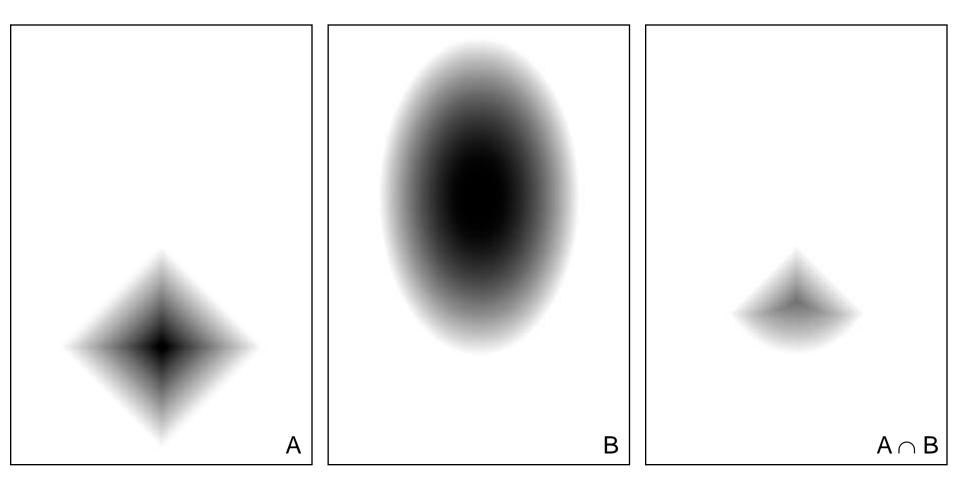


standard fuzzy union



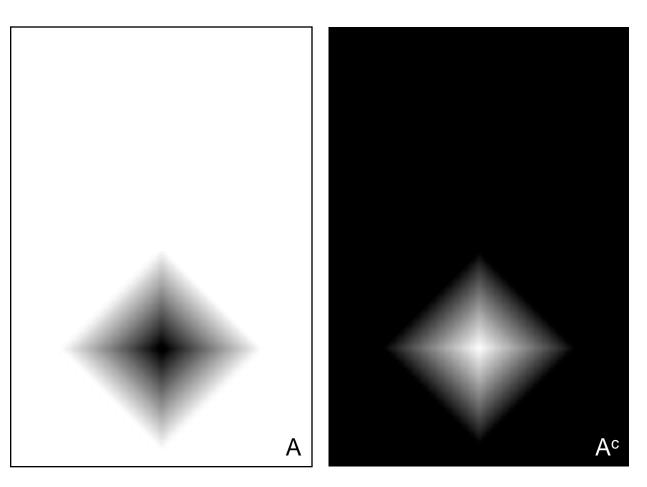
interpretation: membership = 0 is white, = 1 is black, in between is gray

standard fuzzy intersection



interpretation: membership = 0 is white, = 1 is black, in between is gray

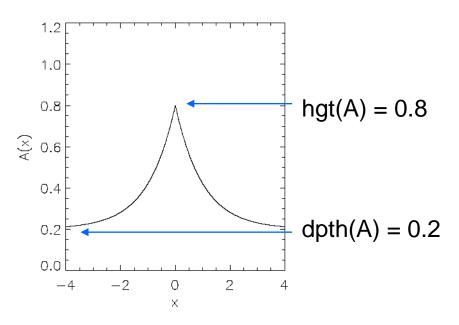
standard fuzzy complement



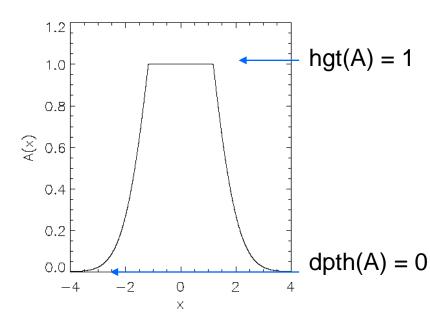
interpretation: membership = 0 is white, = 1 is black, in between is gray

The fuzzy set A over the crisp set X has

- a) $height hgt(A) = \sup\{A(x) : x \in X\},\$
- b) **depth** dpth(A) = inf $\{A(x) : x \in X\}$.



$$A(x) = \frac{1}{5} + \frac{3}{5} \exp(-|x|)$$



$$A(x) = \min\left\{1, 2\,\exp\left(-\frac{x^2}{2}\right)\right\}$$

The fuzzy set A over the crisp set X is

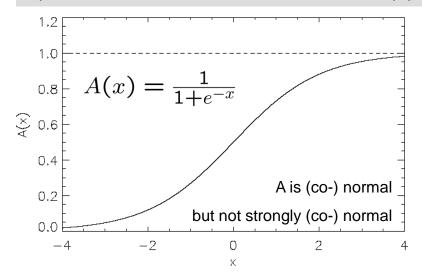
normal a)

- if hgt(A) = 1
- **strongly normal** if $\exists x \in X$: A(x) = 1
- co-normal

- if dpth(A) = 0
- strongly co-normal if $\exists x \in X: A(x) = 0$

subnormal

if 0 < A(x) < 1 for all $x \in X$.



Remark:

How to normalize a non-normal fuzzy set A?

$$A^*(x) = \frac{A(x)}{\mathsf{hgt}(A)}$$

The *cardinality* card(A) of a fuzzy set A over the crisp set X is

$$\operatorname{card}(A) := \left\{ \begin{array}{ll} \sum\limits_{x \in X} A(x) & \text{, if X countable} \\ \\ \int\limits_X A(x) \, dx & \text{, if } X \subseteq \mathbb{R}^{\mathsf{n}} \end{array} \right.$$

Examples:

a)
$$A(x) = q^x$$
 with $q \in (0,1)$, $x \in \mathbb{N}_0$ \Rightarrow card $(A) = \sum_{x \in X} A(x) = \sum_{x=0}^{\infty} q^x = \frac{1}{1-q} < \infty$

b) A(x) = 1/x with x
$$\in \mathbb{N}$$
 \Rightarrow card(A) = $\sum_{x \in X} A(x) = \sum_{x=1}^{\infty} \frac{1}{x} = \infty$

c) A(x) = exp(-|x|)
$$\Rightarrow \operatorname{card}(A) = \int_{x \in X}^{\infty} A(x) = \int_{x = -\infty}^{\infty} \exp(-|x|) = 2 < \infty$$

For fuzzy sets A, B and C over a crisp set X the standard union operation is

- a) **commutative** : $A \cup B = B \cup A$
- b) associative : $A \cup (B \cup C) = (A \cup B) \cup C$
- c) idempotent : $A \cup A = A$
- d) monotone : $A \subseteq B \Rightarrow (A \cup C) \subseteq (B \cup C)$.

Proof: (via reduction to definitions)

ad a)
$$A \cup B = \max \{ A(x), B(x) \} = \max \{ B(x), A(x) \} = B \cup A.$$

ad b)
$$A \cup (B \cup C) = \max \{ A(x), \max\{ B(x), C(x) \} \} = \max \{ A(x), B(x), C(x) \}$$

= $\max \{ \max\{ A(x), B(x) \}, C(x) \} = (A \cup B) \cup C.$

ad c)
$$A \cup A = \max \{ A(x), A(x) \} = A(x) = A$$
.

ad d) $A \cup C = \max \{ A(x), C(x) \} \le \max \{ B(x), C(x) \} = B \cup C \text{ since } A(x) \le B(x).$ **q.e.d.**

For fuzzy sets A, B and C over a crisp set X the standard intersection operation is

a) commutative : $A \cap B = B \cap A$

b) associative : $A \cap (B \cap C) = (A \cap B) \cap C$

c) idempotent : $A \cap A = A$

d) monotone : $A \subseteq B \Rightarrow (A \cap C) \subseteq (B \cap C)$.

Proof: (analogous to proof for standard union operation)

For fuzzy sets A, B and C over a crisp set X there are the distributive laws

- a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof:

ad a) max { A(x), min { B(x), C(x) } } =
$$\begin{cases} max \{ A(x), B(x) \} & \text{if } B(x) \le C(x) \\ max \{ A(x), C(x) \} & \text{otherwise} \end{cases}$$

If $B(x) \le C(x)$ then $\max \{ A(x), B(x) \} \le \max \{ A(x), C(x) \}$.

Otherwise $\max \{ A(x), C(x) \} \leq \max \{ A(x), B(x) \}.$

- ⇒ result is always the smaller max-expression
- \Rightarrow result is **min** { max { A(x), B(x) }, max { A(x), C(x) } } = (A \cup B) \cap (A \cup C).

ad b) analogous.

If A is a fuzzy set over a crisp set X then

- a) $A \cup \mathbb{O} = A$
- b) $A \cup U = U$
- c) $A \cap \mathbb{O} = \mathbb{O}$
- d) $A \cap U = A$.

Proof:

(via reduction to definitions)

ad a) $\max \{ A(x), 0 \} = A(x)$

ad b) $\max \{ A(x), 1 \} = U(x) \equiv 1$

ad c) min $\{A(x), 0\} = \mathbb{O}(x) \equiv 0$

ad d) min $\{A(x), 1\} = A(x)$.

Breakpoint:

So far we know that fuzzy sets with operations \cap and \cup are a <u>distributive lattice</u>.

If we can show the validity of

•
$$(A^c)^c = A$$

$$\bullet$$
 A \cup A^c = U

• A
$$\cap$$
 A^c = \bigcirc

⇒ Fuzzy Sets would be Boolean Algebra! Is it true ?

If A is a fuzzy set over a crisp set X then

- a) $(A^{c})^{c} = A$
- b) $\frac{1}{2} \le (A \cup A^c)(x) < 1$ for $A(x) \in (0,1)$
- c) $0 < (A \cap A^c)(x) \le \frac{1}{2}$ for $A(x) \in (0,1)$

Remark:

Recall the identities

$$\min\{a,b\} = \frac{a+b-|a-b|}{2}$$

$$\max\{a,b\} = \frac{a+b+|a-b|}{2}$$

Proof:

ad a)
$$\forall x \in X: 1 - (1 - A(x)) = A(x)$$
.

ad b) $\forall x \in X$: max $\{A(x), 1 - A(x)\} = \frac{1}{2} + |A(x) - \frac{1}{2}| \ge \frac{1}{2}$. Value 1 only attainable for A(x) = 0 or A(x) = 1.

ad c)
$$\forall x \in X$$
: min { A(x), 1 – A(x) } = $\frac{1}{2}$ - | A(x) – $\frac{1}{2}$ | $\leq \frac{1}{2}$.
Value 0 only attainable for A(x) = 0 or A(x) = 1.

q.e.d.

Conclusion:

Fuzzy sets with \cup and \cap are a distributive lattice.

But in general:

b)
$$A \cap A^c \neq \mathbb{O}$$

a) $A \cup A^c \neq U$ b) $A \cap A^c \neq \emptyset$ \Rightarrow Fuzzy sets with \cup and \cap are **not** a Boolean algebra!

Remarks:

The **law of excluded middle** does not hold! ad a)

("Everything must either be or not be!")

The **law of noncontradiction** does not hold! ad b)

("Nothing can both be and not be!")

Nonvalidity of these laws generate the <u>desired</u> fuzziness!

but: Fuzzy sets still endowed with much algebraic structure (distributive lattice)!

If A and B are fuzzy sets over a crisp set X with standard union, intersection, and complement operations then **DeMorgan**'s laws are valid:

- a) $(A \cap B)^c = A^c \cup B^c$
- b) $(A \cup B)^c = A^c \cap B^c$

Proof: (via reduction to elementary identities)

ad a)
$$(A \cap B)^c(x) = 1 - \min \{ A(x), B(x) \} = \max \{ 1 - A(x), 1 - B(x) \} = A^c(x) \cup B^c(x)$$

ad b)
$$(A \cup B)^c(x) = 1 - \max \{ A(x), B(x) \} = \min \{ 1 - A(x), 1 - B(x) \} = A^c(x) \cap B^c(x)$$

q.e.d.

Question: Why restricting result above to "standard" operations?

Conjecture : Most likely there also exist "nonstandard" operations!