

Computational Intelligence

Winter Term 2015/16

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

- Single-Layer Perceptron
 - Accelerated Learning
 - Online- vs. Batch-Learning
- Multi-Layer-Perceptron
 - Model
 - Backpropagation

Acceleration of Perceptron Learning

Assumption:
$$x \in \{0, 1\}^n \Rightarrow ||x|| = \sum_{i=1}^n |x_i| \ge 1 \text{ for all } x \ne (0, ..., 0)$$

Let B = P
$$\cup$$
 { -x : x \in N }

(only positive examples)

If classification incorrect, then w'x < 0. ←

Consequently, size of error is just $\delta = -w'x > 0$.

$$\Rightarrow$$
 $w_{t+1} = w_t + (\delta + \varepsilon) x$ for $\varepsilon > 0$ (small) corrects error in a single step, since

$$w'_{t+1}x = (w_t + (\delta + \varepsilon) x)' x$$

$$= w'_t x + (\delta + \varepsilon) x'x$$

$$= -\delta + \delta ||x||^2 + \varepsilon ||x||^2$$

$$= \delta (||x||^2 - 1) + \varepsilon ||x||^2 > 0$$

$$\geq 0 > 0$$

Generalization:

Assumption:
$$x \in \mathbb{R}^n \implies ||x|| > 0 \text{ for all } x \neq (0, ..., 0)$$

as before:
$$w_{t+1} = w_t + (\delta + \varepsilon) x$$
 for $\varepsilon > 0$ (small) and $\delta = -w_t' x > 0$

$$\Rightarrow w'_{t+1}x = \delta(||x||^2 - 1) + \varepsilon ||x||^2$$

$$< 0 \text{ possible!} > 0$$

Idea: Scaling of data does not alter classification task (if threshold 0)!

Let
$$\ell = \min \{ || x || : x \in B \} > 0$$

Set
$$\hat{X} = \frac{X}{\ell}$$
 \Rightarrow set of scaled examples \hat{B}

$$\Rightarrow || \mathring{X} || \ge 1 \quad \Rightarrow \quad || \mathring{X} ||^2 - 1 \ge 0 \quad \Rightarrow \quad w'_{t+1} \mathring{X} > 0 \quad \square$$

There exist numerous variants of Perceptron Learning Methods.

Theorem: (Duda & Hart 1973)

If rule for correcting weights is $w_{t+1} = w_t + \gamma_t x$ (if $w_t' x < 0$)

- 1. $\forall t \ge 0 : \gamma_t \ge 0$
- $2. \sum_{t=0}^{\infty} \gamma_t = \infty$
- 3. $\lim_{m \to \infty} \frac{\sum_{t=0}^{m} \gamma_t^2}{\left(\sum_{t=0}^{m} \gamma_t\right)^2} = 0$

then $w_t \to w^*$ for $t \to \infty$ with $\forall x: x'w^* > 0$.

e.g.: $\gamma_t = \gamma > 0$ or $\gamma_t = \gamma / (t+1)$ for $\gamma > 0$

as yet: Online Learning

→ Update of weights after each training pattern (if necessary)

now: Batch Learning

- → Update of weights only after test of all training patterns
- → Update rule:

$$W_{t+1} = W_t + \gamma \sum_{\substack{w'_t x < 0 \\ x \in B}} x \qquad (\gamma > 0)$$

vague assessment in literature:

- advantage : "usually faster"
- disadvantage : "needs more memory" ← just a single vector!

find weights by means of optimization

Let $F(w) = \{ x \in B : w \le 0 \}$ be the set of patterns incorrectly classified by weight w.

 $x \in F(w)$

Objective function:
$$f(w) = -\sum w'x \rightarrow min!$$

Optimum:
$$f(w) = 0$$
 iff $F(w)$ is empty

Possible approach: gradient method

$$W_{t+1} = W_t - \gamma \nabla f(W_t)$$
 $(\gamma > 0)$

converges to a <u>local</u> minimum (dep. on w_0)

Gradient method

$$W_{t+1} = W_t - \gamma \nabla f(W_t)$$

Gradient points in direction of steepest ascent of function $f(\cdot)$

Gradient
$$\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \frac{\partial f(w)}{\partial w_2}, \dots, \frac{\partial f(w)}{\partial w_n}\right)$$

$$\frac{\partial f(w)}{\partial w_i} = -\frac{\partial}{\partial w_i} \sum_{x \in F(w)} w'x = -\frac{\partial}{\partial w_i} \sum_{x \in F(w)} \sum_{j=1}^n w_j \cdot x_j$$

$$= -\sum_{x \in F(w)} \underbrace{\frac{\partial}{\partial w_i} \left(\sum_{j=1}^n w_j \cdot x_j \right)}_{x_i} = -\sum_{x \in F(w)} x_i$$

Caution:

Indices i of w_i
here denote
components of
vector w; they are
not the iteration
counters!

Gradient method

thus:

gradient
$$\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \frac{\partial f(w)}{\partial w_2}, \dots, \frac{\partial f(w)}{\partial w_n}\right)'$$

$$= \left(\sum_{x \in F(w)} x_1, -\sum_{x \in F(w)} x_2, \dots, -\sum_{x \in F(w)} x_n\right)'$$

$$= -\sum_{x \in F(w)} x$$

$$\Rightarrow w_{t+1} = w_t + \gamma \sum_{x \in F(w_t)} x$$

gradient method ⇔ batch learning

How difficult is it

- (a) to find a separating hyperplane, provided it exists?
- (b) to decide, that there is no separating hyperplane?

Let B = P
$$\cup$$
 { -x : x \in N } (only positive examples), w_i \in R , $\theta \in$ R , |B| = m

For every example $x_i \in B$ should hold:

$$x_{i1} w_1 + x_{i2} w_2 + ... + x_{in} w_n \ge \theta$$
 \rightarrow trivial solution $w_i = \theta = 0$ to be excluded!

Therefore additionally: $\eta \in \mathbb{R}$

$$x_{i1} W_1 + x_{i2} W_2 + ... + x_{in} W_n - \theta - \eta \ge 0$$

Idea: η maximize \rightarrow if $\eta^* > 0$, then solution found

Matrix notation:

$$A = \begin{pmatrix} x'_1 & -1 & -1 \\ x'_2 & -1 & -1 \\ \vdots & \vdots & \vdots \\ x'_m & -1 & -1 \end{pmatrix} \quad z = \begin{pmatrix} w \\ \theta \\ \eta \end{pmatrix}$$

Linear Programming Problem:

$$f(z_1, z_2, ..., z_n, z_{n+1}, z_{n+2}) = z_{n+2} \rightarrow max!$$
 calculated by e.g. Kamarkar-algorithm in **polynomial time**

If $z_{n+2} = \eta > 0$, then weights and threshold are given by z.

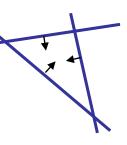
Otherwise separating hyperplane does not exist!

What can be achieved by adding a layer?

- Single-layer perceptron (SLP)
 - ⇒ Hyperplane separates space in two subspaces

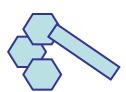
- Two-layer perceptron
 - ⇒ arbitrary convex sets can be separated

these sets can be combined in 3rd layer



connected by AND gate in 2nd layer

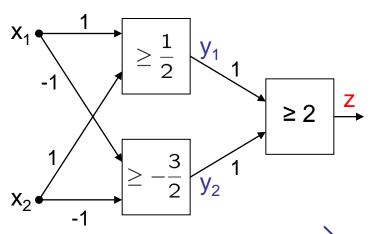
- Three-layer perceptron
 - ⇒ arbitrary sets can be separated (depends on number of neurons)several convex sets representable by 2nd layer,



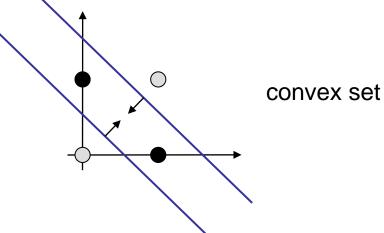
convex sets of 2nd layer connected by OR gate in 3rd layer

⇒ more than 3 layers not necessary!

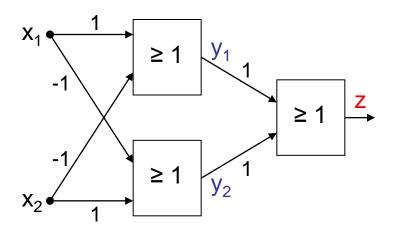
XOR with 3 neurons in 2 steps



X ₁	X ₂	y ₁	y ₂	Z
0	0	0	1	0
0	1	1	1	1
1	0	1	1	1
1	1	1	0	0

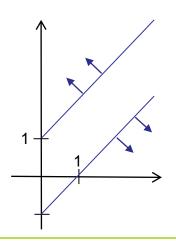


XOR with 3 neurons in 2 layers

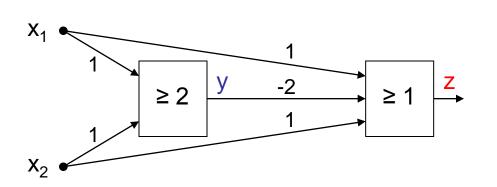


without AND gate in 2nd layer

X ₁	X ₂	y ₁	y ₂	Z
0	0	0	0	0
0	1	0	1	1
1	0	1	0	1
1	1	0	0	0



XOR can be realized with only 2 neurons!



X ₁	X ₂	у	-2y	x ₁ -2y+x ₂	Z
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	0	1	1
1	1	1	-2	0	0

BUT: this is not a layered network (no MLP)!

Evidently:

MLPs deployable for addressing significantly more difficult problems than SLPs!

But:

How can we adjust all these weights and thresholds?

Is there an efficient learning algorithm for MLPs?

History:

Unavailability of efficient learning algorithm for MLPs was a brake shoe ...

... until Rumelhart, Hinton and Williams (1986): Backpropagation

Actually proposed by Werbos (1974)

... but unknown to ANN researchers (was PhD thesis)

Quantification of classification error of MLP

Total Sum Squared Error (TSSE)

$$f(w) = \sum_{x \in B} \|g(w; x) - g^*(x)\|^2$$

output of net target output of net for weights w and input x for input x

Total Mean Squared Error (TMSE)

$$f(w) = \frac{1}{|B| \cdot \ell} \sum_{x \in B} \|g(w; x) - g^*(x)\|^2 = \frac{1}{|B| \cdot \ell} \cdot \text{TSSE}$$
sing patters. # output pourons

training patters # output neurons

leads to same solution as TSSE

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

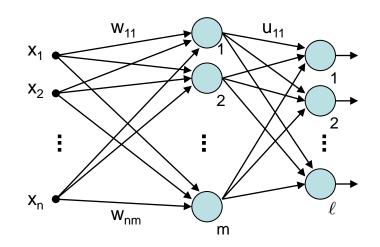
idea: minimize error!

$$f(w_t, u_t) = TSSE \rightarrow min!$$

Gradient method

$$u_{t+1} = u_t - \gamma \nabla_u f(w_t, u_t)$$

$$w_{t+1} = w_t - \gamma \nabla_w f(w_t, u_t)$$

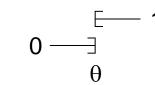


BUT:

f(w, u) cannot be differentiated!

Why? \rightarrow Discontinuous activation function a(.) in neuron!

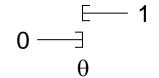
 $a(x) = \begin{cases} 1 & \text{if } x > \theta \\ 0 & \text{otherwise} \end{cases}$

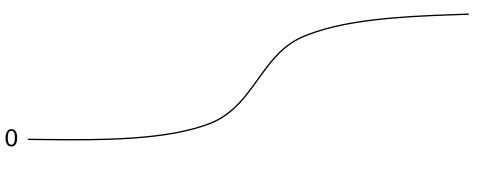


idea: find smooth activation function similar to original function!

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

good idea: sigmoid activation function (instead of signum function)





- monotone increasing
- differentiable
- non-linear
- output ∈ [0,1] instead of ∈ { 0, 1 }
- threshold θ integrated in activation function

e.g.:

•
$$a(x) = \frac{1}{1 + e^{-x}}$$
 $a'(x) = a(x)(1 - a(x))$
• $a(x) = \tanh(x)$ $a'(x) = (1 - a^2(x))$

$$a(x) = \tanh(x)$$

$$a'(x) = (1 - a^2(x))$$

values of derivatives directly determinable from function values

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

Gradient method

$$f(w_t, u_t) = TSSE$$

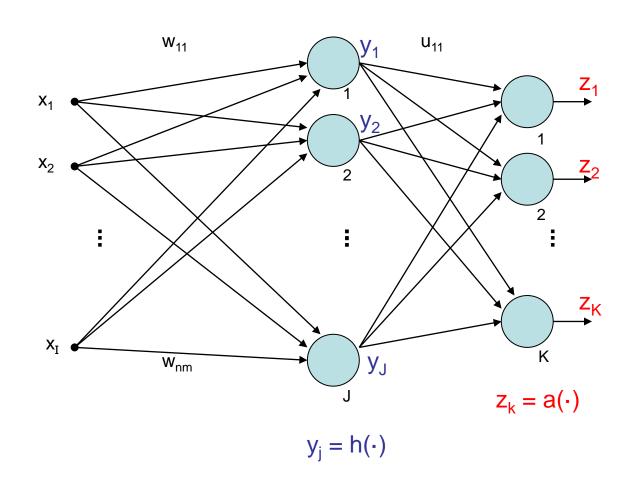
$$u_{t+1} = u_t - \gamma \nabla_u f(w_t, u_t)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \gamma \nabla_{\mathbf{w}} f(\mathbf{w}_t, \mathbf{u}_t)$$

x_i: inputs

y_i: values after first layer

z_k: values after second layer



$$y_j = h\left(\sum_{i=1}^I w_{ij} \cdot x_i\right) = h(w_j' x)$$

output of neuron j after 1st layer

$$z_k = a \left(\sum_{j=1}^J u_{jk} \cdot y_j \right) = a(u'_k y)$$

output of neuron k after 2nd layer

$$= a \left(\sum_{j=1}^{J} u_{jk} \cdot h \left(\sum_{i=1}^{I} w_{ij} \cdot x_i \right) \right)$$

error of input x:

$$f(w, u; x) = \sum_{k=1}^{K} (z_k(x) - z_k^*(x))^2 = \sum_{k=1}^{K} (z_k - z_k^*)^2$$

output of net target output for input x

error for input x and target output z*:

$$f(w,u;x,z^*) = \sum_{k=1}^K \left[a \left(\sum_{j=1}^J u_{jk} \cdot h \left(\sum_{i=1}^I w_{ij} \cdot x_i \right) \right) - z_k^*(x) \right]^2$$

total error for all training patterns $(x, z^*) \in B$:

$$f(w,u) = \sum_{(x,z^*)\in B} f(w,u;x,z^*)$$
 (TSSE)

gradient of total error:

$$\nabla f(w, u) = \sum_{(x,z^*) \in B} \nabla f(w, u; x, z^*)$$

vector of partial derivatives w.r.t. weights \mathbf{u}_{ik} and \mathbf{w}_{ij}

thus:

$$\frac{\partial f(w,u)}{\partial u_{jk}} = \sum_{(x,z^*)\in B} \frac{\partial f(w,u;x,z^*)}{\partial u_{jk}}$$

and

$$\frac{\partial f(w,u)}{\partial w_{ij}} = \sum_{(x,z^*)\in B} \frac{\partial f(w,u;x,z^*)}{\partial w_{ij}}$$

assume:
$$a(x) = \frac{1}{1 + e^{-x}} \Rightarrow \frac{d \, a(x)}{dx} = a'(x) = a(x) \cdot (1 - a(x))$$

and:
$$h(x) = a(x)$$

chain rule of differential calculus:

$$[p(q(x))]' = p'(q(x)) \cdot q'(x)$$
outer inner derivative derivative

$$f(w, u; x, z^*) = \sum_{k=1}^{K} [a(u'_k y) - z_k^*]^2$$

partial derivative w.r.t. uik:

$$\frac{\partial f(w, u; x, z^*)}{\partial u_{jk}} = 2 \left[a(u'_k y) - z_k^* \right] \cdot a'(u'_k y) \cdot y_j$$

$$= 2 \left[a(u'_k y) - z_k^* \right] \cdot a(u'_k y) \cdot (1 - a(u'_k y)) \cdot y_j$$

$$= 2 \left[z_k - z_k^* \right] \cdot z_k \cdot (1 - z_k) \cdot y_j$$
"error signal" δ_k

partial derivative w.r.t. wii:

$$\frac{\partial f(w, u; x, z^*)}{\partial w_{ij}} = 2 \sum_{k=1}^{K} \left[\underline{a(u_k'y)} - z_k^* \right] \cdot \underline{a'(u_k'y)} \cdot u_{jk} \cdot \underline{h'(w_j'x)} \cdot x_i$$

$$z_k \qquad z_k (1 - z_k) \qquad y_j (1 - y_j)$$

$$z_k \qquad z_k \left(1-z_k\right) \qquad y_j \left(1-y_j\right)$$

$$= 2 \cdot \sum_{k=1}^K \left[z_k - z_k^*\right] \cdot z_k \cdot \left(1-z_k\right) \cdot u_{jk} \cdot y_j \left(1-y_j\right) \cdot x_i$$
 factors reordered
$$= x_i \cdot y_j \cdot \left(1-y_j\right) \cdot \sum_{k=1}^K 2 \cdot \left[z_k - z_k^*\right] \cdot z_k \cdot \left(1-z_k\right) \cdot u_{jk}$$
 error signal δ_k from previous layer

error signal δ_i from "current" layer

Multi-Layer Perceptron (MLP)

Lecture 02

Generalization (> 2 layers)

Let neural network have L layers $S_1, S_2, ... S_L$. $j \in S_m \rightarrow$ neuron j is in Let neurons of all layers be numbered from 1 to N. $j \in S_m \rightarrow$ neuron j is in m-th layer

All weights w_{ii} are gathered in weights matrix W.

Let o_i be output of neuron j.

error signal:

$$\delta_j \,=\, \left\{egin{array}{ll} o_j \,\cdot\, (1-o_j) \,\cdot\, (o_j-z_j^*) & ext{if } j \in S_L ext{ (output neuron)} \ \\ o_j \,\cdot\, (1-o_j) \,\cdot\, \sum\limits_{k \in S_{m+1}} \delta_k \,\cdot\, w_{jk} & ext{if } j \in S_m ext{ and } m < L \end{array}
ight.$$

correction:

$$w_{ij}^{(t+1)} = w_{ij}^{(t)} - \gamma \cdot o_i \cdot \delta_j$$

in case of online learning: correction after **each** test pattern presented error signal of neuron in inner layer determined by

- error signals of all neurons of subsequent layer and
- weights of associated connections.

- First determine error signals of output neurons,
- use these error signals to calculate the error signals of the preceding layer,
- use these error signals to calculate the error signals of the preceding layer,
- and so forth until reaching the first inner layer.

thus, error is propagated backwards from output layer to first inner \Rightarrow backpropagation (of error)

- ⇒ other optimization algorithms deployable!
 in addition to backpropagation (gradient descent) also:
- Backpropagation with Momentum take into account also previous change of weights:

$$\Delta w_{ij}^{(t)} = -\gamma_1 \cdot o_i \cdot \delta_j - \gamma_2 \cdot \Delta w_{ij}^{(t-1)}$$

- QuickProp
 assumption: error function can be approximated locally by quadratic function, update rule uses last two weights at step t 1 and t 2.
- Resilient Propagation (RPROP)
 exploits sign of partial derivatives:
 2 times negative or positive → increase step size!
 change of sign → reset last step and decrease step size!
 typical values: factor for decreasing 0,5 / factor for increasing 1,2
- evolutionary algorithms individual = weights matrix later more about this!