

Computational Intelligence

Winter Term 2016/17

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Plan for Today

Lecture 04

- Bidirectional Associative Memory (BAM)
 - Fixed Points
 - Concept of Energy Function
 - Stable States = Minimizers of Energy Function
- Hopfield Network
 - Convergence
 - Application to Combinatorial Optimization

G. Rudolph: Computational Intelligence • Winter Term 2016/17

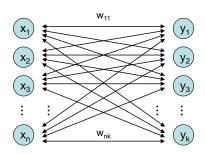
Lecture 04

2

Bidirectional Associative Memory (BAM)

Lecture 04

Network Model



- fully connected
- bidirectional edges
- synchonized:

step t : data flow from x to y step t + 1 : data flow from y to x

start: $y^{(0)} = sgn(x^{(0)} W)$

 $x^{(1)} = sgn(y^{(0)} W')$

 $y^{(1)} = sgn(x^{(1)} W)$

 $x^{(2)} = sgn(y^{(1)} W')$

bipolar inputs $\in \{-1,+1\}$

x, y: row vectors

W: weight matrix

W': transpose of W

technische universität

dortmund

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Fixed Points

Definition

(x, y) is **fixed point** of BAM iff y = sgn(x W) and x' = sgn(W y').

Set $W = x^{i} y$. (note: x is row vector)

Bidirectional Associative Memory (BAM)

 $y = sgn(x W) = sgn(x(x'y)) = sgn((x x') y) = sgn(||x||^2 y) = y$ > 0 (does not alter sign)

 $x' = sgn(W y') = sgn((x'y) y') = sgn(x'(y y')) = sgn(x'||y||^2) = x'$

> 0 (does not alter sign)

Theorem: If $W = x^ty$ then (x,y) is fixed point of BAM.

U technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Bidirectional Associative Memory (BAM)

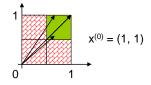
Lecture 04

Concept of Energy Function

given: BAM with W = $x'y \Rightarrow (x,y)$ is stable state of BAM

starting point
$$x^{(0)}$$
 $\Rightarrow y^{(0)} = sgn(x^{(0)} W)$
 $\Rightarrow excitation e' = W(y^{(0)})'$

$$\Rightarrow$$
 if sign(e') = x^{(0)} then (x^{(0)} , y^{(0)}) stable state



recall:
$$\frac{ab'}{\|a\|\cdot\|b\|} = \cos\angle(a,b)$$

J technische universität dortmund

small angle $\alpha \Rightarrow$ large cos(α)

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Bidirectional Associative Memory (BAM)

Lecture 04

Stable States

Theorem

An asynchronous BAM with arbitrary weight matrix W reaches steady state in a finite number of updates.

Proof:

$$E(x,y) = -\frac{1}{2}xWy' = \begin{cases} -\frac{1}{2}x(Wy') = -\frac{1}{2}xb' = -\frac{1}{2}\sum_{i=1}^{n}b_{i}x_{i} \\ -\frac{1}{2}(xW)y' = -\frac{1}{2}ay' = -\frac{1}{2}\sum_{i=1}^{k}a_{i}y_{i} \end{cases}$$
 excitations

BAM asynchronous ⇒ select neuron at rancompute its excitation

select neuron at random from left or right layer, compute its excitation and change state if necessary (states of other neurons not affected)

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Bidirectional Associative Memory (BAM)

Lecture 04

Concept of Energy Function

required:

small angle between $e' = W y^{(0)}$, and $x^{(0)}$

- \Rightarrow larger cosine of angle indicates greater similarity of vectors
- ⇒ \forall e' of equal size: try to maximize $x^{(0)}$ e' = $||x^{(0)}|| \cdot ||e|| \cdot \cos \angle (x^{(0)}, e)$ fixed fixed \rightarrow max!
- \Rightarrow maximize $x^{(0)}$ e' = $x^{(0)}$ W $y^{(0)}$ '
- \Rightarrow identical to minimize $-x^{(0)}$ W $y^{(0)}$ '

Definition

Energy function of BAM at iteration t is E($x^{(t)}$, $y^{(t)}$) = $-\frac{1}{2}x^{(t)}$ W $y^{(t)}$

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2016/17

Bidirectional Associative Memory (BAM)

Lecture 04

neuron i of left layer has changed $\Rightarrow sgn(x_i) \neq sgn(b_i)$

$$\Rightarrow$$
 x_i was updated to $\tilde{x}_i = -x_i$

$$E(x,y) - E(\tilde{x},y) = -\frac{1}{2} \underbrace{b_i (x_i - \tilde{x}_i)}_{12} > 0$$

X _i	b _i	x _i - x̄ _i
-1	> 0	< 0
+1	< 0	> 0

use analogous argumentation if neuron of right layer has changed

- ⇒ every update (change of state) decreases energy function
- ⇒ since number of different bipolar vectors is finite update stops after finite #updates

remark: dynamics of BAM get stable in local minimum of energy function!

q.e.d.

Hopfield Network

Lecture 04

special case of BAM but proposed earlier (1982)

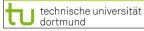
characterization:

- neurons preserve state until selected at random for update
- n neurons fully connected
- symmetric weight matrix
- no self-loops (→ zero main diagonal entries)
- thresholds θ , neuron i fires if excitations larger than θ_i

transition: select index k at random, new state is $\tilde{x} = \operatorname{sgn}(xW - \theta)$

where
$$\tilde{x} = (x_1, \dots, x_{k-1}, \tilde{x}_k, x_{k+1}, \dots, x_n)$$

energy of state x is $E(x) = -\frac{1}{2}xWx' + \theta x'$



G. Rudolph: Computational Intelligence • Winter Term 2016/17

Hopfield Network

Lecture 04

Theorem:

Hopfield network converges to local minimum of energy function after a finite number of updates.

Proof: assume that $\mathbf{x_k}$ has been updated $\Rightarrow \tilde{x}_k = -x_k$ and $\tilde{x}_i = x_i$ for $i \neq k$

$$E(x) - E(\tilde{x}) = -\frac{1}{2}xWx' + \theta x' + \frac{1}{2}\tilde{x}W\tilde{x}' - \theta \tilde{x}'$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i x_j + \sum_{i=1}^{n} \theta_i x_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \tilde{x}_i \tilde{x}_j - \sum_{i=1}^{n} \theta_i \tilde{x}_i$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) + \sum_{i=1}^{n} \theta_i (x_i - \tilde{x}_i)$$

$$= -\frac{1}{2} \sum_{\substack{i=1 \ i \neq k}}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) - \frac{1}{2} \sum_{j=1}^{n} w_{kj} (x_k x_j - \tilde{x}_k \tilde{x}_j) + \theta_k (x_k - \tilde{x}_k)$$

G. Rudolph: Computational Intelligence • Winter Term 2016/17

10

Hopfield Network

Lecture 04

$$= -\frac{1}{2} \sum_{\substack{i=1 \ i \neq k}}^{n} \sum_{j=1}^{n} w_{ij} x_i \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{\substack{j=1 \ j \neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$$

$$= -\frac{1}{2} \sum_{\substack{i=1 \\ i \neq k}}^{n} w_{ik} \, x_i \, (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1 \\ j \neq k}}^{n} w_{kj} \, x_j \, (x_k - \tilde{x}_k) + \theta_k \, (x_k - \tilde{x}_k)$$

$$= -\sum_{i=1}^{n} w_{ik} x_i (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$$

> 0 if $x_k < 0$ and vice versa

$$= -(x_k - \tilde{x}_k) \left[\underbrace{\sum_{i=1}^n w_{ik} \, x_i}_{\text{excitation e}_k} - \theta_k \right] \quad \text{$>$ 0$} \quad \underset{x_k}{\text{since:}} \\ \underbrace{\frac{x_k \quad x_k - \tilde{x}_k \quad e_k - \theta_k \quad \Delta E}{+1 \quad > 0 \quad < 0 \quad > 0}}_{-1 \quad < 0 \quad > 0 \quad > 0}$$

q.e.d.

Hopfield Network

technische universität

Lecture 04

Application to Combinatorial Optimization

<u>ldea:</u>

- \bullet transform combinatorial optimization problem as objective function with $x \in \{\text{-1,+1}\}^n$
- rearrange objective function to look like a Hopfield energy function
- \bullet extract weights W and thresholds θ from this energy function
- \bullet initialize a Hopfield net with these parameters W and θ
- run the Hopfield net until reaching stable state (= local minimizer of energy function)
- stable state is local minimizer of combinatorial optimization problem

Hopfield Network

Lecture 04

Example I: Linear Functions

$$f(x) = \sum_{i=1}^{n} c_i x_i \rightarrow \min!$$
 $(x_i \in \{-1, +1\})$

Evidently:
$$E(x) = f(x)$$
 with $W = 0$ and $\theta = c$

 $\downarrow \downarrow$

choose
$$x^{(0)} \in \{-1, +1\}^n$$

set iteration counter t = 0

repeat

choose index k at random

$$x_k^{(t+1)} = \operatorname{sgn}(x^{(t)} \cdot W_{\cdot,k} - \theta_k) = \operatorname{sgn}(x^{(t)} \cdot 0 - c_k) = -\operatorname{sgn}(c_k) = \begin{cases} -1 & \text{if } c_k > 0 \\ +1 & \text{if } c_k < 0 \end{cases}$$

increment t

until reaching fixed point

 \Rightarrow fixed point reached after $\Theta(n \log n)$ iterations on average

[proof: → black board]

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Hopfield Network

Lecture 04

Example II: MAXCUT (continued)

step 1: conversion to minimization problem

 \Rightarrow multiply function with -1 \Rightarrow E(y) = -f(y) \rightarrow min!

step 2: transformation of variables

$$\Rightarrow$$
 y_i = (x_i+1) / 2

$$\Rightarrow f(x) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[\frac{x_i + 1}{2} \left(1 - \frac{x_j + 1}{2} \right) + \frac{x_j + 1}{2} \left(1 - \frac{x_i + 1}{2} \right) \right]$$
$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[1 - x_i x_j \right]$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} - \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j$$

constant value (does not affect location of optimal solution)

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Hopfield Network

Lecture 04

Example II: MAXCUT

given: graph with n nodes and symmetric weights $\omega_{ii} = \omega_{ii}$, $\omega_{ii} = 0$, on edges

<u>task:</u> find a partition $V = (V_0, V_1)$ of the nodes such that the weighted sum of edges with one endpoint in V_0 and one endpoint in V_1 becomes maximal

encoding: \forall i=1,...,n: $y_i = 0 \Leftrightarrow \text{node i in set } V_0$; $y_i = 1 \Leftrightarrow \text{node i in set } V_1$

objective function: $f(y) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} [y_i (1-y_j) + y_j (1-y_i)] \rightarrow \max!$

preparations for applying Hopfield network

step 1: conversion to minimization problem

step 2: transformation of variables

step 3: transformation to "Hopfield normal form"

step 4: extract coefficients as weights and thresholds of Hopfield net

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2016/17

Hopfield Network

Lecture 04

Example II: MAXCUT (continued)

step 3: transformation to "Hopfield normal form"

$$E(x) = \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(-\frac{1}{2} \omega_{ij} \right) x_i x_j$$

$$= -\frac{1}{2} x' W x + \theta' x$$

$$\downarrow$$

$$0'$$

step 4: extract coefficients as weights and thresholds of Hopfield net

$$w_{ij} = -\frac{\omega_{ij}}{2}$$
 for $i \neq j$, $w_{ii} = 0$, $\theta_i = 0$

remark: ω_{ij} : weights in graph — w_{ij} : weights in Hopfield net