

Computational Intelligence

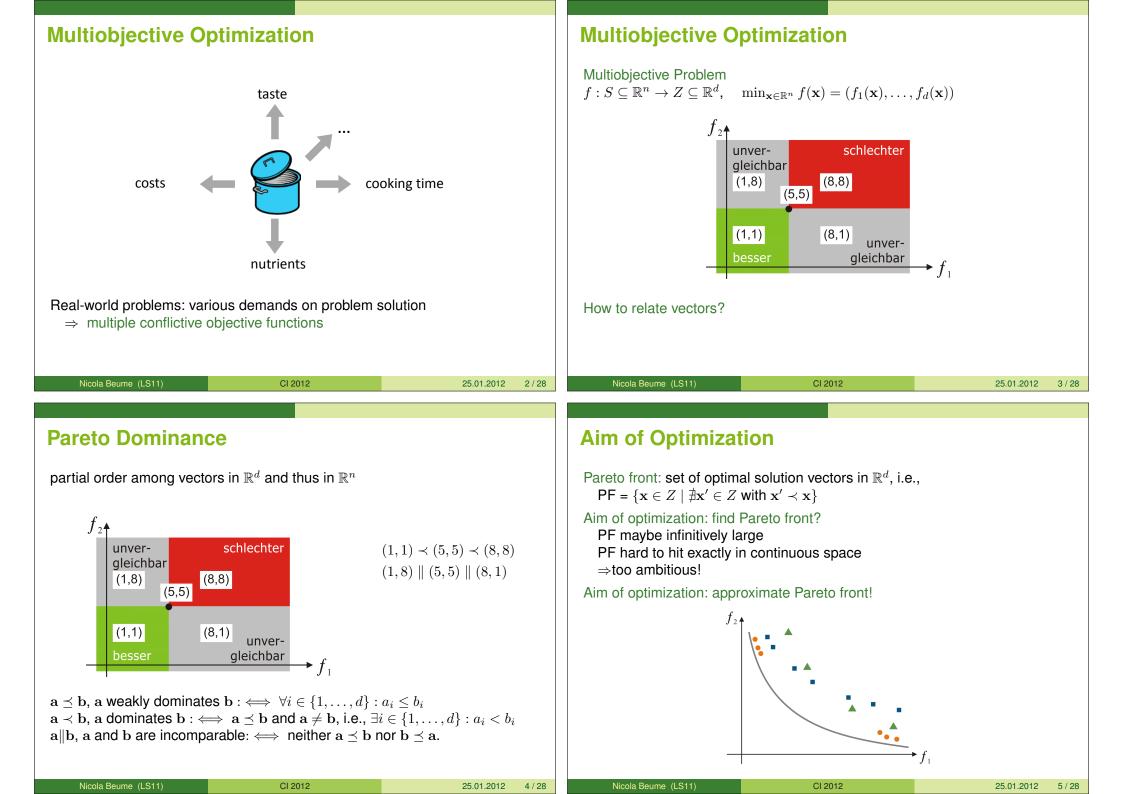
Winter Term 2014/15

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

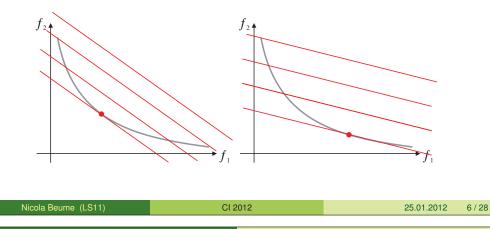


Scalarization

Isn't there an easier way?

Scalarize objectives to single-objective function: $f: S \subseteq \mathbb{R}^n \to Z \subseteq \mathbb{R}^2 \Rightarrow \quad f_{scal} = w_1 f_1(\mathbf{x}) + w_2 f_2(\mathbf{x})$

Result: single solution Specify desired solution by choice of w_1, w_2



Classification

a-priori approach

first specify preferences, then optimize

more advanced scalarization techniques (e.g. Tschebyscheff) allow to access all elements of PF

remaining difficulty:

how to express your desires through parameter values !?

a-posteriori approach

first optimize (approximate Pareto front), then choose solution

\Rightarrow back to a-posteriori approach

 \Rightarrow state-of-the-art methods: evolutionary algorithms

Nicola Beume (LS11)		Nicola Beume	(LS11)
---------------------	--	--------------	--------

CI 2012

25.01.2012

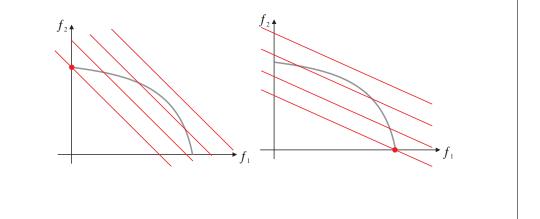
8/28

Scalarization

Previous example: convex Pareto front

Consider concave Pareto front

- \oint only boundary solutions are optimal
- \Rightarrow scalarization by simple weighting is not a good idea



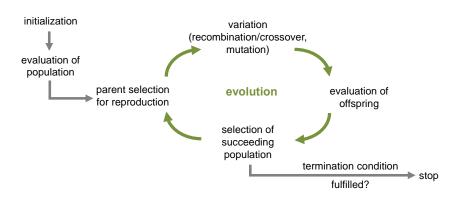
CI 2012

Evolutionary Algorithms

Nicola Beume (LS11)

Nicola Beume (LS11)

Evolutionary Multiobjective Optimization Algorithms (EMOA) Multiobjective Optimization Evolutionary Algorithms (MOEA)



CI 2012

What to change in case of multiobjective optimization? Selection!

Remaining operators may work on search space only

/ 28

25.01.2012

7 / 28

Selection in EMOA

Selection requires sortable population to choose best individuals

How to sort d-dimensional objective vectors?

Primary selection criterion:

use Pareto dominance relation to sort comparable individuals

Secondary selection criterion:

apply additional measure to incomparable individuals to enforce order

Non-dominated Sorting

Example for primary selection criterion

partition population into sets of mutually incomparable solutions (antichains)

non-dominated set: best elements of set

 $\mathsf{NDS}(\mathsf{M}) = \{ \mathbf{x} \in M \mid \nexists \mathbf{x}' \in M \text{ with } \mathbf{x}' \prec \mathbf{x} \}$

Simple algorithm:

iteratively remove non-dominated set until population empty

Nicola Beume (LS11) CI 2012 25.01.2012

Non-dominated Sorting

Example for primary selection criterion

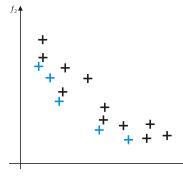
partition population into sets of mutually incomparable solutions (antichains)

non-dominated set: best elements of set

 $\mathsf{NDS}(\mathsf{M}) = \{ \mathbf{x} \in M \mid \nexists \mathbf{x}' \in M \text{ with } \mathbf{x}' \prec \mathbf{x} \}$

Simple algorithm:

iteratively remove non-dominated set until population empty



CI 2012

Non-dominated Sorting

Example for primary selection criterion

partition population into sets of mutually incomparable solutions (antichains)

CI 2012

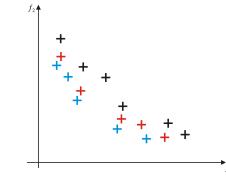
non-dominated set: best elements of set

 $\mathsf{NDS}(\mathsf{M}) = \{ \mathbf{x} \in M \mid \nexists \mathbf{x}' \in M \text{ with } \mathbf{x}' \prec \mathbf{x} \}$

Simple algorithm:

Nicola Beume (LS11)

iteratively remove non-dominated set until population empty



CI 2012

25.01.2012

11/28

Nicola Beume (LS11)

25.01.2012

12 / 28 Nic

10/28

Nicola Beume (LS11)

NSGA-II

Popular EMOA: Non-dominated Sorting Genetic Algorithm II

 $(\mu + \mu)$ -selection:

Nicola Beume (LS11)

- **1** perform non-dominated sorting on all $\mu + \mu$ individuals
- 2 take best subsets as long as they can be included completely
- 3 if population size μ not reached but next subset does not fit in completely:

CI 2012

NSGA-II

Crowding distance:

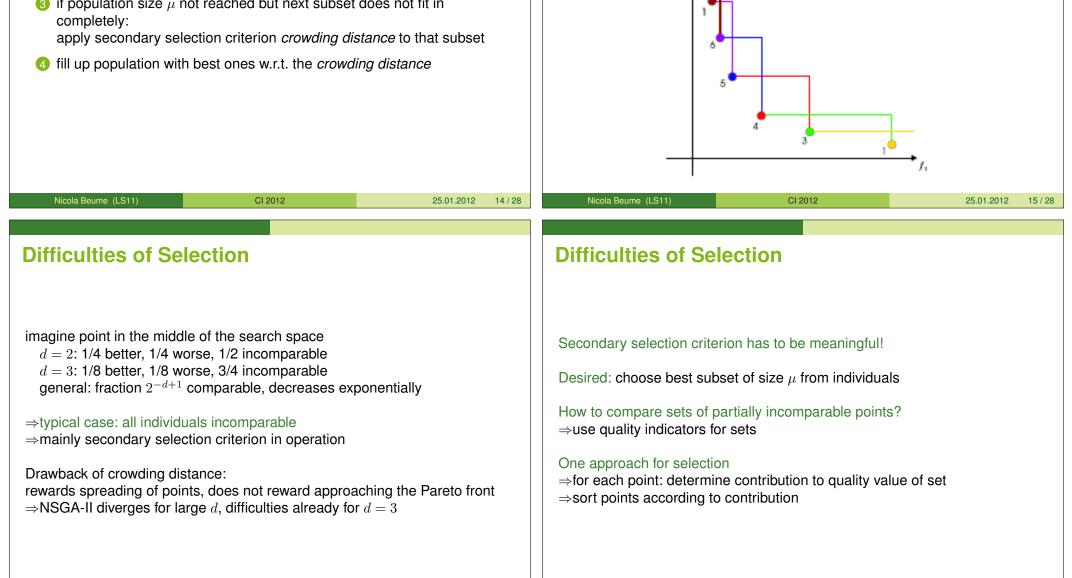
Nicola Beume (LS11)

CI 2012

25.01.2012

17/28

1/2 perimeter of empty bounding box around point value of infinity for boundary points large values good



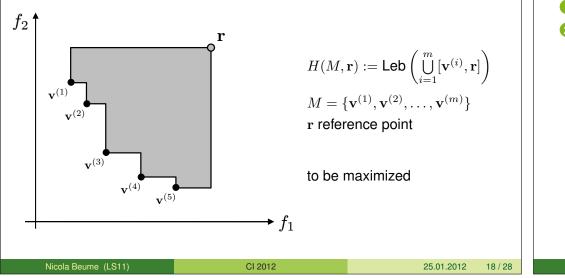
25.01.2012

16/28

Hypervolumen (S-metric) as Quality Measure

dominated hypervolume:

size of dominated space bounded by reference point



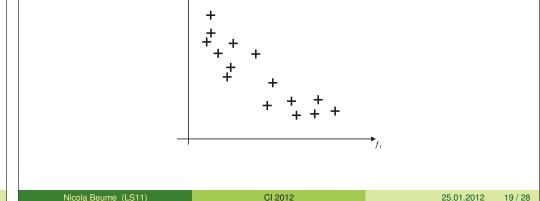
SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA

$(\mu+1)\text{-selection}$

non-dominated sorting

2 in case of incomparability: contributions to hypervolume of subset

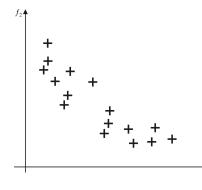


SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA

$(\mu + 1)$ -selection

- non-dominated sorting
- 2 in case of incomparability: contributions to hypervolume of subset

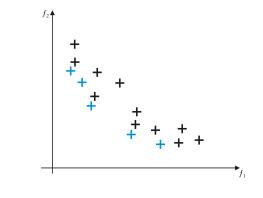


SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA

$(\mu + 1)$ -selection

- 1 non-dominated sorting
- 2 in case of incomparability: contributions to hypervolume of subset



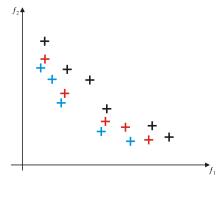
Nicola Beume	1 911	۱

SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA

 $(\mu + 1)$ -selection

- non-dominated sorting
- 2 in case of incomparability: contributions to hypervolume of subset



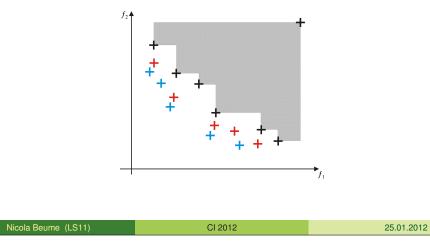
CI 2012

SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA

$(\mu + 1)$ -selection

- non-dominated sorting
- 2 in case of incomparability: contributions to hypervolume of subset



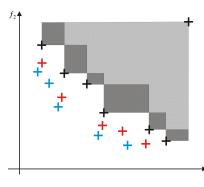
SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA

Nicola Beume (LS11)

 $(\mu + 1)$ -selection

- non-dominated sorting
- 2 in case of incomparability: contributions to hypervolume of subset



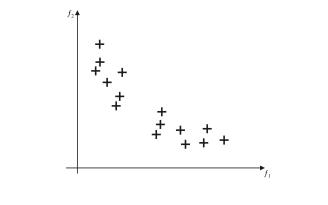
CI 2012

SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA

$(\mu + 1)$ -selection

- 1 non-dominated sorting
- 2 in case of incomparability: contributions to hypervolume of subset



25.01.2012

22/28

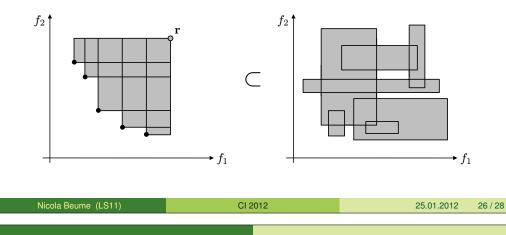
23 / 28

Computational complexity of hypervolume

Lower Bound $\Omega(m \log m)$

Upper Bound $O(m^{d/2} \cdot 2^{O(\log^* m)})$

proof: hypervolume as special case of Klee's measure problem



Conclusions

- real-world problems are often multiobjective
- Pareto dominance only a partial order
- a priory: parameterization difficult
- a posteriori: choose solution after knowing possible compromises
- state-of-the-art a posteriori methods: EMOA, MOEA
- EMOA require sortable population for selection
- use quality measures as secondary selection criterion
- hypervolume: excellent quality measure, but computationally intensive
- use state-of-the-art EMOA, other may fail completely

NSGA-II

only suitable in case of d=2 objective functions otherwise no convergence to Pareto front

SMS-EMOA

also effective for d > 2 due to hypervolume hypervolume calculation time-consuming \Rightarrow use approximation of hypervolume

Other state-of-the-art EMOA, e.g.

- MO-CMA-ES: CMA-ES + hypervolume selection
- *c*-MOEA: objective space partitioned into grid, only 1 point per cell
- MSOPS: selection acc. to ranks of different scalarizations

Nicola Beume (LS11)	CI 2012	25.01.2012 27 / 2	28