

 Towards CMA-ES
 Lecture 11

 claim: mutations should be aligned to isolines of problem (Schwefel 1981)
 if true then covariance matrix should be inverse of Hessian matrix!

 \Rightarrow assume $f(x) \approx \frac{1}{2} x'Ax + b'x + c \Rightarrow H = A$ \Rightarrow assume $f(x) \approx \frac{1}{2} x'Ax + b'x + c \Rightarrow H = A$
 $Z \sim N(0, C)$ with density
 $f_Z(x) = \frac{1}{(2\pi)^{n/2} |C|^{1/2}} \exp\left(-\frac{1}{2} x'C^{-1}x\right)$

 since then many proposals how to adapt the covariance matrix

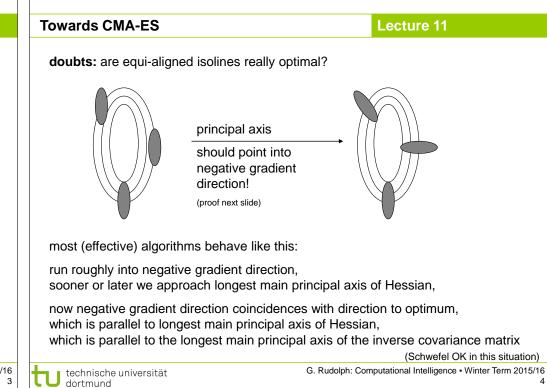
 \Rightarrow extreme case: use n+1 pairs (x, f(x)),

 apply multiple linear regression to obtain estimators for A, b, c

 invert estimated matrix A!
 OK, but: O(n⁶)! (Rudolph 1992)

 6. Rudolph: Computational Intelligence • Winter Term 2015/16

dortmund



Towards CMA-ES	Lecture 11	Towards CMA-ES Lecture 11	
$Z = rQu, A = B'B, B = Q^{-1}$		Apart from (inefficient) regression, how can we get matrix elements of Q?	
2	$Qu + r^{2}u'Q'AQu) + b'x + rb'Qu + rb'Qu + \frac{1}{2}r^{2}u'Q'AQu + \frac{r}{2}AQu)'Qu + \frac{r}{2}AQu)'Qu + \frac{r}{2}AQu)'Qu + \frac{r^{2}}{2}u'Q'AQu$	 → iteratively: C^(k+1) = update(C^(k), Population^(k)) basic constraint: C^(k) must be positive definite (p.d.) and symmetric for all k ≥ 0, otherwise Cholesky decomposition impossible: C = Q⁴Q Lemma Let A and B be quadratic matrices and α, β > 0. a) A, B symmetric ⇒ α A + β B symmetric. b) A positive definite and B positive semidefinite ⇒ α A + β B positive definite 	
if Qu were deterministic \Rightarrow set Qu = - ∇ f(x) (direction of steepe	st descent)	Proof: ad a) $C = \alpha A + \beta B$ symmetric, since $c_{ij} = \alpha a_{ij} + \beta b_{ij} = \alpha a_{ji} + \beta b_{ji} = c_{ji}$ ad b) $\forall x \in \mathbb{R}^n \setminus \{0\}$: $x'(\alpha A + \beta B) x = \alpha x'Ax + \beta x'Bx > 0$	

U technische universität dortmund

Towards CMA-ES	Lecture 11	CMA-ES	Lecture 11
Theorem A quadratic matrix $C^{(k)}$ is symmetric and positive definite for all $k \ge 0$, if it is built via the iterative formula $C^{(k+1)} = \alpha_k C^{(k)} + \beta_k v_k v_k^t$ where $C^{(0)} = I_n$, $v_k \ne 0$, $\alpha_k > 0$ and liminf $\beta_k > 0$.		Idea: Don't estimate matrix C in each iteration! Instead, approximate <u>iteratively</u> ! (Hansen, Ostermeier et al. 1996ff.) → Covariance Matrix Adaptation Evolutionary Algorithm (CMA-EA)	
Proof: If $v \neq 0$, then matrix $V = vv^{t}$ is symmetric and positive semidefinite, since • as per definition of the dyadic product $v_{ij} = v_i \cdot v_j = v_j \cdot v_i = v_{ji}$ for all i, j and • for all $x \in \mathbb{R}^n : x^{t} (vv^{t}) x = (x^{t}v) \cdot (v^{t}x) = (x^{t}v)^2 \ge 0$. Thus, the sequence of matrices $v_k v_k^{t}$ is symmetric and p.s.d. for $k \ge 0$. Owing to the previous lemma matrix $C^{(k+1)}$ is symmetric and p.d., if		Set initial covariance matrix to $C^{(0)} = I_n$ $C^{(t+1)} = (1-\eta) C^{(t)} + \eta \sum_{i=1}^{\mu} w_i d_i d_i^{\epsilon}$ $m = \frac{1}{\mu} \sum_{i=1}^{\mu} x_{i:\lambda}$ mean of all <u>select</u>	η : "learning rate" \in (0,1)
$C^{(k)}$ is symmetric as well as p.d. and matrix $v_k v_k^{\prime}$ is symmetric Since $C^{(0)} = I_n$ symmetric and p.d. it follows that $C^{(1)}$ is symmetric of these arguments leads to the statement of the	nmetric and p.d.	$d_{i} = (x_{i:\lambda} - m) / \sigma \qquad \text{sorting: } f(x_{1:\lambda}) \le f_{i:\lambda}$ $dyadic \text{ product: } dd' = \begin{pmatrix} d_{1}d_{1} & d_{1}d_{2} \\ d_{2}d_{1} & d_{2}d_{2} \\ \vdots \\ d_{\mu}d_{1} & d_{\mu}d_{2} \end{pmatrix}$	$\begin{array}{c} \cdots & d_1 d_\mu \\ \cdots & d_2 d_\mu \end{array} \text{is positive semidefinite} \\ \begin{array}{c} \text{dispersion matrix} \end{array}$
U technische universität G. Rudolph: Comp dortmund	outational Intelligence • Winter Term 2015,	76 7 technische universität 7 dortmund	G. Rudolph: Computational Intelligence • Winter Term 201

G. Rudolph: Computational Intelligence • Winter Term 2015/16

6

