tochnische universität dortmund		Plan for	Today		Lecture 06
Computational Intelligence Winter Term 2014/15			uzzy sets Axioms of fuzzy complement Generators Dual tripels	t, t- and s-norm	S
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund		techni	sche universität	G. Rudolph: Comp	utational Intelligence • Winter Term 2014/15
		U dortm	und		
Fuzzy Sets	Lecture 06	Fuzzy C	omplement: Axioms		Lecture 06
Considered so far:		Definit	ion.		
Standard fuzzy operators					
				nnlomont iff	
• $A^{c}(x) = 1 - A(x)$			fon c: $[0,1] \rightarrow [0,1]$ is a <i>fuzzy con</i>	nplement iff	
 A^c(x) = 1 − A(x) (A ∩ B)(x) = min { A(x), B(x) } 		(A1)	c(0) = 1 and $c(1) = 0$.		monotone decreasing
• $(A \cap B)(x) = \min \{ A(x), B(x) \}$					monotone decreasing
		(A1) (A2)	c(0) = 1 and $c(1) = 0$.		monotone decreasing
 (A ∩ B)(x) = min { A(x), B(x) } (A ∪ B)(x) = max { A(x), B(x) } ⇒ Compatible with operators for crisp sets 		(A1) (A2)	c(0) = 1 and c(1) = 0. ∀ a, b ∈ [0,1]: a ≤ b ⇒ c(a) ≥ c		monotone decreasing
 (A ∩ B)(x) = min { A(x), B(x) } (A ∪ B)(x) = max { A(x), B(x) } 	1 }	(A1) (A2) "nice to	c(0) = 1 and c(1) = 0. ∀ a, b ∈ [0,1]: a ≤ b ⇒ c(a) ≥ c b have":		monotone decreasing
 (A ∩ B)(x) = min { A(x), B(x) } (A ∪ B)(x) = max { A(x), B(x) } ⇒ Compatible with operators for crisp sets 		(A1) (A2) "nice to (A3)	c(0) = 1 and c(1) = 0. $\forall a, b \in [0,1]: a \le b \implies c(a) \ge c$ b have'': $c(\cdot) \text{ is continuous.}$ $\forall a \in [0,1]: c(c(a)) = a$		
 (A ∩ B)(x) = min { A(x), B(x) } (A ∪ B)(x) = max { A(x), B(x) } ⇒ Compatible with operators for crisp sets with membership functions with values in B = { 0, 1 ∃ Non-standard operators? ⇒ Yes! Innumerable matching 		(A1) (A2) "nice to (A3) (A4) Examp	c(0) = 1 and c(1) = 0. $\forall a, b \in [0,1]: a \le b \implies c(a) \ge c$ b have'': $c(\cdot) \text{ is continuous.}$ $\forall a \in [0,1]: c(c(a)) = a$	c(b).	·
 (A ∩ B)(x) = min { A(x), B(x) } (A ∪ B)(x) = max { A(x), B(x) } ⇒ Compatible with operators for crisp sets with membership functions with values in B = { 0, 1 ∃ Non-standard operators? ⇒ Yes! Innumerable mate Defined via axioms. 		(A1) (A2) "nice to (A3) (A4) Examp a) star ad (c(0) = 1 and c(1) = 0. $\forall a, b \in [0,1]: a \le b \implies c(a) \ge c$ b have'': $c(\cdot) \text{ is continuous.}$ $\forall a \in [0,1]: c(c(a)) = a$ continues: $\forall a \in [0,1]: c(c(a)) = 1$	- a - 1 = 0	involutive ad (A3): ⊠
 (A ∩ B)(x) = min { A(x), B(x) } (A ∪ B)(x) = max { A(x), B(x) } ⇒ Compatible with operators for crisp sets with membership functions with values in B = { 0, 1 ∃ Non-standard operators? ⇒ Yes! Innumerable material Defined via axioms. Creation via generators. 		(A1) (A2) "nice to (A3) (A4) Examp a) star ad (c(0) = 1 and c(1) = 0. $\forall a, b \in [0,1]: a \le b \implies c(a) \ge c$ b have'': $c(\cdot) \text{ is continuous.}$ $\forall a \in [0,1]: c(c(a)) = a$ bles: and fuzzy complement $c(a) = 1$	- a - 1 = 0 creasing)	involutive

Fuzzy Complement: 1 st Characterization	Lecture 06	Fuzzy Complement: 1st Characterization Lecture 06
Theorem c: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff \exists continuous function g: $[0,1] \rightarrow \mathbb{R}$ with • $g(0) = 0$ • strictly monotone increasing • $\forall a \in [0,1]$: $c(a) = g^{(-1)}(g(1) - g(a))$.	defines an increasing generator g ⁽⁻¹⁾ (x) pseudo-inverse	Examples d) $g(a) = \frac{1}{\lambda} \log_e(1 + \lambda a)$ for $\lambda > -1$ • $g(0) = \log_e(1) = 0$ • strictly monotone increasing since $g'(a) = \frac{1}{1 + \lambda a} > 0$ for $a \in [0, 1]$ • inverse function on $[0,1]$ is $g^{-1}(a) = \frac{\exp(\lambda a) - 1}{\lambda}$, thus $c(a) = g^{-1} \left(\frac{\log(1 + \lambda)}{\lambda} - \frac{\log(1 + \lambda a)}{\lambda} \right)$ $\exp(\log(1 + \lambda) - \log(1 + \lambda a)) = 1$
a) $g(x) = x \qquad \Rightarrow g^{-1}(x) = x \qquad \Rightarrow c(a) = 1 - a$	(Standard)	$= \frac{\exp(\log(1+\lambda) - \log(1+\lambda a)) - 1}{\lambda}$
b) $g(x) = x^w \Rightarrow g^{-1}(x) = x^{1/w} \Rightarrow c(a) = (1 - a^w)^{1/w}$ c) $g(x) = \log(x+1) \Rightarrow g^{-1}(x) = e^x - 1 \Rightarrow c(a) = \exp(\log(2))$) – log(a+1)) – 1	$= \frac{1}{\lambda} \left(\frac{1+\lambda}{1+\lambda a} - 1 \right) = \frac{1-a}{1+\lambda a} $ (Sugeno Complement)
$= \frac{1-a}{1+a}$ U technische universität G. Rudolph: Comp dortmund	(Sugeno class. $\lambda = 1$) outational Intelligence • Winter Term 2014/15	G. Rudolph: Computational Intelligence • Winter Term 201: dortmund

uzzy Complement: 2 nd Characterization	Lecture 06	Fuzzy Intersection: t-norm	Lecture 06
Theorem c: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff \exists continuous function f: $[0,1] \rightarrow \mathbb{R}$ with		Definition A function t: $[0,1] \times [0,1] \rightarrow [0,1]$ is a <i>fuzzy inter</i> (A1) t(a, 1) = a	rsection or t-norm iff
• $f(1) = 0$ • strictly monotone decreasing • $\forall a \in [0,1]: c(a) = f^{(-1)}(f(0) - f(a)).$	defines a decreasing generator f ⁽⁻¹⁾ (x) pseudo-inverse	(A2) $b \le d \Rightarrow t(a, b) \le t(a, d)$ (A3) $t(a,b) = t(b, a)$ (A4) $t(a, t(b, d)) = t(t(a, b), d)$	(monotonicity) (commutative) (associative) ■
Examples a) $f(x) = k - k \cdot x$ $(k > 0)$ $f^{(-1)}(x) = 1 - x/k$ $c(a) =$ b) $f(x) = 1 - x^w$ $f^{(-1)}(x) = (1 - x)^{1/w}$ $c(a) = f^{(-1)}(x)$	TA.	"nice to have"(A5) t(a, b) is continuous(A6) t(a, a) < a	
J technische universität G. Rudolph: Ca dortmund	omputational Intelligence • Winter Term 2014/15 13		Rudolph: Computational Intelligence • Winter Term 201
uzzy Intersection: t-norm	Lecture 06	Fuzzy Intersection: Characterization	Lecture 06
Examples: Name Function	(a) (b)	Theorem Function t: $[0,1] \times [0,1] \rightarrow [0,1]$ is a t-norm \Leftrightarrow	
(a) Standard $t(a, b) = min \{ a, b \}$ (b) Algebraic Product $t(a, b) = a \cdot b$ (c) Bounded Difference $t(a, b) = max \{ 0, a + b - 1 \}$	}	∃ decreasing generator f:[0,1] → \mathbb{R} with t(a, b) Example: f(x) = 1/x - 1 is decreasing generator since	
a if b = 1		• f(x) is continuous	

ad (A1): $t(a, 1) = a \cdot 1 = a$	\checkmark	ad (A3): $t(a, b) = a \cdot b = b \cdot a = t(b, a)$
ad (A2): $a \cdot b \le a \cdot d \Leftrightarrow b \le d$	\square	ad (A4): $\mathbf{a} \cdot (\mathbf{b} \cdot \mathbf{d}) = (\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{d}$

U technische universität dortmund

technische universität dortmund 15

 \checkmark

 \checkmark

Fuzzy Union: s-norm	Lecture 06	Fuzzy Union: s-norr	n	Lecture 06	
Definition		Examples:			
A function s: $[0,1] \times [0,1] \rightarrow [0,1]$ is a <i>fuzzy union</i> of	r s-norm or t-conorm iff	Name	Function	(-)	(1-)
(A1) s(a, 0) = a		Standard	s(a, b) = max { a, b }	(a)	(b)
(A2) $b \le d \Rightarrow s(a, b) \le s(a, d)$	(monotonicity)	Algebraic Sum	$s(a, b) = max \{ a, b \}$ $s(a, b) = a + b - a \cdot b$		
(A3) $s(a, b) = s(b, a)$	(commutative)	Bounded Sum	$s(a, b) = min \{ 1, a + b \}$		
(A4) $s(a, s(b, d)) = s(s(a, b), d)$	(associative) ■	Dounded Sum	$(a, b) = \min\{1, a + b\}$		
		Drastic Union	s(a, b) = b if $a = 0$		
"nice to have"			1 otherwise		
(A5) s(a, b) is continuous	(continuity)			(a)	(a)
(A6) s(a, a) > a	(superidempotent)			(C)	(d)
(A7) $a_1 < a_2$ and $b_1 \le b_2 \implies s(a_1, b_1) < s(a_2, b_2)$	(strict monotonicity)	Is algebraic sum a t-norm? Check the 4 axioms! ad (A1): $s(a, 0) = a + 0 - a \cdot 0 = a$ \square ad (A3)			
•••••••••••••••••••••••••••••••••••••••					ad (A3):
Note: the only idempotent s-norm is the standard fu	izzy union	ad (A2): a + b – a · b	$\leq a + d - a \cdot d \Leftrightarrow b (1 - a) \leq d (1$	$-a) \Leftrightarrow b \leq d \square$	ad (A4):
	h: Computational Intelligence • Winter Term 2014/15	technische universität	G. Rudolph: C	omputational Intelligence	Winter Term 2014
O dortmund					
Fuzzy Union: Characterization	Lecture 06	Combination of Fuz	zy Operations: Dual Triples	Lecture 06	
Theorem		Background from cla	•		
Function s: $[0,1] \times [0,1] \rightarrow [0,1]$ is a s-norm \Leftrightarrow		\cap and \cup operations ar	e dual w.r.t. complement since th	ney obey DeMorga	in's laws
\exists increasing generator g:[0,1] $\rightarrow \mathbb{R}$ with s(a, b) = g(- ⁻¹⁾ (g(a) + g(b)). ■	Definition		Definition	
Example:			and s-norm $s(\cdot, \cdot)$ is said to be he fuzzy complement $c(\cdot)$ iff	Let (c, s, t) be a of fuzzy comple	
g(x) = -log(1 - x) is increasing generator since		• c(t(a, b)) = s(c(a)	c(b))	s- and t-norm.	
• g(x) is continuous ☑		• c(s(a, b)) = t(c(a)	c(b))	If t and s are du	al to c

- $g(0) = -\log(1 0) = 0$
- g'(x) = 1/(1 − x) > 0 (monotone increasing)

inverse function is $g^{-1}(x) = 1 - \exp(-x)$

$$\Rightarrow s(a, b) = g^{-1}(-\log(1-a) - \log(1-b))$$

= 1 - exp(log(1-a) + log(1-b))

= 1 - (1 - a) (1 - b) = a + b - a b (algebraic sum)

technische universität dortmund

min { a, b }

t-norm

a∙b

• c(s(a, b)) = t(c(a), c(b))

Examples of dual tripels

s-norm

max { a, b }

a+b−a·b

min { 1, a + b }

for all $a, b \in [0,1]$.

 $\max \{ 0, a + b - 1 \}$

complement

1 – a

1 – a

1 – a

then the tripel (c,s, t) is

called a *dual tripel*.

Dual Triple: - bounded difference - bounded sum - standard complementWhy are dual triples so important? \Rightarrow left image = right image \Rightarrow allow equivalence transformations of fuzzy set expressions \Rightarrow required to transform into some equivalent normal form (standardized input \Rightarrow e.g. two stages: intersection of unions $\bigcap_{i=1}^{n} (A_i \cup B_i)$ $c(t(a, b))$ $s(c(a), c(b))$ Non-Dual Triple: - algebraic product - bounded sum - standard complement \Rightarrow e.g. two stages: intersection of unions $\bigcap_{i=1}^{n} (A_i \cup B_i)$ $Dual Triple:- algebraic product- bounded sum- standard complement\Rightarrow e.g. two stages: intersections\bigcup_{i=1}^{n} (A_i \cap B_i)Dual Triple:- algebraic product- bounded sum- standard complement\Rightarrow e.g. two stages: intersection of unions\bigcap_{i=1}^{n} (A_i \cap B_i)Dual Triple:- algebraic product- bounded sum- standard complement\Rightarrow left image \neq right imagea \cup (B \cap (C \cap D)^c) = (-not in normal form)A \cup (B \cap (C^c \cup D^c)) = (-not in normal form)A \cup (B \cap C^c) \cup (B \cap D^c) = (-not in normal form)A \cup (B \cap C^c) \cup (B \cap D^c) = (-not in normal form)$	Dual Triples vs. Non-Dual Tr	iples	Lecture 06	Dual Triples vs. Non-Dual Tr	riples	Lecture 06
$c(t(a, b))$ $s(c(a), c(b))$ Non-Dual Triple: - algebraic product - bounded sum - standard complementor union of intersections $\bigcup_{i=1}^{n} (A_i \cap B_i)$ $U(B \cap (C \cap D)^c) = A \cup (B \cap (C^c \cup D^c)) = A \cup (B \cap (C^c \cup D^$			 bounded difference bounded sum standard complement 	\Rightarrow allow equivalence transformation \Rightarrow required to transform into so	ations of fuzz	that normal form (standardized input) $\bigcap^{n} (A_i \cup B_i)$
$A \cup (B \cap (C^c \cup D^c)) = \leftarrow equivalent if DeMorgan's law valid (dual to the constraint of the const$	c(t(a, b))	s(c(a), c(b))	- algebraic product - bounded sum	Example:		$\bigcup_{i=1}^{n} (A_i \cap B_i)$
G. Rudolph: Computational Intelligence • Winter Term 2014/15			\Rightarrow left image \neq right image	$A \cup (B \cap (C^c \cup D^c)) =$ $A \cup (B \cap C^c) \cup (B \cap D^c)$	← equival	