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Plan for Today 

●  Bidirectional Associative Memory (BAM) 

 Fixed Points 

 Concept of Energy Function 

 Stable States = Minimizers of Energy Function 
 

●  Hopfield Network 

 Convergence 

 Application to Combinatorial Optimization 
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Bidirectional Associative Memory (BAM) 

Network Model 
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• fully connected 

• bidirectional edges 

• synchonized: 

  step t       : data flow from x to y 
  step t + 1 : data flow from y to x 

x, y : row vectors  

W   : weight matrix 

W‘  : transpose of W 

bipolar inputs ∈ {-1,+1} 

y(0) = sgn(x(0) W) 

x(1) = sgn(y(0) W‘) 

y(1) = sgn(x(1) W) 

x(2) = sgn(y(1) W‘) 

... 

start: 
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Bidirectional Associative Memory (BAM) 

Fixed Points 

Definition 

(x, y) is fixed point of BAM iff y = sgn(x W) and x‘ = sgn(W y‘).  □ 

Set W = x‘ y.           (note: x is row vector) 

y = sgn( x W ) = sgn( x (x‘ y) ) = sgn( (x x‘) y) = sgn( || x ||2 y) = y 

> 0  (does not alter sign) 

x‘ = sgn( W y‘) = sgn( (x‘y) y‘ ) = sgn( x‘ (y y‘) ) = sgn( x‘ || y ||2 ) = x‘ 

> 0  (does not alter sign) 

Theorem: If W = x‘y then (x,y) is fixed point of BAM.   □ 
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Bidirectional Associative Memory (BAM) 

Concept of Energy Function  

given: BAM with W = x‘y ⇒ (x,y) is stable state of BAM 

starting point x(0)   ⇒ y(0) = sgn( x(0) W ) 

    ⇒ excitation e‘ = W (y(0))‘ 

    ⇒ if sign( e‘ ) = x(0) then ( x(0) , y(0) ) stable state 

true if  
e‘ close to x(0) ⇐ small angle  

between e‘ and x(0)  

1 

1 

0 

x(0) = (1, 1) 

recall:  

1 

0 

small angle α ⇒ large cos( α ) 
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Bidirectional Associative Memory (BAM) 

Concept of Energy Function  

required:  

small angle between e‘ = W y(0) ‘ and x(0)  

⇒ larger cosine of angle indicates greater similarity of vectors 

⇒ ∀e‘ of equal size: try to maximize x(0) e‘ = || x(0) || ¢ || e || ¢ cos Å (x(0) ,e)  

fixed fixed → max! 

⇒ maximize x(0) e‘ = x(0) W y(0) ‘ 

⇒ identical to minimize  -x(0) W y(0) ‘ 

Definition 

Energy function of BAM at iteration t is E( x(t) , y(t) ) =  –     x(t) W y(t) ‘ □ 1 
2 
– 
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Bidirectional Associative Memory (BAM) 

Stable States 

Theorem 

An asynchronous BAM with arbitrary weight matrix W reaches steady state in a 
finite number of updates.    

Proof: 

BAM asynchronous ⇒  select neuron at random from left or right layer, 
   compute its excitation and change state if necessary 
   (states of other neurons not affected) 

excitations 
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Bidirectional Associative Memory (BAM) 

neuron i of left layer has changed   ⇒ sgn(xi) ≠ sgn(bi)  

     ⇒ xi was updated to xi = –xi 
~ 

xi bi xi - xi 

-1 > 0 < 0 
+1 < 0 > 0 

~ 

< 0 

use analogous argumentation if neuron of right layer has changed 

⇒ every update (change of state) decreases energy function 

⇒ since number of different bipolar vectors is finite  
    update stops after finite #updates 

remark: dynamics of BAM get stable in local minimum of energy function! 
q.e.d. 



Lecture 04 

G. Rudolph: Computational Intelligence ▪ Winter Term 2015/16 
9 

Hopfield Network 

special case of BAM but proposed earlier (1982) 

characterization: 

• neurons preserve state until selected at random for update 

• n neurons fully connected 

• symmetric weight matrix 

• no self-loops (→ zero main diagonal entries) 

• thresholds θ , neuron i fires if excitations larger than θi 

energy of state x is 

1 

2 3 

1 

2 

3 

transition: select index k at random, new state is 

where  
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Hopfield Network 

Theorem: 

Hopfield network converges to local minimum of energy function after a finite 
number of updates.           □ 

Proof: assume that xk has been updated ⇒  

= 0  if  i ≠ k 
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Hopfield Network 

= 0  if  j ≠ k 

(rename j to i, recall W = W‘, wkk = 0) 

excitation ek 

> 0 if xk < 0 and vice versa 

> 0 since: 

q.e.d. 
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Hopfield Network 

Application to Combinatorial Optimization 

Idea:  

• transform combinatorial optimization problem as objective function with x ∈ {-1,+1}n 

• rearrange objective function to look like a Hopfield energy function 

• extract weights W and thresholds θ from this energy function 

• initialize a Hopfield net with these parameters W and θ 

• run the Hopfield net until reaching stable state (= local minimizer of energy function) 

• stable state is local minimizer of combinatorial optimization problem 
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Hopfield Network 

Example I: Linear Functions 

Evidently: 

⇒
 

⇒ fixed point reached after Θ(n log n) iterations on average 
[ proof: → black board ] 
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Hopfield Network 

Example II: MAXCUT 

given: graph with n nodes and symmetric weights ωij = ωji , ωii = 0, on edges 

task: find a partition V = (V0, V1) of the nodes such that the weighted sum of edges 
with one endpoint in V0 and one endpoint in V1 becomes maximal 

encoding: ∀ i=1,...,n:      yi = 0 , node i in set V0;         yi = 1 , node i in set V1  

objective function: 

preparations for applying Hopfield network 

step 1: conversion to minimization problem 

step 2: transformation of variables 

step 3: transformation to “Hopfield normal form“ 

step 4: extract coefficients as weights and thresholds of Hopfield net 
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Hopfield Network 

Example II: MAXCUT (continued) 

step 1:  conversion to minimization problem      

  ⇒ multiply function with -1 ⇒  E(y) = -f(y)   → min! 

constant value  (does not affect location of optimal solution)  
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Hopfield Network 

Example II: MAXCUT (continued) 

step 4: extract coefficients as weights and thresholds of Hopfield net 

step 3: transformation to “Hopfield normal form“ 

wij 

0‘ 

remark:  
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