Computational Intelligence

Winter Term 2014/15

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

- Fuzzy sets
- Axioms of fuzzy complement, t- and s-norms
- Generators
- Dual tripels

Fuzzy Sets

Lecture 06

Considered so far:

Standard fuzzy operators

- $A^{c}(x)=1-A(x)$
- $(A \cap B)(x)=\min \{A(x), B(x)\}$
- $(A \cup B)(x)=\max \{A(x), B(x)\}$
\Rightarrow Compatible with operators for crisp sets with membership functions with values in $\mathbb{B}=\{0,1\}$
\exists Non-standard operators? \Rightarrow Yes! Innumerable many!
- Defined via axioms.
- Creation via generators.

Fuzzy Complement: Axioms

Definition

A function $\mathrm{c}:[0,1] \rightarrow[0,1]$ is a fuzzy complement iff
(A1)
$c(0)=1$ and $c(1)=0$.
(A2)
$\forall a, b \in[0,1]: a \leq b \Rightarrow c(a) \geq c(b)$.
monotone decreasing
"nice to have":
(A3) $\mathrm{c}(\cdot)$ is continuous.
(A4) $\quad \forall \mathrm{a} \in[0,1]: \mathrm{c}(\mathrm{c}(\mathrm{a}))=\mathrm{a}$

Examples:

a) standard fuzzy complement $\mathrm{c}(\mathrm{a})=1-\mathrm{a}$
ad (A1): $c(0)=1-0=1$ and $c(1)=1-1=0$ ad (A2): $\mathrm{c}^{\prime}(\mathrm{a})=-1<0$ (monotone decreasing)
ad (A3): \downarrow ad (A4): $1-(1-a)=a$

Fuzzy Complement: Examples

Lecture 06

b) $c(a)=\left\{\begin{array}{ll}1 & \text { if } a \leq t \\ 0 & \text { otherwise }\end{array} \quad\right.$ for some $t \in(0,1)$

ad (A1): $c(0)=1$ since $0<t$ and $c(1)=0$ since $t<1$.
ad (A2): monotone (actually: constant) from 0 to t and t to 1 , decreasing at t
ad (A3): not valid \rightarrow discontinuity at t
ad (A4): not valid \rightarrow counter example $c(c(1 / 4))=c(1)=0 \neq 1 / 4$ for $t=1 / 2$
technische universität
G. Rudolph: Computational Intelligence • Winter Term 2014/15
dortmund

Fuzzy Complement: Examples

Lecture 06
d) $\mathrm{c}(\mathrm{a})=\frac{1-a}{1+\lambda a}$ for $\lambda>-1$

Sugeno class

ad (A1): $c(0)=1$ and $c(1)=0$
$\operatorname{ad}(\mathrm{A} 2): c(a) \geq c(b) \Leftrightarrow \frac{1-a}{1+\lambda a} \geq \frac{1-b}{1+\lambda b} \Leftrightarrow$

$$
\begin{aligned}
& (1-a)(1+\lambda b) \geq(1-b)(1+\lambda a) \Leftrightarrow \\
& b(\lambda+1) \geq a(\lambda+1) \Leftrightarrow b \geq a
\end{aligned}
$$

e) $c(a)=\left(1-a^{w}\right)^{1 / w}$ for $w>0$

Yager class
ad (A1): $c(0)=1$ and $c(1)=0$
ad (A2): $\quad\left(1-a^{w}\right)^{1 / w} \geq\left(1-b^{w}\right)^{1 / w} \Leftrightarrow 1-a^{w} \geq 1-b^{w} \Leftrightarrow$ $\mathrm{a}^{\mathrm{w}} \leq \mathrm{b}^{\mathrm{w}} \Leftrightarrow \mathrm{a} \leq \mathrm{b}$
technische universität G. Rudolph: Computational Intelligence • Winter Term 2014/15
technische

Fuzzy Complement: Examples

Lecture 06

ad (A3): is continuous as a composition of continuous functions
ad (A4): $c(c(a))=c\left(\left(1-a^{w}\right)^{\frac{1}{w}}\right)=\left(1-\left[\left(1-a^{w}\right)^{\frac{1}{w}}\right]^{w}\right)^{\frac{1}{w}}$

$$
\begin{aligned}
\operatorname{ad}(\mathrm{A} 4): c(c(a)) & =c\left(\left(1-a^{w}\right)^{\bar{w}}\right)=\left(1-\left[\left(1-a^{w}\right)^{\bar{w}}\right]\right) \\
& =\left(1-\left(1-a^{w}\right)\right)^{\frac{1}{w}}=\left(a^{w}\right)^{\frac{1}{w}}=a
\end{aligned}
$$

Fuzzy Complement: Examples

Lecture 06

c) $\mathrm{c}(\mathrm{a})=\frac{1+\cos (\pi a)}{2}$

ad (A1): $c(0)=1$ and $c(1)=0$
ad (A2): $\quad c^{\prime}(a)=-1 / 2 \pi \sin (\pi a)<0 \quad$ since $\sin (\pi a)>0$ for $a \in(0,1)$
ad (A3): is continuous as a composition of continuous functions
ad (A4): not valid \rightarrow counter example

$$
c\left(c\left(\frac{1}{3}\right)\right)=c\left(\frac{3}{4}\right)=\frac{1}{2}\left(1-\frac{1}{\sqrt{2}}\right) \neq \frac{1}{3}
$$

Lecture 06

Theorem

If function $c:[0,1] \rightarrow[0,1]$ satisfies axioms (A1) and (A2) of fuzzy complement
then it has at most one fixed point a^{*} with $c\left(a^{\star}\right)=a^{*}$.

Proof:

one fixed point \rightarrow see example $(\mathrm{a}) \rightarrow$ intersection with bisectrix

no fixed point \rightarrow see example $(b) \rightarrow$ no intersection with bisectrix

assume $\exists \mathrm{n}>1$ fixed points, for example a^{*} and b^{*} with $\mathrm{a}^{*}<\mathrm{b}^{\star}$
$\Rightarrow \mathrm{c}\left(\mathrm{a}^{*}\right)=\mathrm{a}^{\star}$ and $\mathrm{c}\left(\mathrm{b}^{\star}\right)=\mathrm{b}^{*} \quad$ (fixed points)
$\Rightarrow c\left(a^{*}\right)<c\left(b^{*}\right)$ with $a^{*}<b^{\star}$ impossible if $c(\cdot)$ is monotone decreasing
\Rightarrow contradiction to axiom (A2)

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2014/15

Fuzzy Complement: $1^{\text {st }}$ Characterization

Lecture 06

Theorem

c: $[0,1] \rightarrow[0,1]$ is involutive fuzzy complement iff
\exists continuous function $\mathrm{g}:[0,1] \rightarrow \mathbb{R}$ with

- $g(0)=0$
- strictly monotone increasing
- $\forall a \in[0,1]: c(a)=g^{(-1)}(g(1)-g(a))$.
- $\int g^{(-1)}(x)$ pseudo-inverse

Examples

Fuzzy Complement: $\mathbf{2}^{\text {nd }}$ Characterization

Lecture 06

Theorem

c: $[0,1] \rightarrow[0,1]$ is involutive fuzzy complement iff
\exists continuous function f: $[0,1] \rightarrow \mathbb{R}$ with

- $f(1)=0$
- strictly monotone decreasing
- $\forall \mathrm{a} \in[0,1]: \mathrm{c}(\mathrm{a})=\mathrm{f}^{(-1)}(\mathrm{f}(0)-\mathrm{f}(\mathrm{a}))$.
- $\int f^{(-1)}(x)$ pseudo-inverse
defines a
decreasing generator

Fuzzy Intersection: t-norm

Lecture 06

Definition

A function $\mathrm{t}[0,1] \times[0,1] \rightarrow[0,1]$ is a fuzzy intersection or \boldsymbol{t}-norm iff
(A1) $t(a, 1)=a$
(A2) $b \leq d \Rightarrow t(a, b) \leq t(a, d)$
(A3) $t(a, b)=t(b, a)$
(A4) $t(a, t(b, d))=t(t(a, b), d)$
(monotonicity)
(commutative)
(associative)

"nice to have"

(A5) $t(a, b)$ is continuous
(continuity)
(A6) $t(a, a)<a$ (subidempotent)
(A7) $\mathrm{a}_{1}<\mathrm{a}_{2}$ and $\mathrm{b}_{1} \leq \mathrm{b}_{2} \Rightarrow \mathrm{t}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)<\mathrm{t}\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)$
(strict monotonicity)

Note: the only idempotent t-norm is the standard fuzzy intersection

\square| technische universität |
| :--- |
| dortmund |

Fuzzy Intersection: t-norm	Lecture 06
Examples:	

Name
Function
(a) Standard
(b) Algebraic Product
$t(a, b)=\min \{a, b\}$
(c) Bounded Difference
$t(a, b)=a \cdot b$
$t(a, b)=\max \{0, a+b-1\}$
(d) Drastic Product
$t(a, b)=\left\{\begin{array}{l}a \text { if } b=1 \\ b \text { if } a=1 \\ 0 \text { otherwise }\end{array}\right.$
(c)
(a)

(b)

(d)

Is algebraic product a t-norm? Check the 4 axioms!
$\operatorname{ad}(\mathrm{A} 1): \mathrm{t}(\mathrm{a}, 1)=\mathrm{a} \cdot 1=\mathrm{a} \quad \nabla$
$a d(A 3): t(a, b)=a \cdot b=b \cdot a=t(b, a) \quad \nabla$
$a d$ (A2): $a \cdot b \leq a \cdot d \Leftrightarrow b \leq d \quad \nabla \quad a d(A 4): a \cdot(b \cdot d)=(a \cdot b) \cdot d$

Fuzzy Intersection: Characterization
 Lecture 06

Theorem

Function t: $[0,1] \times[0,1] \rightarrow[0,1]$ is a t-norm \Leftrightarrow
\exists decreasing generator $f:[0,1] \rightarrow \mathbb{R}$ with $t(a, b)=f(-1)(f(a)+f(b))$.

Example:

$f(x)=1 / x-1$ is decreasing generator since

- $f(x)$ is continuous ∇
- $f(1)=1 / 1-1=0$『
- $f^{\prime}(x)=-1 / x^{2}<0$ (monotone decreasing) ∇
inverse function is $f^{-1}(x)=\frac{1}{x+1}$
$\Rightarrow \mathrm{t}(\mathrm{a}, \mathrm{b})=f^{-1}\left(\frac{1}{a}+\frac{1}{b}-2\right)=\frac{1}{\frac{1}{a}+\frac{1}{b}-1}=\frac{a b}{a+b-a b}$

Fuzzy Union: s-norm

Lecture 06

Definition

A function s:[0,1] $\times[0,1] \rightarrow[0,1]$ is a fuzzy union or s-norm or \boldsymbol{t}-conorm iff
(A1) $s(a, 0)=a$
(A2) $\mathrm{b} \leq \mathrm{d} \Rightarrow \mathrm{s}(\mathrm{a}, \mathrm{b}) \leq \mathrm{s}(\mathrm{a}, \mathrm{d})$
(monotonicity)
(A3) $s(a, b)=s(b, a)$
(commutative)
(A4) $s(a, s(b, d))=s(s(a, b), d)$
d)
(associative)

"nice to have"

$$
\begin{array}{ll}
\text { (A5) } s(a, b) \text { is continuous } & \text { (continuity) } \\
\text { (A6) } s(a, a)>a & \text { (superidempotent) } \\
\text { (A7) } a_{1}<a_{2} \text { and } b_{1} \leq b_{2} \Rightarrow s\left(a_{1}, b_{1}\right)<s\left(a_{2}, b_{2}\right) & \text { (strict monotonicity) }
\end{array}
$$

Note: the only idempotent s-norm is the standard fuzzy union

\square| technische universität |
| :--- |
| dortmund |\quad G. Rudolph: Computational Intelligence • Winter Term 2014/15 17

Fuzzy Union: Characterization

Lecture 06

Theorem

Function s: $[0,1] \times[0,1] \rightarrow[0,1]$ is a s-norm \Leftrightarrow
\exists increasing generator $g:[0,1] \rightarrow \mathbb{R}$ with $s(a, b)=g^{(-1)}(g(a)+g(b))$.

Example:

$g(x)=-\log (1-x)$ is increasing generator since

- $g(x)$ is continuous ■
- $g(0)=-\log (1-0)=0$ ஏ
- $g^{\prime}(x)=1 /(1-x)>0$ (monotone increasing) ∇
inverse function is $g^{-1}(x)=1-\exp (-x)$

$$
\begin{aligned}
\Rightarrow \mathrm{s}(\mathrm{a}, \mathrm{~b}) & =g^{-1}(-\log (1-a)-\log (1-b)) \\
& =1-\exp (\log (1-a)+\log (1-b)) \\
& =1-(1-a)(1-b)=a+b-a b \quad \text { (algebraic sum) }
\end{aligned}
$$

Lecture 06

Examples:

Name	Function
Standard	$s(a, b)=\max \{a, b\}$
Algebraic Sum	$s(a, b)=a+b-a \cdot b$
Bounded Sum	$s(a, b)=\min \{1, a+b\}$
Drastic Union	$s(a, b)=\left\{\begin{array}{lll}a \text { if } b=0 \\ b \text { if } a=0 \\ 1 \text { otherwise }\end{array}\right.$

Is algebraic sum a t-norm? Check the 4 axioms!
$\operatorname{ad}(\mathrm{A} 1): \mathrm{s}(\mathrm{a}, 0)=\mathrm{a}+0-\mathrm{a} \cdot 0=\mathrm{a} \quad \nabla$
ad (A3): \downarrow
ad (A2): $a+b-a \cdot b \leq a+d-a \cdot d \Leftrightarrow b(1-a) \leq d(1-a) \Leftrightarrow b \leq d \nabla \quad a d(A 4): \boxtimes$
technische universität
G. Rudolph: Computational Intelligence • Winter Term 2014/15
dortmund

Combination of Fuzzy Operations: Dual Triples Lecture 06

Background from classical set theory:

\cap and \cup operations are dual w.r.t. complement since they obey DeMorgan's laws

Definition

A pair of t -norm $\mathrm{t}(\cdot, \cdot)$ and s-norm $\mathrm{s}(\cdot, \cdot)$ is said to be dual with regard to the fuzzy complement $\mathrm{c}(\cdot)$ iff

- $c(t(a, b))=s(c(a), c(b))$
- $c(s(a, b))=t(c(a), c(b))$
for all $a, b \in[0,1]$.

Examples of dual tripels

t-norm	s-norm	complement
$\min \{a, b\}$	$\max \{a, b\}$	$1-a$
$a \cdot b$	$a+b-a \cdot b$	$1-a$
$\max \{0, a+b-1\}$	$\min \{1, a+b\}$	$1-a$

Dual Triples vs. Non-Dual Triples

Lecture 06

Dual Triple:

- bounded difference
- bounded sum
- standard complement
\Rightarrow left image $=$ right image
$c(t(a, b))$
 $s(c(a), c(b))$

Non-Dual Triple:
- algebraic product
- bounded sum
- standard complement
\Rightarrow left image \neq right image

Dual Triples vs. Non-Dual Triples

Lecture 06

Why are dual triples so important?

\Rightarrow allow equivalence transformations of fuzzy set expressions
\Rightarrow required to transform into some equivalent normal form (standardized input)
\Rightarrow e.g. two stages: intersection of unions

$$
\begin{aligned}
& \bigcap_{i=1}^{n}\left(A_{i} \cup B_{i}\right) \\
& \bigcup_{i=1}^{n}\left(A_{i} \cap B_{i}\right)
\end{aligned}
$$

Example:

$$
\begin{array}{ll}
A \cup\left(B \cap(C \cap D)^{c}\right)= & \leftarrow \text { not in normal form } \\
A \cup\left(B \cap\left(C^{c} \cup D^{c}\right)\right)= & \leftarrow \text { equivalent if DeMorgan's law valid (dual triples!) } \\
A \cup\left(B \cap C^{c}\right) \cup\left(B \cap D^{c}\right) & \leftarrow \text { equivalent (distributive lattice!) }
\end{array}
$$

technische universität
dortmund

