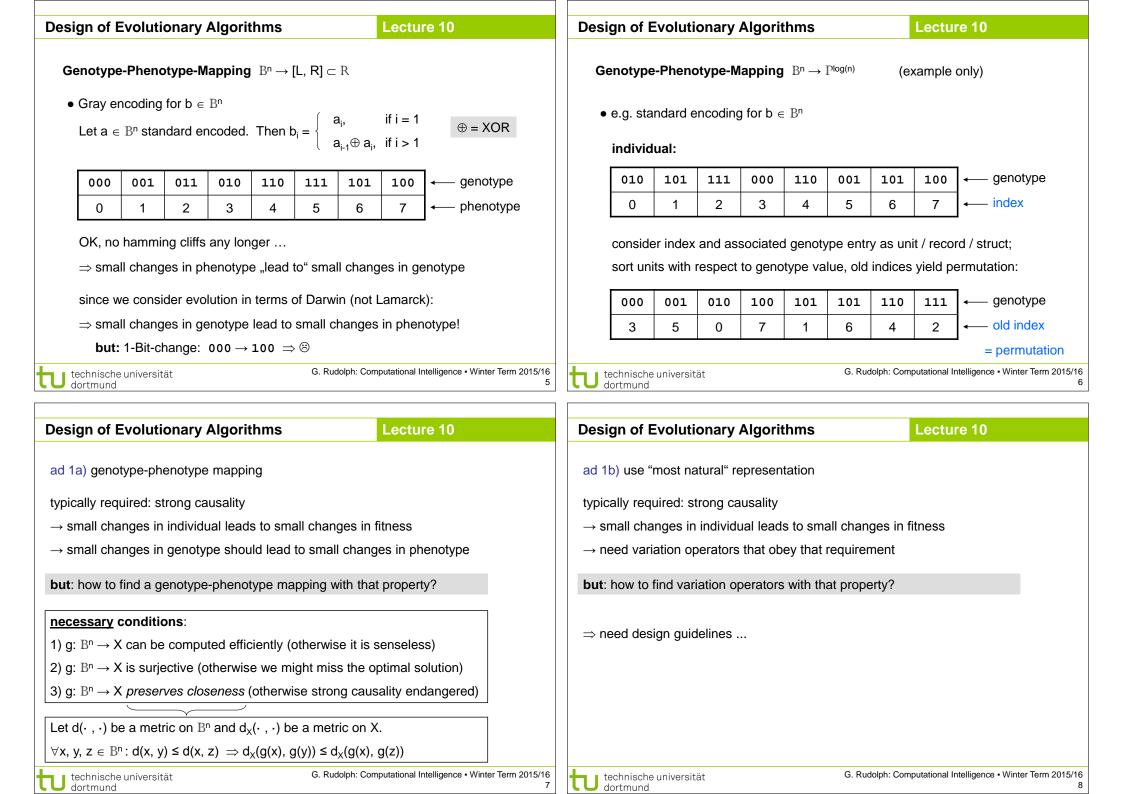
technische universität	Design of Evolutionary Algorithms Lecture 10
Computational Intelligence	 <u>Three tasks:</u> 1. Choice of an appropriate problem representation. 2. Choice / design of variation operators acting in problem representation. 3. Choice of strategy parameters (includes initialization).
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund	 ad 1) different "schools": (a) operate on binary representation and define genotype/phenotype mapping + can use standard algorithm - mapping may induce unintentional bias in search (b) no doctrine: use "most natural" representation - must design variation operators for specific representation + if design done properly then no bias in search
Design of Evolutionary Algorithms Lecture 10	G. Rudolph: Computational Intelligence • Winter Term 2015/16 2 Design of Evolutionary Algorithms
ad 1a) genotype-phenotype mapping	Genotype-Phenotype-Mapping $B^n \rightarrow [L, R] \subset R$
original problem f: $X \to \mathbb{R}^d$ scenario: no standard algorithm for search space X available $x \xrightarrow{f} \mathbb{R}^d$	• Standard encoding for $b \in B^n$ $x = L + \frac{R - L}{2^n - 1} \sum_{i=0}^{n-1} b_{n-i} 2^i$ $\rightarrow \text{Problem: hamming cliffs}$
 standard EA performs variation on binary strings b ∈ Bⁿ fitness evaluation of individual b via (f ∘ g)(b) = f(g(b)) where g: Bⁿ → X is genotype-phenotype mapping selection operation independent from representation 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $



ad 2) design guidelines for variation operators in practice $\frac{\text{binary search space}}{\text{binary search space}} X = B^{n}$ variation by k-point or uniform crossover and subsequent mutation a) <i>reachability</i> : regardless of the output of crossover we can move from $x \in B^{n}$ to $y \in B^{n}$ in 1 step with probability
variation by k-point or uniform crossover and subsequent mutation a) <i>reachability</i> : regardless of the output of crossover we can move from $x \in B^n$ to $y \in B^n$ in 1 step with probability
$p(x,y) = p_m^{H(x,y)} (1 - p_m)^{n - H(x,y)} > 0$ where H(x,y) is Hamming distance between x and y. Since min{ p(x,y): x,y $\in B^n$ } = $\delta > 0$ we are done.
igence • Winter Term 2015/16 G. Rudolph: Computational Intelligence • Winter Term 2015 g Design of Evolutionary Algorithms
Formally:
Definition:
Let X be discrete random variable (r.v.) with $p_k = P\{X = x_k\}$ for some index set K. The quantity $H(X) = -\sum_{k \in K} p_k \log p_k$
is called the entropy of the distribution of X. If X is a continuous r.v. with p.d.f. $f_x(\cdot)$ then the entropy is given by
$H(X) = -\int_{-\infty}^{\infty} f_X(x) \log f_X(x) dx$

Excursion: Maximum Entropy Distributions

Lecture 10

Knowledge available:

Discrete distribution with support { $x_1, \, x_2, \, \ldots \, x_n$ } with $x_1 < x_2 < \ldots \, x_n < \infty$

$$p_k = \mathsf{P}\{X = x_k\}$$

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \longrightarrow \max!$$

s.t.
$$\sum_{k=1}^{n} p_k = 1$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1\right)$$

Lechnische universität
dortmund
G. Rudolph:

G. Rudolph: Computational Intelligence • Winter Term 2015/16 13

Excursion: Maximum Entropy Distributions

Lecture 10

Knowledge available:

Discrete distribution with support { 1, 2, ..., n } with $p_k = P \{ X = k \}$ and E[X] = v

 \Rightarrow leads to nonlinear constrained optimization problem:

$$\begin{aligned} &-\sum_{k=1}^{n} p_k \log p_k \quad \rightarrow \max! \\ &\text{s.t.} \quad \sum_{k=1}^{n} p_k = 1 \quad \text{and} \quad \sum_{k=1}^{n} k p_k = \nu \end{aligned}$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

technische universität dortmund

$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right)$$

partial derivatives:

$$\frac{\partial L(p,a)}{\partial p_k} = -1 - \log p_k + a \stackrel{!}{=} 0 \qquad \Rightarrow p_k \stackrel{!}{=} e^{a-1}$$

$$\frac{\partial L(p,a)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0$$

$$\Rightarrow \sum_{k=1}^n p_k = \sum_{k=1}^n e^{a-1} = n e^{a-1} \stackrel{!}{=} 1 \quad \Leftrightarrow \quad e^{a-1} = \frac{1}{n}$$

$$\lim_{k \to \infty} \frac{1}{2} e^{a-1} = \frac{1}{n}$$

$$\lim_{k \to \infty} \frac{1}{2} e^{a-1} = \frac{1}{n}$$

$$\lim_{k \to \infty} \frac{1}{2} e^{a-1} = \frac{1}{n}$$

Excursion: Maximum Entropy Distributions

Lecture 10

$$L(p,a,b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

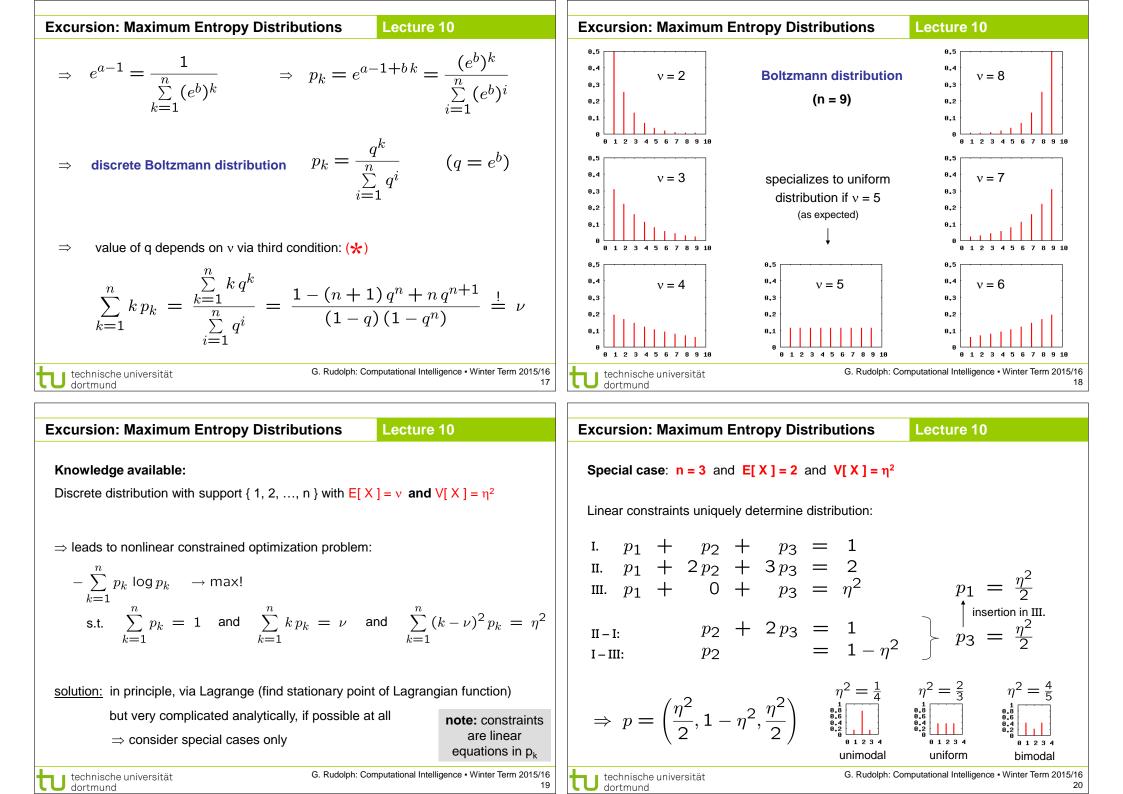
partial derivatives:

$$\frac{\partial L(p,a,b)}{\partial p_k} = -1 - \log p_k + a + b k \stackrel{!}{=} 0 \qquad \Rightarrow p_k = e^{a-1+b k}$$

$$\frac{\partial L(p,a,b)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p,a,b)}{\partial b} \stackrel{(\bigstar)}{=} \sum_{k=1}^n k p_k - \nu \stackrel{!}{=} 0 \qquad \sum_{k=1}^n p_k = e^{a-1} \sum_{k=1}^n (e^b)^k \stackrel{!}{=} 1$$

(continued on next slide)



Excursion: Maximum Entropy Distributions Lecture 10

Knowledge available:

Discrete distribution with unbounded support { 0, 1, 2, ... } and E[X] = v

 \Rightarrow leads to <u>infinite-dimensional</u> nonlinear constrained optimization problem:

$$\begin{array}{ll} -\sum\limits_{k=0}^{\infty} p_k \, \log p_k & \to \max! \\ \text{s.t.} & \sum\limits_{k=0}^{\infty} p_k \, = \, 1 \qquad \text{and} \qquad \sum\limits_{k=0}^{\infty} k \, p_k \, = \, \nu \end{array}$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p, a, b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2015/16 21 Excursion: Maximum Entropy Distributions

Lecture 10

$$L(p,a,b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

partial derivatives:

$$\frac{\partial L(p,a,b)}{\partial p_k} = -1 - \log p_k + a + b k \stackrel{!}{=} 0 \qquad \Rightarrow p_k = e^{a-1+b k}$$

$$\frac{\partial L(p,a,b)}{\partial a} = \sum_{k=0}^{\infty} p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p,a,b)}{\partial b} \stackrel{(\bigstar)}{=} \sum_{k=0}^{\infty} k p_k - \nu \stackrel{!}{=} 0 \qquad \qquad \sum_{k=0}^{\infty} p_k = e^{a-1} \sum_{k=0}^{\infty} (e^b)^k \stackrel{!}{=} 1$$
(continued on next slide)
(continued on next slide)
(continued on next slide)
(continued on next slide)

Excursion: Maximum Entropy Distributions

$$\Rightarrow e^{a-1} = \frac{1}{\sum_{k=0}^{\infty} (e^b)^k} \Rightarrow p_k = e^{a-1+bk} = \frac{(e^b)^k}{\sum_{i=0}^{\infty} (e^b)^i}$$
set $q = e^b$ and insists that $q < 1 \Rightarrow \sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$ insert

$$\Rightarrow p_k = (1-q) q^k \text{ for } k = 0, 1, 2, \dots \text{ geometrical distribution}$$
it remains to specify q; to proceed recall that $\sum_{k=0}^{\infty} k q^k = \frac{q}{(1-q)^2}$

Excursion: Maximum Entropy Distributions Lecture 10 $\Rightarrow \text{ value of q depends on v via third condition: (*)}$ $\sum_{k=0}^{\infty} k p_k = \frac{\sum_{k=0}^{\infty} k q^k}{\sum_{i=0}^{\infty} q^i} = \frac{q}{1-q} \stackrel{!}{=} \nu$ $\Rightarrow q = \frac{\nu}{\nu+1} = 1 - \frac{1}{\nu+1}$ $\Rightarrow p_k = \frac{1}{\nu+1} \left(1 - \frac{1}{\nu+1}\right)^k$

23

tu technische univers dortmund

