technische universität		Plan for Today	Lecture 08
Computational Intelligen Winter Term 2015/16	ice	 Approximate Reasoning Fuzzy Control 	
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund		technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2015/16 2
Approximative Reasoning	Lecture 08	Approximative Reasoning	Lecture 08
So far: • p: IF X is A THEN Y is B $\rightarrow R(x, y) = Imp(A(x), B(y))$	rule as relation; fuzzy implication	here: $A'(x) = \begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$	crisp input!
• rule: IF X is A THEN Y is B fact: X is A' conclusion: Y is B' \rightarrow B'(y) = sup _{x \in X} t(A'(x), R(x, y))	composition rule of inference	$B'(y) = \sup_{x \in X} t(A'(x), \operatorname{Imp}(A)) = \begin{cases} \sup_{x \neq x_0} t(0, \operatorname{Imp}(A(x), B)) \\ t(1, \operatorname{Imp}(A(x_0), B)) \end{cases}$	
Thus: • B'(y) = sup _{x \in X} t(A'(x), Imp(A(x), B(y))) technische universität G.	given : fuzzy rule input : fuzzy set A' output : fuzzy set B' Rudolph: Computational Intelligence • Winter Term 2015/16	$= \begin{cases} 0\\ Imp(A(x_0), B(y)) \end{cases}$	for $x \neq x_0$ since $t(0, a) = 0$ for $x = x_0$ since $t(a, 1) = a$ G. Rudolph: Computational Intelligence • Winter Term 2015/16
dortmund	3	technische universität dortmund	4

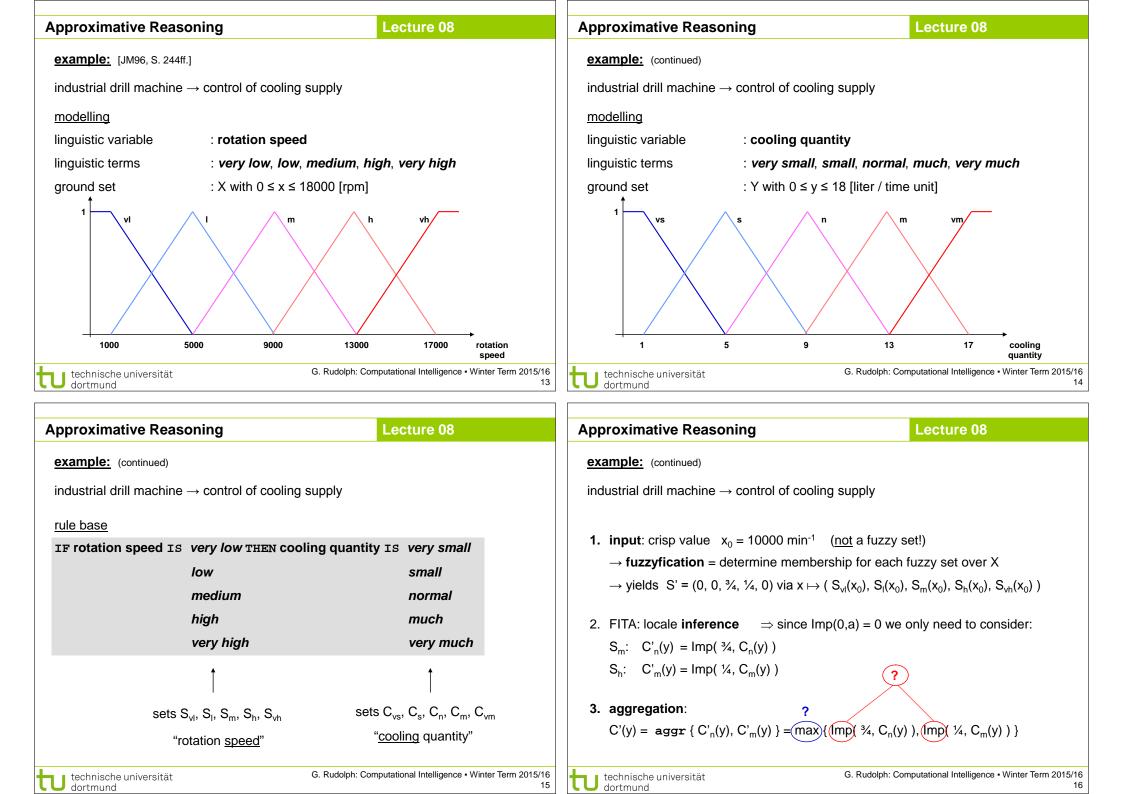
Approximative Reasoning	Lecture 08	Approximative Reasoning	Lecture 08	
Lemma:		Multiple rules:		
a) t(a, 1) = a		IF X is A ₁ , THEN Y is B ₁	$\rightarrow R_1(x, y) = Imp_1(A_1(x), B_1(y))$	
b) $t(a, b) \le min \{a, b\}$		IF X is A ₂ , THEN Y is B ₂	$\rightarrow R_2(x,y) = Imp_2(A_2(x),B_2(y))$	
c) $t(0, a) = 0$		IF X is A ₃ , THEN Y is B ₃	$\rightarrow R_3(x,y) = Imp_3(A_3(x),B_3(y)\)$	
Proof:	by a)	IF X is A _n , THEN Y is B _n X is A'	$\rightarrow R_{n}(x,y) = Imp_{n}(A_{n}(x),B_{n}(y)\;)$	
ad a) Identical to axiom 1 of t-norms.	/	Y is B'		
ad b) From monotonicity (axiom 2) follows for Commutativity (axiom 3) and monotonic $t(a, b) = t(b, a) \le t(b, 1) = b$. Thus, $t(a, b)$	ity lead in case of $a \le 1$ to	Multiple rules for <u>crisp input</u> : x_0	is given	
equal to a as well as b, which in turn imp		$B_{1}(y) = Imp_{1}(A_{1}(x_{0}), B_{1}(y))$	aggregation of rules or local inferences necessary!	
ad c) From b) follows $0 \le t(0, a) \le min \{0, a\}$	= 0 and therefore $t(0, a) = 0.$	$B_{n}'(y) = Imp_{n}(A_{n}(x_{0}), B_{n}(y))$	iocal interences necessary:	
		aggregate! \Rightarrow B'(y) = aggr{ B ₁ '(y),	, $B_n(y)$, where $aggr = \begin{cases} min \\ max \end{cases}$	
tu technische universität G.	Rudolph: Computational Intelligence • Winter Term 2015/16	technische universität	G. Rudolph: Computational Intelligence • Winter Term 2015/16 6	
	-			
Approximative Reasoning	Lecture 08	Approximative Reasoning	Lecture 08	
FITA: "First inference, then aggregate!"		1. Which principle is better? FITA	A or EATI2	
1. Each rule of the form IF X is A_k THEN Y is E an appropriate fuzzy implication $Imp_k(\cdot, \cdot)$ to		2. Equivalence of FITA and FATI		
$R_{k}(x, y) = Imp_{k}(A_{k}(x), B_{k}(y)).$		FITA: $B'(y) = \beta(B_1'(y),, B)$	"'(y))	
2. Determine $B_k(y) = R_k(x, y) \circ A'(x)$ for all $k = 1,, n$ (local inference). 3. Aggregate to $B'(y) = B(B'(y)) = B'(y)$		$= \beta(R_1(x, y) \circ A'(x),, R_n(x, y) \circ A'(x))$		
3. Aggregate to $B'(y) = \beta(B_1'(y),, B_n'(y))$.				
FATI: "First aggregate, then inference!"		FATI: $B'(y) = R(x, y) \circ A'(x)$	P(x, y) > A'(x)	
	Demust he transformed her	$= \alpha(R_1(x, y),,$	κ _n (x, y)) ° Α (x)	
1. Each rule of the form IF X ist A_k THEN Y ist an appropriate fuzzy implication $Imp_k(\cdot, \cdot)$ to $R_k(x, y) = Imp_k(A_k(x), B_k(y)).$				
2. Aggregate $R_1,, R_n$ to a superrelation with $R(x, y) = \alpha(R_1(x, y),, R_n(x, y)).$	h aggregating function $\alpha(\cdot)$:			
3. Determine $B'(y) = R(x, y) \circ A'(x)$ w.r.t. super	relation (inference).			
technische universität G.	Rudolph: Computational Intelligence • Winter Term 2015/16 7	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2015/16 8	

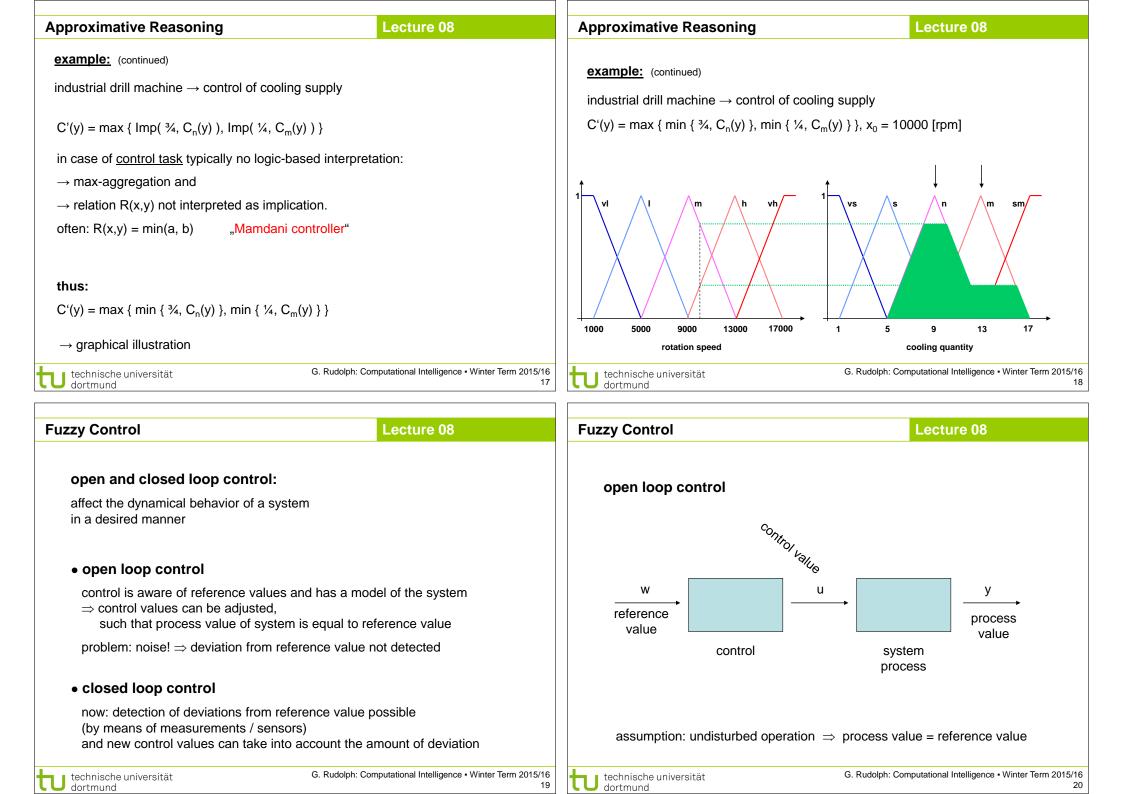
Approximative Reasoning	Lecture 08	Approximative Reasoning	Lecture 08
Special case: $A'(x) = \begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$	crisp input!	• AND-connected premises IF $X_1 = A_{11}$ AND $X_2 = A_{12}$ AND AND $X_m = A_{1m}$ T	HEN Y = B ₁
On the equivalence of FITA and FATI:		IF $X_n = A_{n1}$ AND $X_2 = A_{n2}$ AND AND $X_m = A_{nm}$ T reduce to single premise for each rule k:	HEN Y = B _n
FITA: $B'(y) = \beta(B_1'(y),, B_n'(y))$		$A_{k}(x_{1},,x_{m}) = \min \{A_{k1}(x_{1}), A_{k2}(x_{2}),, A_{km}(x_{m})\}$	or in general: t-norm
$= \beta(Imp_1(A_1(x_0), B_1(y)),$, Imp _n (A _n (x ₀), B _n (y)))		
FATI: $B'(y) = R(x, y) \circ A'(x)$		OR-connected premises	
$= \sup_{x \in X} t(A'(x), R(x, y))$	(from now: special case)	IF $X_1 = A_{11}$ OR $X_2 = A_{12}$ OR OR $X_m = A_{1m}$ THEN	$V Y = B_1$
$= R(x_0, y)$		$IF X_n = A_{n1} OR X_2 = A_{n2} OR OR X_m = A_{nm} THEI$	$N Y = B_n$
$= \alpha(Imp_1(A_1(x_0), B_1(y)), .$, $Imp_n(A_n(x_0), B_n(y))$	reduce to single premise for each rule k:	
evidently: sup-t-composition with arbitrary t-	norm and $\alpha(\cdot) = \beta(\cdot)$	$A_{k}(x_{1},,x_{m}) = \max \{ A_{k1}(x_{1}), A_{k2}(x_{2}),, A_{km}(x_{m}) \}$	or in general: s-norm
U technische universität G.	. Rudolph: Computational Intelligence • Winter Term 2015/1	6 9 tu technische universität G. Rudolph dortmund	Computational Intelligence • Winter Term 2015

Lecture 08 Lecture 08 **Approximative Reasoning** Approximative Reasoning important: important: • if rules of the form IF X is A THEN Y is B interpreted as logical implication • if rules of the form IF X is A THEN Y is B are not interpreted as logical implications, then the function $Fct(\cdot)$ in \Rightarrow R(x, y) = Imp(A(x), B(y)) makes sense R(x, y) = Fct(A(x), B(y))• we obtain: $B'(y) = \sup_{x \in X} t(A'(x), R(x, y))$ can be chosen as required for desired interpretation. \Rightarrow the worse the match of premise A'(x), the larger is the fuzzy set B'(y) • frequent choice (especially in fuzzy control): \Rightarrow follows immediately from axiom 1: a \leq b implies Imp(a, z) \geq Imp(b, z) $- R(x, y) = min \{ A(x), B(x) \}$ Mamdani - "implication" $-R(x, y) = A(x) \cdot B(x)$ Larsen - "implication" interpretation of output set B'(y): \Rightarrow of course, they are no implications but specific t-norms! • B'(y) is the set of values that are still possible \Rightarrow thus, if relation R(x, y) is given, • each rule leads to an additional restriction of the values that are still possible then the composition rule of inference \Rightarrow resulting fuzzy sets Bⁱ_k(y) obtained from single rules must be mutually intersected! $B'(y) = A'(x) \circ R(x, y) = \sup_{x \in X} \min \{A'(x), R(x, y)\}$ \Rightarrow aggregation via B'(y) = min { B₁'(y), ..., B_n'(y) } still can lead to a conclusion via fuzzy logic. G. Rudolph: Computational Intelligence • Winter Term 2015/16 G. Rudolph: Computational Intelligence • Winter Term 2015/16 technische universität technische universität

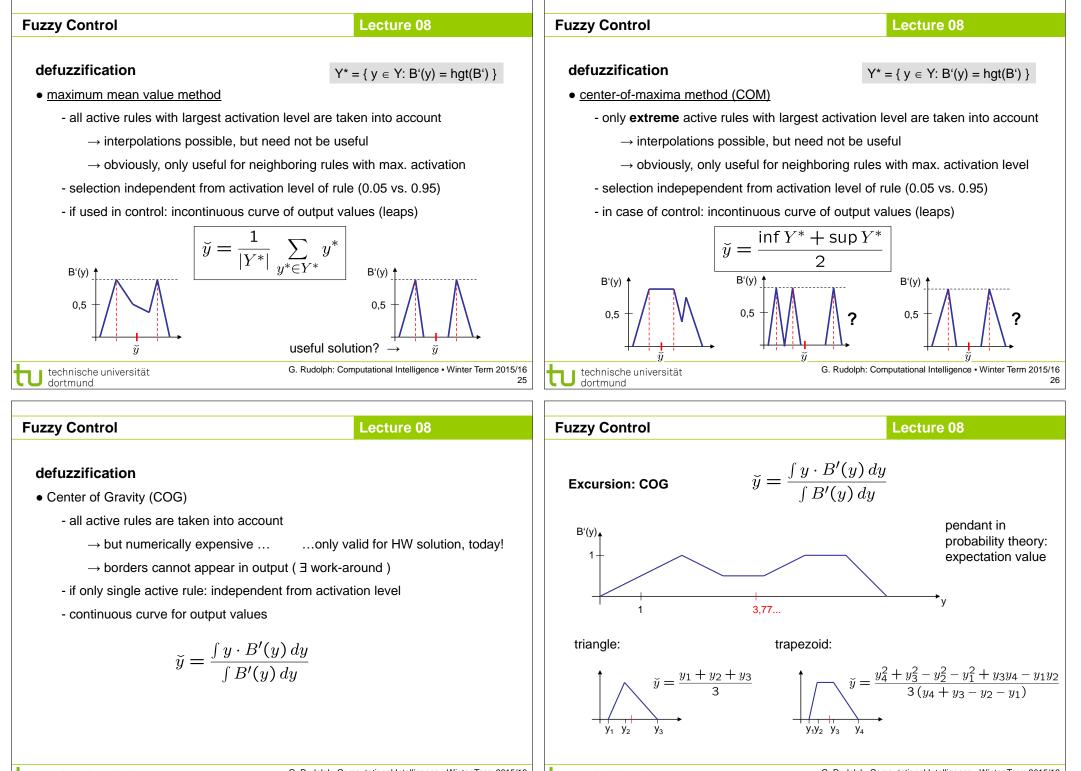
11 dortmund

dortmund





uzzy Control	Lecture 08	Fuzzy Control	Lecture 08
closed loop control	noise y u u y y y y y y y y	required: model of system / process → as differential equations or difference → well developed theory available so, why fuzzy control? • there exists no process model in form (operator/human being has realized • process with high-dimensional nonline • control goals are vaguely formulated	n of DEs etc. control by hand) nearities → no classic methods available
control deviation = re technische universität dortmund	eference value – process value G. Rudolph: Computational Intelligence • Winter Term 2015/16 2' Lecture 08		G. Rudolph: Computational Intelligence • Winter Term 207
fuzzy description of control beh	avior	defuzzification	
$ \begin{array}{c} \text{IF X is } A_1, \text{ THEN Y is } B_1 \\ \text{IF X is } A_2, \text{ THEN Y is } B_2 \\ \text{IF X is } A_3, \text{ THEN Y is } B_3 \\ \dots \\ \text{IF X is } A_n, \text{ THEN Y is } B_n \\ \underline{X \text{ is } A^{\prime}} \\ \text{Y is } B^{\prime} \end{array} \right) $	 similar to approximative reasoning 	 <u>maximum method</u> only active rule with largest activa → suitable for pattern recognit → decision for a single alterna selection independent from activa 	on / classification tive among finitely many alternatives tion level of rule (0.05 vs. 0.95)
but fact A' is not a fuzzy set but a	crisp input	- if used for control: incontinuous cu	Irve of output values (leaps)
\rightarrow actually, it is the current proces	ss value	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	$\max B'(y)$
fuzzy controller executes inference \rightarrow yields fuzzy output set B'(y)	e step	B'(y) ↑ B'(y) ↑	B'(y) ↑ ÿ ↑



technische universität dortmund

