


Recurrent MLPs Le	cture 03	Radial Basis Function Nets (RBF Nets) Lecture 03
Training?		Definition: Definition:
\Rightarrow unfolding in time ("loop unrolling")		A function $\phi : \mathbb{R}^n \to \mathbb{R}$ is termed radial basis functionRBF local iffiff $\exists \phi : \mathbb{R} \to \mathbb{R} : \forall x \in \mathbb{R}^n : \phi(x; c) = \phi(x - c)$. \Box $\phi(r) \to 0$ as $r \to \infty$ \Box
 identical MLPs serially connected (finitely often) 		
 results in a large MLP with many hidden (inner) layers 		typically, x denotes Euclidean norm of vector x
 backpropagation may take a long time 		
• but reasonable if most recent past more important than	ayers far away	examples:
		$\varphi(r) = \exp\left(-\frac{r^2}{\sigma^2}\right)$ Gaussian unbounded
Why using backpropagation? ⇒ use Evolutionary Algorithms directly on recurrent MLP!	lator!	$\varphi(r) = \frac{3}{4}(1-r^2) \cdot 1_{\{r \le 1\}}$ Epanechnikov bounded local
		$\varphi(r) = \frac{\pi}{4} \cos\left(\frac{\pi}{2}r\right) \cdot 1_{\{r \le 1\}} \qquad \text{Cosine} \qquad \text{bounded}$
G. Rudolph: Computati	onal Intelligence • Winter Term 2014/15	G. Rudolph: Computational Intelligence • Winter Term 2014/1
	9	dortmund 1
Radial Basis Function Nets (RBF Nets)	cture 03	Radial Basis Function Nets (RBF Nets) Lecture 03
Definition:		given : N training patterns (x _i , y _i) and q RBF neurons
A function f: $\mathbb{R}^n \to \mathbb{R}$ is termed radial basis function net (RBF net)		find : weights $w_1,, w_a$ with minimal error
iff $f(x) = w_1 \phi(x - c_1) + w_2 \phi(x - c_2) + + w_p \phi(x - c_2)$	c _q ∥) □	
RBF neurons		solution:
		we know that $f(x_i) = y_i$ for $i = 1,, N$ and therefore we insist that
x_{1} x_{2} $(\phi(x-c_{1}))$ w_{1} w_{2} Σ	\hat{y}	$\sum_{k=1}^{q} w_k \cdot \varphi(\ x_i - c_k\) = y_i$
	• layered net	↓ P _{ik} ↓ unknown known value known value
Nn w _p	1st layer fully connected	
φ(x - c _q)	no weights in 1st layeractivation functions differ	$\Rightarrow \sum_{k=1}^{q} w_k \cdot p_{ik} = y_i \Rightarrow \text{N linear equations with q unknowns}$

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2014/15 12

G. Rudolph: Computational Intelligence • Winter Term 2014/15 11

technische universität dortmund

Radial Basis Function Nets (RBF Nets) Lecture 03	Radial Basis Function Nets (RBF Nets) Lecture 03
in matrix form: P w = y with P	= (p_{ik}) and P: N x q, y: N x 1, w: q x 1,	complexity (naive) w = (P'P) ⁻¹ P' y
case N = q: $w = P^{-1} y$ if P has	s full rank	P'P: N ² q inversion: q ³ P'y: qN multiplication: q ²
case N < q: many solutions but of	no practical relevance	O(N ² q)
case N > q: w = P ⁺ y where	P ⁺ is Moore-Penrose pseudo inverse	
P w = y $ \cdot P'$ from left hand side $(P'$ is transpose of P)P'P w = P' y $ \cdot (P'P)^{-1}$ from left hand side $(\underline{P'P})^{-1} P'P$ w = $(\underline{P'P})^{-1} P'$ y $ simplify$ unit matrixP+		remark: if N large then inaccuracies for P'P likely ⇒ first analytic solution, then gradient descent starting from this solution requires differentiable basis functions!
U technische universität dortmund Radial Basis Function Nets (RBF Nets		15 G. Rudolph: Computational Intelligence • Winter Term 2014/ 13 G. Rudolph: Computational Intelligence • Winter Term 2014/ Radial Basis Function Nets (RBF Nets) Lecture 03
so far: tacitly assumed that RBF neurons a \Rightarrow center c _k and radii σ considered given a	-	 advantages: additional training patterns → only local adjustment of weights optimal weights determinable in polynomial time
how to choose c_k and σ ?	 x if training patterns inhomogenously distributed then first cluster analysis choose center of basis function from each cluster, use cluster size for setting σ 	 regions not supported by RBF net can be identified by zero outputs (if output close to zero, verify that output of each basis function is close to zero) disadvantages: number of neurons increases exponentially with input dimension unable to extrapolate (since there are no centers and RBFs are local)
	 inhomogenously distributed then first cluster analysis choose center of basis function from each cluster, use cluster size 	 regions not supported by RBF net can be identified by zero outputs (if output close to zero, verify that output of each basis function is close to zero) disadvantages: number of neurons increases exponentially with input dimension