Computational Intelligence

Winter Term 2014/15

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

- Evolutionary Algorithms (EA)
- Optimization Basics
- EA Basics

Optimization Basics

modelling

simulation
optimization

Optimization Basics

given:
objective function $\mathrm{f}: \mathrm{X} \rightarrow \mathbb{R}$
feasible region X (= nonempty set)
objective: find solution with minimal or maximal value!
optimization problem:
find $x^{*} \in X$ such that $f\left(x^{*}\right)=\min \{f(x): x \in X\}$
x^{*} global solution
$f\left(x^{*}\right)$ global optimum
note:
$\max \{f(x): x \in X\}=-\min \{-f(x): x \in X\}$

Optimization Basics

local solution $x^{\star} \in X:$
$\forall x \in N\left(x^{*}\right): f\left(x^{*}\right) \leq f(x)$
\downarrow
neighborhood of $x^{*}=$ bounded subset of X
if x^{\star} local solution then
$f\left(x^{*}\right)$ local optimum / minimum
example: $X=\mathbb{R}^{n}, N_{\varepsilon}\left(x^{*}\right)=\left\{x \in X:\left\|x-x^{*}\right\|_{2} \leq \varepsilon\right\}$
remark:
evidently, every global solution / optimum is also local solution / optimum; the reverse is wrong in general!
example:
$\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$, global solution at x^{*}

Optimization Basics

What makes optimization difficult?

some causes:

- local optima (is it a global optimum or not?)
- constraints (ill-shaped feasible region)
- non-smoothness (weak causality)
strong causality needed!
- discontinuities (\Rightarrow nondifferentiability, no gradients)
- lack of knowledge about problem (\Rightarrow black / gray box optimization)
$\rightarrow f(x)=a_{1} x_{1}+\ldots+a_{n} x_{n} \rightarrow$ max! with $x_{i} \in\{0,1\}, a_{i} \in \mathbb{R}$ add constaint $g(x)=b_{1} x_{1}+\ldots+b_{n} x_{n} \leq b$ add capacity constraint to TSP \Rightarrow CVRP
$\Rightarrow x_{i}^{*}=1$ iff $a_{i}>0$
\Rightarrow NP-hard
\Rightarrow still harder

Optimization Basics

When using which optimization method?

mathematical algorithms

- problem explicitly specified
- problem-specific solver available
- problem well understood
- ressources for designing algorithm affordable
- solution with proven quality required
\Rightarrow don't apply EAs
randomized search heuristics
- problem given by black / gray box
- no problem-specific solver available
- problem poorly understood
- insufficient ressources for designing algorithm
- solution with satisfactory quality sufficient
\Rightarrow EAs worth a try

Evolutionary Algorithm Basics

idea: using biological evolution as metaphor and as pool of inspiration
\Rightarrow interpretation of biological evolution as iterative method of improvement

feasible solution $x \in X=S_{1} \times \ldots \times S_{n}$	$=$ chromosome of individual
multiset of feasible solutions	$=$ population: multiset of individuals
objective function $f: X \rightarrow \mathbb{R}$	$=$ fitness function

often: $X=\mathbb{R}^{n}, X=\mathbb{B}^{n}=\{0,1\}^{n}, X=\mathbb{P}_{n}=\{\pi: \pi$ is permutation of $\{1,2, \ldots, n\}\}$ also: combinations like $X=\mathbb{R}^{n} \times \mathbb{B}^{p} \times \mathbb{P}_{q}$ or non-cartesian sets
\Rightarrow structure of feasible region / search space defines representation of individual

Evolutionary Algorithm Basics

algorithmic skeleton

```
initialize population
    \downarrow
    evaluation
        \downarrow
        parent selection
    \downarrow
    variation (yields offspring)
    \downarrow
    evaluation (of offspring)
    \downarrow
    survival selection (yields new population)
    \downarrow
    stop?
    \downarrow
    output: best individual found
```


Evolutionary Algorithm Basics

Specific example: $(1+1)$-EA in \mathbb{B}^{n} for minimizing some $f: \mathbb{B}^{n} \rightarrow \mathbb{R}$
population size $=1$, number of offspring $=1$, selects best from $1+1$ individuals

1. initialize $X^{(0)} \in \mathbb{B}^{n}$ uniformly at random, set $t=0$
2. evaluate $f\left(X^{(t)}\right)$
3. select parent: $Y=X^{(t)}$
no choice, here
4. variation: flip each bit of Y independently with probability $p_{m}=1 / n$
5. evaluate $f(Y)$
6. selection: if $f(Y) \leq f\left(X^{(t)}\right)$ then $X^{(t+1)}=Y$ else $X^{(t+1)}=X^{(t)}$
7. if not stopping then $t=t+1$, continue at (3)

Evolutionary Algorithm Basics

Specific example: (1+1)-EA in \mathbb{R}^{n} for minimizing some $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$
population size $=1$, number of offspring $=1$, selects best from $1+1$ individuals

1. initialize $X^{(0)} \in \mathbb{C} \subset \mathbb{R}^{n}$ uniformly at random, set $t=0$
2. evaluate $f\left(X^{(t)}\right)$
3. select parent: $Y=X^{(t)}$
no choice, here
4. variation $=$ add random vector: $Y=Y+Z$, e.g. $Z \sim N\left(0, I_{n}\right)$
5. evaluate $f(Y)$
6. selection: if $f(Y) \leq f\left(X^{(t)}\right)$ then $X^{(t+1)}=Y$ else $X^{(t+1)}=X^{(t)}$
7. if not stopping then $t=t+1$, continue at (3)

Evolutionary Algorithm Basics

Selection

(a) select parents that generate offspring
(b) select individuals that proceed to next generation \rightarrow selection for survival

necessary requirements:

- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)
- at least one selection step must favor better individuals
typically : selection only based on fitness values $\mathrm{f}(\mathrm{x})$ of individuals
seldom : additionally based on individuals‘ chromosomes $\times(\rightarrow$ maintain diversity)

Evolutionary Algorithm Basics

Selection methods

population $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mu}\right)$ with μ individuals
two approaches:

1. repeatedly select individuals from population with replacement
2. rank individuals somehow and choose those with best ranks (no replacement)

- uniform / neutral selection
choose index i with probability $1 / \mu$
- fitness-proportional selection choose index i with probability $\mathrm{s}_{\mathrm{i}}=\frac{f\left(x_{i}\right)}{\sum_{x \in P} f(x)}$
problems: $f(x)>0$ for all $x \in X$ required $\Rightarrow g(x)=\exp (f(x))>0$
but already sensitive to additive shifts $g(x)=f(x)+c$

almost deterministic if large differences, almost uniform if small differences

Evolutionary Algorithm Basics

Selection methods

population $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mu}\right)$ with μ individuals

- rank-proportional selection order individuals according to their fitness values assign ranks
fitness-proportional selection based on ranks
\Rightarrow avoids all problems of fitness-proportional selection

but: best individual has only small selection advantage (can be lost!)

- k-ary tournament selection

draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random)
\Rightarrow has all advantages of rank-based selection and probability that best individual does not survive:

$$
\left(1-\frac{1}{\mu}\right)^{k \mu} \approx e^{-k}
$$

Evolutionary Algorithm Basics

Selection methods without replacement
population $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mu}\right)$ with μ parents and
population $\mathrm{Q}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\lambda}\right)$ with λ offspring

- (μ, λ)-selection or truncation selection on offspring or comma-selection rank λ offspring according to their fitness select μ offspring with best ranks
\Rightarrow best individual may get lost, $\lambda \geq \mu$ required
- $(\mu+\lambda)$-selection or truncation selection on parents + offspring or plus-selection merge λ offspring and μ parents
rank them according to their fitness select μ individuals with best ranks
\Rightarrow best individual survives for sure

Evolutionary Algorithm Basics

Selection methods: Elitism

Elitist selection: best parent is not replaced by worse individual.

- Intrinsic elitism: method selects from parent and offspring, best survives with probability 1
- Forced elitism: if best individual has not survived then re-injection into population, i.e., replace worst selected individual by previously best parent

method	P\{ select best \}	from parents \& offspring	intrinsic elitism
neutral	<1	no	no
fitness proportionate	<1	no	no
rank proportionate	<1	no	no
k-ary tournament	<1	no	no
$(\mu+\lambda)$	$=1$	yes	yes
(μ, λ)	$=1$	no	no

Evolutionary Algorithm Basics

Variation operators: depend on representation
\square mutation
recombination
\rightarrow alters a single individual
\rightarrow creates single offspring from two or more parents
may be applied

- exclusively (either recombination or mutation) chosen in advance
- exclusively (either recombination or mutation) in probabilistic manner
- sequentially (typically, recombination before mutation); for each offspring
- sequentially (typically, recombination before mutation) with some probability

Evolutionary Algorithm Basics

Variation in \mathbb{B}^{n}

- Mutation
a) local
b) global
c) "nonlocal"
d) inversion
\rightarrow choose index $\mathrm{k} \in\{1, \ldots, \mathrm{n}\}$ uniformly at random, flip bit k, i.e., $x_{k}=1-x_{k}$
\rightarrow for each index $\mathrm{k} \in\{1, \ldots, \mathrm{n}\}$: flip bit k with probability $\mathrm{p}_{\mathrm{m}} \in(0,1)$
\rightarrow choose K indices at random and flip bits with these indices
\rightarrow choose start index k_{s} and end index k_{e} at random invert order of bits between start and and index

1		1		0	\rightarrow	0		1
0	k=2	1		0		0	k	1
0		0		1	K=2	0		0
1		1		0	\rightarrow	0	$\mathrm{k}_{\text {e }}$	0
1	a)	1	b)	1	c)	1	d)	1

Evolutionary Algorithm Basics

Variation in \mathbb{B}^{n}

- Recombination (two parents)
a) 1-point crossover
b) K-point crossover
c) uniform crossover
\rightarrow draw cut-point $k \in\{1, \ldots, n-1\}$ uniformly at random; choose first k bits from 1st parent, choose last $n-k$ bits from 2nd parent
\rightarrow draw K distinct cut-points uniformly at random; choose bits 1 to k_{1} from 1st parent, choose bits $k_{1}+1$ to k_{2} from 2nd parent, choose bits $\mathrm{k}_{2}+1$ to k_{3} from 1st parent, and so forth ...
\rightarrow for each index i: choose bit i with equal probability from 1st or 2nd parent

	1	0		
	0	1		
	0	1		
a)				
1	1		\Rightarrow	1
:---				
1	\Rightarrow			
:---				
1				
1				

Evolutionary Algorithm Basics

Variation in \mathbb{B}^{n}

- Recombination (multiparent: ρ = \#parents)
a) diagonal crossover ($2<\rho<\mathrm{n}$)
\rightarrow choose $\rho-1$ distinct cut points, select chunks from diagonals
AAAAAAAAAAA
bBbbBbBbBBB
cccceccccc DDDDDDDDDD
$\left.\begin{array}{l}\text { ABBBCCDDDD } \\ \text { BCCCDDAAAA } \\ \text { CDDDAABBBB } \\ \text { DAAABBCCCC }\end{array}\right\}$
can generate ρ offspring; otherwise choose initial chunk at random for single offspring
b) gene pool crossover ($\rho>2$)
\rightarrow for each gene: choose donating parent uniformly at random

Evolutionary Algorithm Basics

Variation in \mathbb{P}_{n}

Individuals $\mathrm{X}=\pi(1, \ldots, \mathrm{n})$

- Mutation
a) local
\rightarrow 2-swap / 1-translocation

b) global
\rightarrow draw number K of 2-swaps, apply 2-swaps K times
K is positive random variable; its distribution may be uniform, binomial, geometrical, ...; $\mathrm{E}[\mathrm{K}]$ and $\mathrm{V}[\mathrm{K}]$ may control mutation strength
expectation
variance

Evolutionary Algorithm Basics

Variation in \mathbb{P}_{n}

Individuals $\mathrm{X}=\pi(1, \ldots, \mathrm{n})$

- Recombination (two parents)
a) order-based crossover (OBX)
- select two indices k_{1} and k_{2} with $k_{1} \leq k_{2}$ uniformly at random

2	3	5	7	1	6	4
6	4	5	3	7	2	1
\mathbf{x}	x	x	7	1	6	x
5	3	2	7	1	6	4

b) partially mapped crossover (PMX)

- select two indices k_{1} and k_{2} with $k_{1} \leq k_{2}$ uniformly at random
- copy genes k_{1} to k_{2} from $1^{\text {st }}$ parent to offspring (keep positions)
- copy all genes not already contained in offspring from $2^{\text {nd }}$ parent (keep positions)
- from left to right: fill in remaining genes from $2^{\text {nd }}$ parent

2	3	5	7	1	6	4
6	4	5	3	7	2	1
\mathbf{x}	\mathbf{x}	\mathbf{x}	7	$\mathbf{1}$	$\mathbf{6}$	\mathbf{x}
\mathbf{x}	4	5	7	1	6	\mathbf{x}
3	4	5	7	1	6	2

Evolutionary Algorithm Basics

Variation in \mathbb{R}^{n}

- Mutation

a) local
$\rightarrow Z$ with bounded support

$$
f_{Z}(x)=\frac{4}{3}\left(1-x^{2}\right) \cdot 1_{[-1,1]}(x)
$$

Definition

Let $f_{Z}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$be p.d.f. of r.v. Z. The set $\left\{x \in \mathbb{R}^{n}: f_{z}(x)>0\right\}$ is termed the support of Z.
b) nonlocal $\quad \rightarrow Z$ with unbounded support

most frequently used!

Evolutionary Algorithm Basics

Variation in \mathbb{R}^{n}
Individuals $\mathrm{X} \in \mathbb{R}^{\mathrm{n}}$

- Recombination (two parents)
a) all crossover variants adapted from \mathbb{B}^{n}
b) intermediate

$$
z=\xi \cdot x+(1-\xi) \cdot y \text { with } \xi \in[0,1]
$$

c) intermediate (per dimension)
$\forall i: z_{i}=\xi_{i} \cdot x_{i}+\left(1-\xi_{i}\right) \cdot y_{i}$ with $\xi_{i} \in[0,1]$
d) discrete $\forall i: z_{i}=B_{i} \cdot x_{i}+\left(1-B_{i}\right) \cdot y_{i}$ with $B_{i} \sim B\left(1, \frac{1}{2}\right)$
e) simulated binary crossover (SBX)
\rightarrow for each dimension with probability p_{c}

Evolutionary Algorithm Basics

Variation in \mathbb{R}^{n}
Individuals $\mathrm{X} \in \mathbb{R}^{\mathrm{n}}$

- Recombination (multiparent), $\rho \geq 3$ parents
a) intermediate $z=\sum_{k=1}^{\rho} \xi^{(k)} x_{i}^{(k)}$ where $\sum_{k=1}^{\rho} \xi^{(k)}=1$ and $\xi^{(k)} \geq 0$ (all points in convex hull)
b) intermediate (per dimension) $\forall i: z_{i}=\sum_{k=1}^{\rho} \xi_{i}^{(k)} x_{i}^{(k)}$

$$
\forall i: z_{i} \in\left[\min _{k}\left\{x_{i}^{(k)}\right\}, \max _{k}\left\{x_{i}^{(k)}\right\}\right]
$$

Evolutionary Algorithm Basics

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a strictly quasiconvex function. If $f(x)=f(y)$ for some $x \neq y$ then every offspring generated by intermediate recombination is better than its parents.

Proof:

f strictly quasiconvex $\Rightarrow f(\xi \cdot x+(1-\xi) \cdot y)<\max \{f(x), f(y)\}$ for $0<\xi<1$
since $f(x)=f(y) \quad \Rightarrow \max \{f(x), f(y)\}=\min \{f(x), f(y)\}$

$$
\Rightarrow f(\xi \cdot x+(1-\xi) \cdot y)<\min \{f(x), f(y)\} \text { for } 0<\xi<1
$$

Evolutionary Algorithm Basics

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function and $f(x)<f(y)$ for some $x \neq y$. If $(y-x)^{‘} \nabla f(x)<0$ then there is a positive probability that an offspring generated by intermediate recombination is better than both parents.

Proof:

If $d^{\prime} \nabla f(x)<0$ then $d \in \mathbb{R}^{n}$ is a direction of descent, i.e.

$$
\exists \tilde{s}>0: \forall s \in(0, \tilde{s}]: f(x+s \cdot d)<f(x) .
$$

Here: $d=y-x$ such that $\mathrm{P}\{f(\xi x+(1-\xi) y)<f(x)\} \geq \frac{\tilde{s}}{\|d\|}>0$.

sublevel set $S_{\alpha}=\left\{x \in \mathbb{R}^{n}: f(x)<\alpha\right\}$

