

Computational Intelligence

Winter Term 2016/17

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Plan for Today

Lecture 01

- ▶ Organization (Lectures / Tutorials)
- Overview CI
- Introduction to ANN
 - McCulloch Pitts Neuron (MCP)
 - Minsky / Papert Perceptron (MPP)

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Organizational Issues

Lecture 01

Who are you?

either

studying "Automation and Robotics" (Master of Science)

Module "Optimization"

or

studying "Informatik"

- BSc-Modul "Einführung in die Computational Intelligence"
- Hauptdiplom-Wahlvorlesung (SPG 6 & 7)

or ... let me know!

Organizational Issues

Lecture 01

Who am I?

Günter Rudolph

Fakultät für Informatik, LS 11

Guenter.Rudolph@tu-dortmund.de OH-14, R. 232

← best way to contact me ← if you want to see me

office hours:

Tuesday, 10:30-11:30am

and by appointment

Organizational Issues			Lecture 01		
Lectures	Wodposday	10:15-11:45	OH12, R. E.003, weekly		
Lectures	Wednesday	10.15-11.45	OH12, R. E.003, weekly		
Tutorials	either Thursday	14:15-15:45	OH16, R. 2.05, bi-weekly		
	<u>∞</u> Friday	14:15-15:45	OH14, R. 1.04, bi-weekly		
	-		•		
Tutor	Vanessa Volz, MSc, LS 11				
In forms of the se					
Information					
http://ls11-www.cs.tu-dortmund.de/people/rudolph/					

teaching/lectures/CI/WS2016-17/lecture.jsp

Slides see web page Literature see web page

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Prerequisites Lecture 01

Knowledge about

- mathematics,
- programming,
- logic

is helpful.

But what if something is unknown to me?

- covered in the lecture
- pointers to literature

... and don't hesitate to ask!

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Organizational Issues

Lecture 01

Exams

Effective since winter term 2016/17: written exam (not oral)

- Informatik, Diplom: Leistungsnachweis → Übungsschein
- Informatik, Diplom: Fachprüfung → written exam (90 min)
- → written exam (90 min) • Informatik, Bachelor: Module
- Automation & Robotics, Master: Module → written exam (90 min)

mandatory for registration to written exam: must pass tutorial

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Overview "Computational Intelligence"

Lecture 01

What is CI?

- ⇒ umbrella term for computational methods inspired by nature
- · artifical neural networks
- · evolutionary algorithms
- fuzzy systems
- · swarm intelligence
- artificial immune systems
- growth processes in trees

new developments

backbone

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Overview "Computational Intelligence"

Lecture 01

- term "computational intelligence" made popular by John Bezdek (FL, USA)
- · originally intended as a demarcation line
- ⇒ establish border between artificial and computational intelligence
- nowadays: blurring border

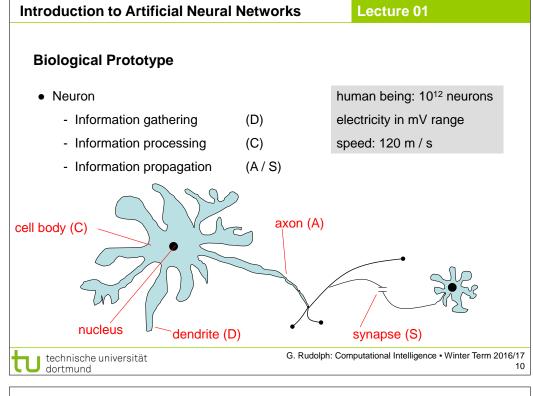
our goals:

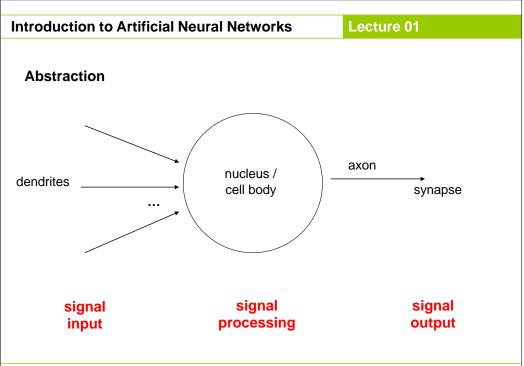
- 1. know what CI methods are good for!
- 2. know when refrain from CI methods!
- 3. know why they work at all!
- 4. know how to apply and adjust CI methods to your problem!

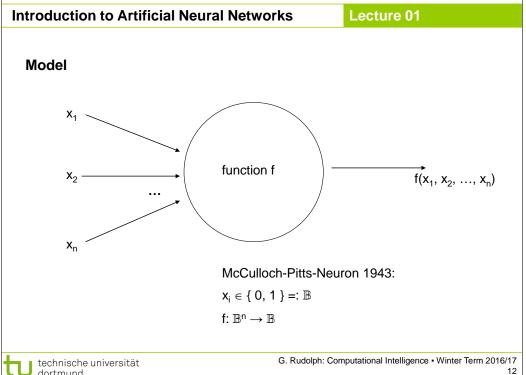
technische universität dortmund

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2016/17







Lecture 01

1943: Warren McCulloch / Walter Pitts

- description of neurological networks
 - → modell: McCulloch-Pitts-Neuron (MCP)
- basic idea:
 - neuron is either active or inactive
 - skills result from *connecting* neurons
- considered static networks
 (i.e. connections had been constructed and not learnt)

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Lecture 01

NOT

McCulloch-Pitts-Neuron

n binary input signals $x_1,\,...,\,x_n$

threshold $\theta > 0$

in addition: m binary inhibitory signals y₁, ..., y_m

Introduction to Artificial Neural Networks

$$\tilde{f}(x_1, \dots, x_n; y_1, \dots, y_m) = f(x_1, \dots, x_n) \cdot \prod_{j=1}^m (1 - y_j)$$

- if at least one $y_i = 1$, then output = 0
- otherwise:
 - sum of inputs ≥ threshold, then output = 1 else output = 0

Introduction to Artificial Neural Networks

Lecture 01

McCulloch-Pitts-Neuron

n binary input signals $x_1, \, ..., \, x_n$

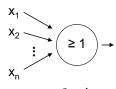
threshold $\theta > 0$

$$f(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } \sum\limits_{i=1}^n x_i \ge \theta \\ 0 & \text{else} \end{cases}$$

boolean OR

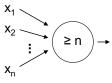
 \Rightarrow can be realized:

■ technische universität



 $\theta = 1$

boolean AND



 $\theta = n$

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Introduction to Artificial Neural Networks

Lecture 01

Assumption:

inputs also available in inverted form, i.e. \exists inverted inputs.

Theorem:

Every logical function $F: \mathbb{B}^n \to \mathbb{B}$ can be simulated with a two-layered McCulloch/Pitts net.

Example:

technische universität

$$F(x) = x_1 x_2 \overline{x}_3 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 \vee x_1 \overline{x}_4$$

$$\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_2 \\ x_3 \\ x_4 \\ x_2 \\ x_3 \\ x_4 \\ x_4 \\ x_5 \\$$

Lecture 01

Proof: (by construction)

Every boolean function F can be transformed in disjunctive normal form

- ⇒ 2 layers (AND OR)
- 1. Every clause gets a decoding neuron with $\theta = n$ ⇒ output = 1 only if clause satisfied (AND gate)
- 2. All outputs of decoding neurons are inputs of a neuron with $\theta = 1$ (OR gate)

q.e.d.

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Introduction to Artificial Neural Networks

Lecture 01

Theorem:

Weighted and unweighted MCP-nets are equivalent for weights $\in \mathbb{Q}^+$.

Proof:

Let $\sum_{i=1}^{n} \frac{a_i}{b_i} x_i \ge \frac{a_0}{b_0}$ with $a_i, b_i \in \mathbb{N}$

Multiplication with $\prod_{i=1}^n b_i$ yields inequality with coefficients in $\mathbb N$

Duplicate input x_i , such that we get $a_i b_1 b_2 \cdots b_{i-1} b_{i+1} \cdots b_n$ inputs.

Threshold $\theta = a_0 b_1 \cdots b_n$

Set all weights to 1.

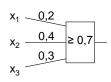
technische universität

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Introduction to Artificial Neural Networks

Lecture 01

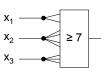
Generalization: inputs with weights



fires 1 if
$$0.2 x_1 + 0.4 x_2 + 0.3 x_3 \ge 0.7 \qquad | \cdot 10$$
$$2 x_1 + 4 x_2 + 3 x_3 \ge 7$$
$$\downarrow \downarrow$$

duplicate inputs!

⇒ equivalent!



technische universität

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Introduction to Artificial Neural Networks

Lecture 01

Conclusion for MCP nets

- + feed-forward: able to compute any Boolean function
- + recursive: able to simulate DFA
- very similar to conventional logical circuits
- difficult to construct
- no good learning algorithm available

Lecture 01

Perceptron (Rosenblatt 1958)

- → complex model → reduced by Minsky & Papert to what is "necessary"
- \rightarrow Minsky-Papert perceptron (MPP), 1969 \rightarrow essential difference: $x \in [0,1] \subset \mathbb{R}$

What can a single MPP do?

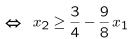
 $w_1 x_1 + w_2 x_2 \ge \theta$

isolation of x₂ yields:

$$x_2 \ge \frac{\theta}{w_2} - \frac{w_1}{w_2} x_1 \qquad \begin{array}{c} & 1 \\ & \\ & \\ & \end{array}$$

Example:

$$0,9x_1+0,8x_2 \ge 0,6$$



separating line

separates R²

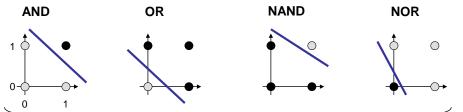
in 2 classes

G. Rudolph: Computational Intelligence • Winter Term 2016/17

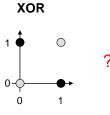
technische universität dortmund

Introduction to Artificial Neural Networks

Lecture 01



→ MPP at least as powerful as MCP neuron!



			•	
X ₁	x ₂	xor		
0	0	0	$\Rightarrow 0 < \theta$	
0	1	1	\Rightarrow $W_2 \ge \theta$	>
1	0	1	$\Rightarrow w_1 \ge \theta$	$ \Rightarrow w_1 + w_2 \ge $
1	1	0	\Rightarrow w ₁ + w ₂ < θ	20
			•	contradiction!
		- A		

 $W_1 X_1 + W_2 X_2 \ge \theta$

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Introduction to Artificial Neural Networks

Lecture 01

G. Rudolph: Computational Intelligence • Winter Term 2016/17

1969: Marvin Minsky / Seymor Papert

- book *Perceptrons* → analysis math. properties of perceptrons
- disillusioning result:

perceptions fail to solve a number of trivial problems!

- XOR-Problem
- Parity-Problem
- Connectivity-Problem
- "conclusion": All artificial neurons have this kind of weakness! ⇒ research in this field is a scientific dead end!

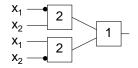
• consequence: research funding for ANN cut down extremely (~ 15 years)

Introduction to Artificial Neural Networks

Lecture 01

how to leave the "dead end":

1. Multilayer Perceptrons:



⇒ realizes XOR

2. Nonlinear separating functions:

XOR

$$g(x_1, x_2) = 2x_1 + 2x_2 - 4x_1x_2 - 1$$
 with $\theta = 0$

$$g(0,0) = -1$$

$$g(0,1) = +1$$

$$g(1,0) = +1$$

Lecture 01

How to obtain weights w_i and threshold θ ?

as yet: by construction

example: NAND-gate

X ₁	X ₂	NAND
0	0	1
0	1	1
1	0	1
1	1	0

$$\Rightarrow 0 \ge \theta$$

$$\Rightarrow w_2 \ge \theta$$

$$\Rightarrow w_1 \ge \theta$$

$$\Rightarrow w_1 + w_2 < \theta$$
requires solution of a system of linear inequalities (\in P)
$$\Rightarrow w_1 + w_2 < \theta$$
(e.g.: $w_1 = w_2 = -2$, $\theta = -3$)

(e.g.:
$$w_1 = w_2 = -2$$
, $\theta = -3$)

now: by "learning" / training

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Introduction to Artificial Neural Networks

Lecture 01

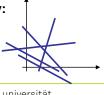
Perceptron Learning

Assumption: test examples with correct I/O behavior available

Principle:

- (1) choose initial weights in arbitrary manner
- (2) feed in test pattern
- (3) if output of perceptron wrong, then change weights
- (4) goto (2) until correct output for all test paterns

graphically:



→ translation and rotation of separating lines

■ technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Introduction to Artificial Neural Networks

Lecture 01

Example

$$P = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right\} \quad \bullet$$

$$N = \left\{ \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \quad \odot$$

threshold as a weight: $w = (\theta, w_1, w_2)$

$$\begin{array}{c|c}
1 & -\theta \\
x_1 & w_1 \\
x_2 & w_2
\end{array}
\ge 0$$

$$P = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$

$$N = \left\{ \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

suppose initial vector of weights is

$$W^{(0)} = (1, -1, 1)$$

Introduction to Artificial Neural Networks

Lecture 01

Perceptron Learning

P: set of positive examples → output 1 N: set of negative examples \rightarrow output 0 threshold θ integrated in weights

- 1. choose w_0 at random, t = 0
- 2. choose arbitrary $x \in P \cup N$
- 3. if $x \in P$ and w_t 'x > 0 then goto 2 if $x \in N$ and w_t ' $x \le 0$ then goto 2
- 4. if $x \in P$ and w_t ' $x \le 0$ then $W_{t+1} = W_t + X$; t++; goto 2
- 5. if $x \in N$ and w_t 'x > 0 then $W_{t+1} = W_t - X_t$; t++; goto 2
- 6. stop? If I/O correct for all examples!

I/O correct!

let w'x \leq 0, should be > 0! (w+x)'x = w'x + x'x > w'x

let w'x > 0, should be ≤ 0 ! (w-x)'x = w'x - x'x < w'x

remark: algorithm converges, is finite, worst case: exponential runtime

Lecture 01

We know what a single MPP can do.

What can be achieved with many MPPs?

Single MPP

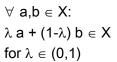
⇒ separates plane in two half planes

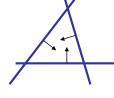
Many MPPs in 2 layers \Rightarrow can identify convex sets

1. How?

 \Rightarrow 2 layers!

2. Convex?





technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2016/17

Introduction to Artificial Neural Networks

Lecture 01

Single MPP

⇒ separates plane in two half planes

Many MPPs in 2 layers

⇒ can identify convex sets

Many MPPs in 3 layers

⇒ can identify arbitrary sets

Many MPPs in > 3 layers

⇒ not really necessary!

arbitrary sets:

- 1. partitioning of nonconvex set in several convex sets
- 2. two-layered subnet for each convex set
- 3. feed outputs of two-layered subnets in OR gate (third layer)

G. Rudolph: Computational Intelligence • Winter Term 2016/17