
Computational Intelligence
Winter Term 2015/16

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
2

Plan for Today

● Bidirectional Associative Memory (BAM)

 Fixed Points

 Concept of Energy Function

 Stable States = Minimizers of Energy Function

● Hopfield Network

 Convergence

 Application to Combinatorial Optimization

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
3

Bidirectional Associative Memory (BAM)

Network Model

 x1

 x2

 x3

 xn

 y1

 y2

 y3

 yk

w11

wnk

...

...

...

...

• fully connected

• bidirectional edges

• synchonized:

 step t : data flow from x to y
 step t + 1 : data flow from y to x

x, y : row vectors

W : weight matrix

W‘ : transpose of W

bipolar inputs ∈ {-1,+1}

y(0) = sgn(x(0) W)

x(1) = sgn(y(0) W‘)

y(1) = sgn(x(1) W)

x(2) = sgn(y(1) W‘)

...

start:

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
4

Bidirectional Associative Memory (BAM)

Fixed Points

Definition

(x, y) is fixed point of BAM iff y = sgn(x W) and x‘ = sgn(W y‘). □

Set W = x‘ y. (note: x is row vector)

y = sgn(x W) = sgn(x (x‘ y)) = sgn((x x‘) y) = sgn(|| x ||2 y) = y

> 0 (does not alter sign)

x‘ = sgn(W y‘) = sgn((x‘y) y‘) = sgn(x‘ (y y‘)) = sgn(x‘ || y ||2) = x‘

> 0 (does not alter sign)

Theorem: If W = x‘y then (x,y) is fixed point of BAM. □

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
5

Bidirectional Associative Memory (BAM)

Concept of Energy Function

given: BAM with W = x‘y ⇒ (x,y) is stable state of BAM

starting point x(0) ⇒ y(0) = sgn(x(0) W)

 ⇒ excitation e‘ = W (y(0))‘

 ⇒ if sign(e‘) = x(0) then (x(0) , y(0)) stable state

true if
e‘ close to x(0) ⇐ small angle

between e‘ and x(0)

1

1

0

x(0) = (1, 1)

recall:

1

0

small angle α ⇒ large cos(α)

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
6

Bidirectional Associative Memory (BAM)

Concept of Energy Function

required:

small angle between e‘ = W y(0) ‘ and x(0)

⇒ larger cosine of angle indicates greater similarity of vectors

⇒ ∀e‘ of equal size: try to maximize x(0) e‘ = || x(0) || ¢ || e || ¢ cos Å (x(0) ,e)

fixed fixed → max!

⇒ maximize x(0) e‘ = x(0) W y(0) ‘

⇒ identical to minimize -x(0) W y(0) ‘

Definition

Energy function of BAM at iteration t is E(x(t) , y(t)) = – x(t) W y(t) ‘ □ 1
2
–

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
7

Bidirectional Associative Memory (BAM)

Stable States

Theorem

An asynchronous BAM with arbitrary weight matrix W reaches steady state in a
finite number of updates.

Proof:

BAM asynchronous ⇒ select neuron at random from left or right layer,
 compute its excitation and change state if necessary
 (states of other neurons not affected)

excitations

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
8

Bidirectional Associative Memory (BAM)

neuron i of left layer has changed ⇒ sgn(xi) ≠ sgn(bi)

 ⇒ xi was updated to xi = –xi
~

xi bi xi - xi

-1 > 0 < 0
+1 < 0 > 0

~

< 0

use analogous argumentation if neuron of right layer has changed

⇒ every update (change of state) decreases energy function

⇒ since number of different bipolar vectors is finite
 update stops after finite #updates

remark: dynamics of BAM get stable in local minimum of energy function!
q.e.d.

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
9

Hopfield Network

special case of BAM but proposed earlier (1982)

characterization:

• neurons preserve state until selected at random for update

• n neurons fully connected

• symmetric weight matrix

• no self-loops (→ zero main diagonal entries)

• thresholds θ , neuron i fires if excitations larger than θi

energy of state x is

1

2 3

1

2

3

transition: select index k at random, new state is

where

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
10

Hopfield Network

Theorem:

Hopfield network converges to local minimum of energy function after a finite
number of updates. □

Proof: assume that xk has been updated ⇒

= 0 if i ≠ k

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
11

Hopfield Network

= 0 if j ≠ k

(rename j to i, recall W = W‘, wkk = 0)

excitation ek

> 0 if xk < 0 and vice versa

> 0 since:

q.e.d.

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
12

Hopfield Network

Application to Combinatorial Optimization

Idea:

• transform combinatorial optimization problem as objective function with x ∈ {-1,+1}n

• rearrange objective function to look like a Hopfield energy function

• extract weights W and thresholds θ from this energy function

• initialize a Hopfield net with these parameters W and θ

• run the Hopfield net until reaching stable state (= local minimizer of energy function)

• stable state is local minimizer of combinatorial optimization problem

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
13

Hopfield Network

Example I: Linear Functions

Evidently:

⇒

⇒ fixed point reached after Θ(n log n) iterations on average
[proof: → black board]

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
14

Hopfield Network

Example II: MAXCUT

given: graph with n nodes and symmetric weights ωij = ωji , ωii = 0, on edges

task: find a partition V = (V0, V1) of the nodes such that the weighted sum of edges
with one endpoint in V0 and one endpoint in V1 becomes maximal

encoding: ∀ i=1,...,n: yi = 0 , node i in set V0; yi = 1 , node i in set V1

objective function:

preparations for applying Hopfield network

step 1: conversion to minimization problem

step 2: transformation of variables

step 3: transformation to “Hopfield normal form“

step 4: extract coefficients as weights and thresholds of Hopfield net

Lecture 04

step 2: transformation of variables
 ⇒ yi = (xi+1) / 2

 ⇒

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
15

Hopfield Network

Example II: MAXCUT (continued)

step 1: conversion to minimization problem

 ⇒ multiply function with -1 ⇒ E(y) = -f(y) → min!

constant value (does not affect location of optimal solution)

Lecture 04

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16
16

Hopfield Network

Example II: MAXCUT (continued)

step 4: extract coefficients as weights and thresholds of Hopfield net

step 3: transformation to “Hopfield normal form“

wij

0‘

remark:

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16

