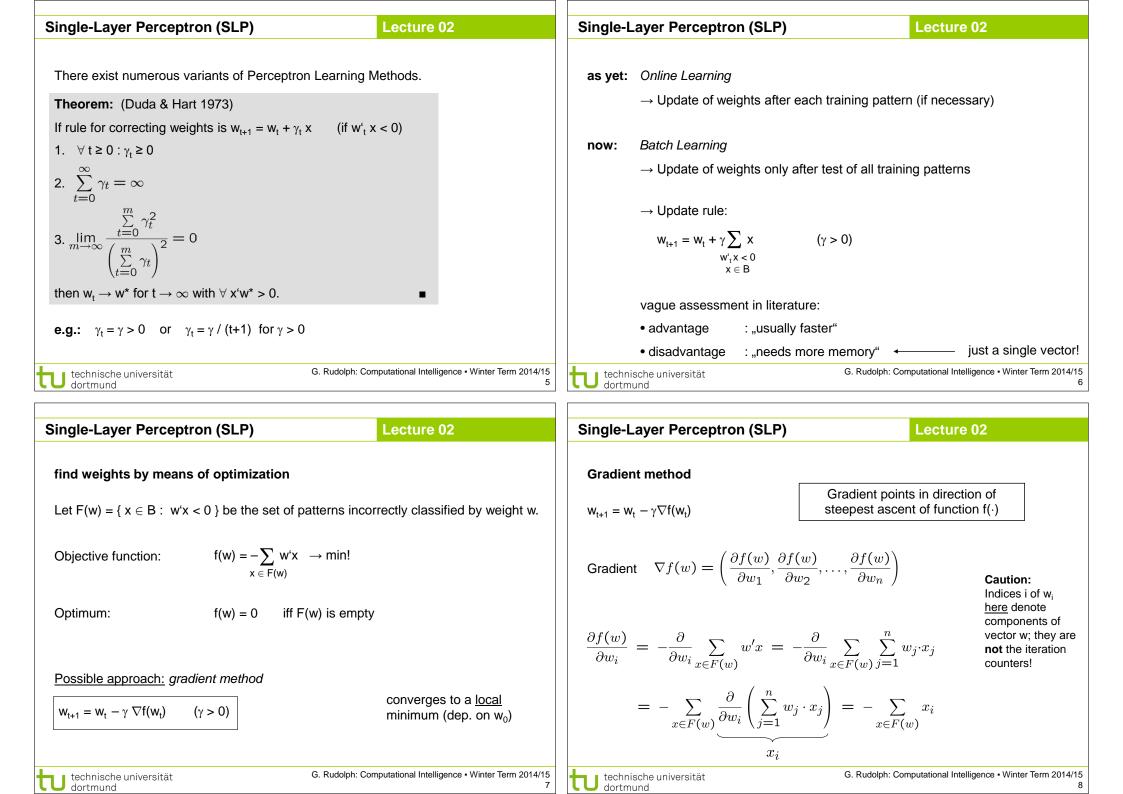
technische universität		Plan for Today	Lecture 02
Computational Intelligence Winter Term 2014/15 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund		 Single-Layer Perceptron Accelerated Learning Online- vs. Batch-Learning Multi-Layer-Perceptron Model Backpropagation 	G. Rudolph: Computational Intelligence • Winter Term 2014/15
		technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2014/15 2
Single-Layer Perceptron (SLP)	Lecture 02	Single-Layer Perceptron (SLP)	Lecture 02
Acceleration of Perceptron Learning		Generalization:	
Assumption: $x \in \{0, 1\}^n \Rightarrow x \ge 1$ for all $x \ne (0,, 0)$		Assumption: $x \in \mathbb{R}^n \implies x > 0$ for all $x \neq (0,, 0)$	
If classification incorrect, then $w'x < 0$.		as before: $w_{t+1} = w_t + (\delta + \varepsilon) x$ for $\varepsilon > 0$ (small) and $\delta = -w_t^{t} x > 0$	
Consequently, size of error is just $\delta = -w'x > 0$.		$\Rightarrow W_{t+1}^{i} \mathbf{x} = \delta \left(\mathbf{x} ^2 - 1 \right) + \varepsilon \mathbf{x} ^2$	
$\Rightarrow w_{t+1} = w_t + (\delta + \varepsilon) x \text{ for } \varepsilon > 0 \text{ (small) corrects error in a single step, since w_t^{t} = x_{t-1} - (w_t + (\delta + \varepsilon) x)^{t} x_{t-1}$		< 0 possible! > 0	
$w_{t+1}^{\iota} \mathbf{X} = (w_t + (\delta + \varepsilon) \mathbf{X})^{\iota} \mathbf{X}$ $= \underbrace{w_t^{\iota} \mathbf{X}}_{t} + (\delta + \varepsilon) \mathbf{X}^{\iota} \mathbf{X}$		Idea: Scaling of data does not alter classification task!	
$= -\delta + \delta \mathbf{x} ^2 + \varepsilon \mathbf{x} ^2$		Let $\ell = \min\{ x : x \in B\} > 0$	
$= \delta (\mathbf{x} ^2 - 1) + \varepsilon \mathbf{x} ^2 > 0 \qquad \square$			
≥0 >0		Set $\hat{X} = \frac{X}{\ell} \Rightarrow$ set of scaled examples \hat{B}	
			$e^{2} - 1 \ge 0 \Rightarrow w'_{t+1} X > 0 \square$
technische universität G. Rudolph: Con dortmund	putational Intelligence • Winter Term 2014/15 3	to technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2014/15 4



Single-Layer Perceptron (SLP)	Lecture 02	Single-Layer Perceptron (SLP)	Lecture 02
Gradient method thus: gradient $\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \frac{\partial f(w)}{\partial w_2}, \dots, \frac{\partial f(w)}{\partial w_n}\right)'$ $= \left(\sum_{x \in F(w)} x_1, \sum_{x \in F(w)} x_2, \dots, \sum_{x \in F(w)} x_n\right)'$ $= -\sum_{x \in F(w)} x_1$		How difficult is it (a) to find a separating hyperplane, provided it exists? (b) to decide, that there is no separating hyperplane? Let $B = P \cup \{ -x : x \in N \}$ (only positive examples), $w_i \in \mathbb{R}$, $\theta \in \mathbb{R}$, $ B = m$ For every example $x_i \in B$ should hold: $x_{i1} w_1 + x_{i2} w_2 + + x_{in} w_n \ge \theta \longrightarrow$ trivial solution $w_i = \theta = 0$ to be excluded! Therefore additionally: $\eta \in \mathbb{R}$ $x_{i1} w_1 + x_{i2} w_2 + + x_{in} w_n - \theta - \eta \ge 0$	
$x \in F(w_t)$	radient method ⇔ batch learning olph: Computational Intelligence • Winter Term 2014/15 9	Idea: η maximize \rightarrow if $\eta^* > 0$, then solution technische universität dortmund	found G. Rudolph: Computational Intelligence • Winter Term 2014/15 10
Single-Layer Perceptron (SLP)	Lecture 02	Multi-Layer Perceptron (MLP)	Lecture 02

Π

dortmund

Matrix notation:

$$A = \begin{pmatrix} x'_{1} & -1 & -1 \\ x'_{2} & -1 & -1 \\ \vdots & \vdots & \vdots \\ x'_{m} & -1 & -1 \end{pmatrix} \quad z = \begin{pmatrix} w \\ \theta \\ \eta \end{pmatrix}$$

Linear Programming Problem:

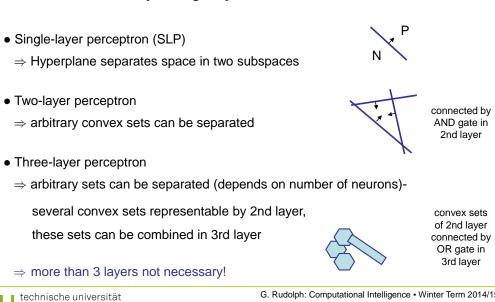
 $f(z_1, z_2, ..., z_n, z_{n+1}, z_{n+2}) = z_{n+2} \rightarrow max!$ s.t. Az≥0

calculated by e.g. Kamarkaralgorithm in **polynomial time**

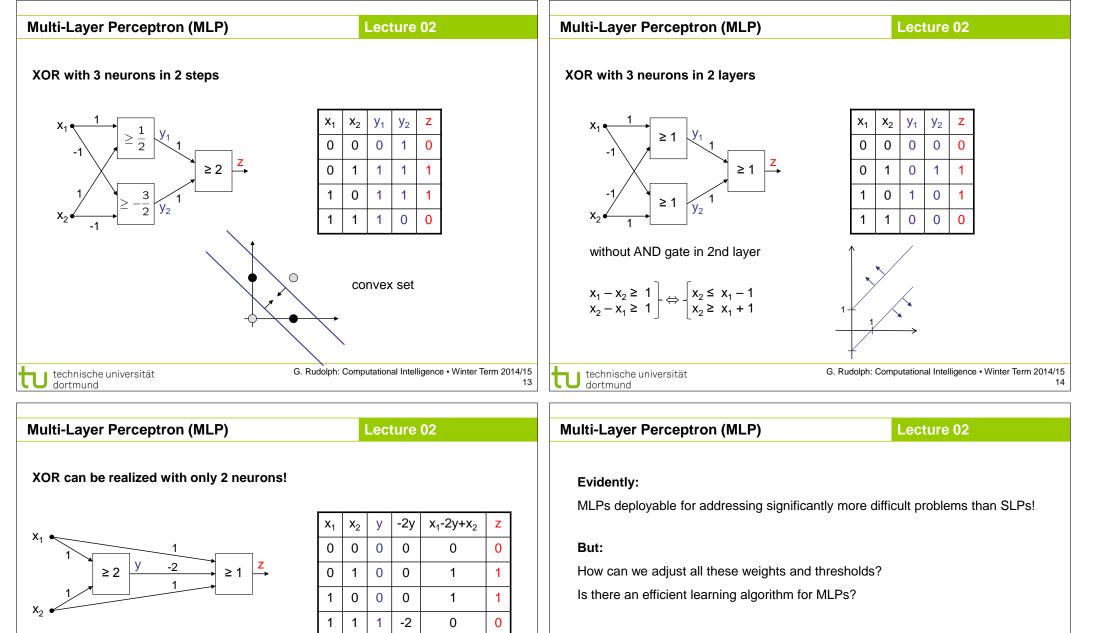
If $z_{n+2} = \eta > 0$, then weights and threshold are given by z.

Otherwise separating hyperplane does not exist!

technische universität dortmund



What can be achieved by adding a layer?



History:

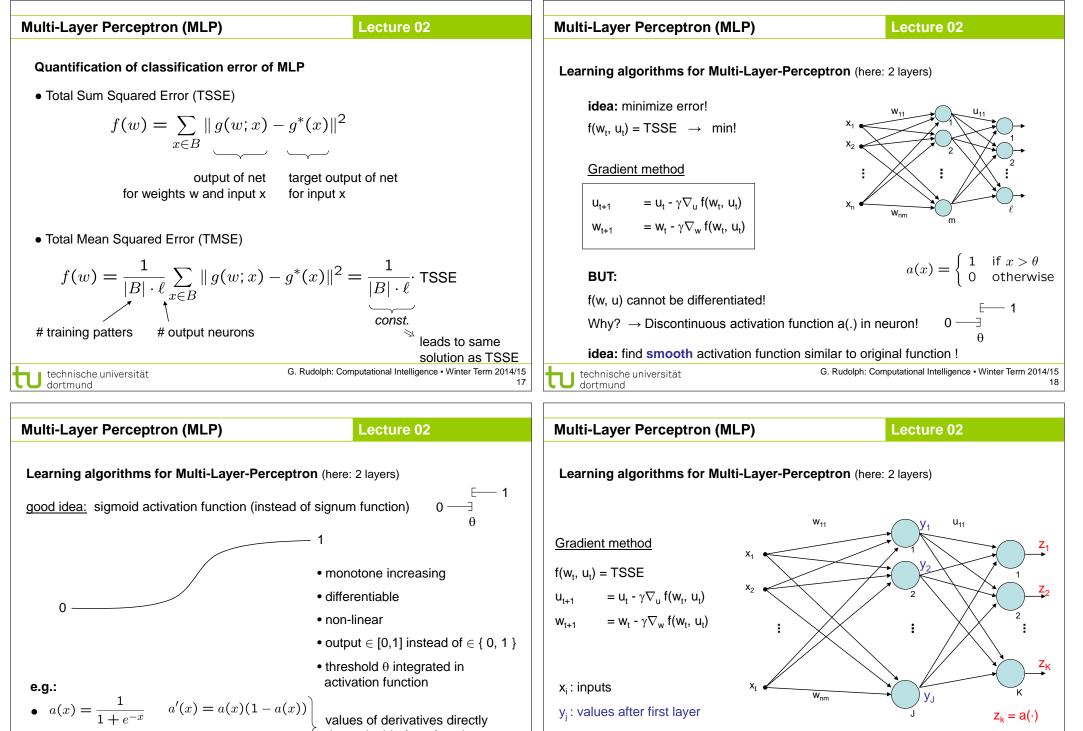
Unavailability of efficient learning algorithm for MLPs was a brake shoe ...

... until Rumelhart, Hinton and Williams (1986): Backpropagation

Actually proposed by Werbos (1974)

... but unknown to ANN researchers (was PhD thesis)

BUT: this is not a layered network (no MLP) !



zk: values after second layer

technische universität

dortmund

19

values of derivatives directly determinable from function • $a(x) = \tanh(x)$ $a'(x) = (1 - a^2(x))$ values

technische universität

dortmund

G. Rudolph: Computational Intelligence • Winter Term 2014/15

G. Rudolph: Computational Intelligence • Winter Term 2014/15 20

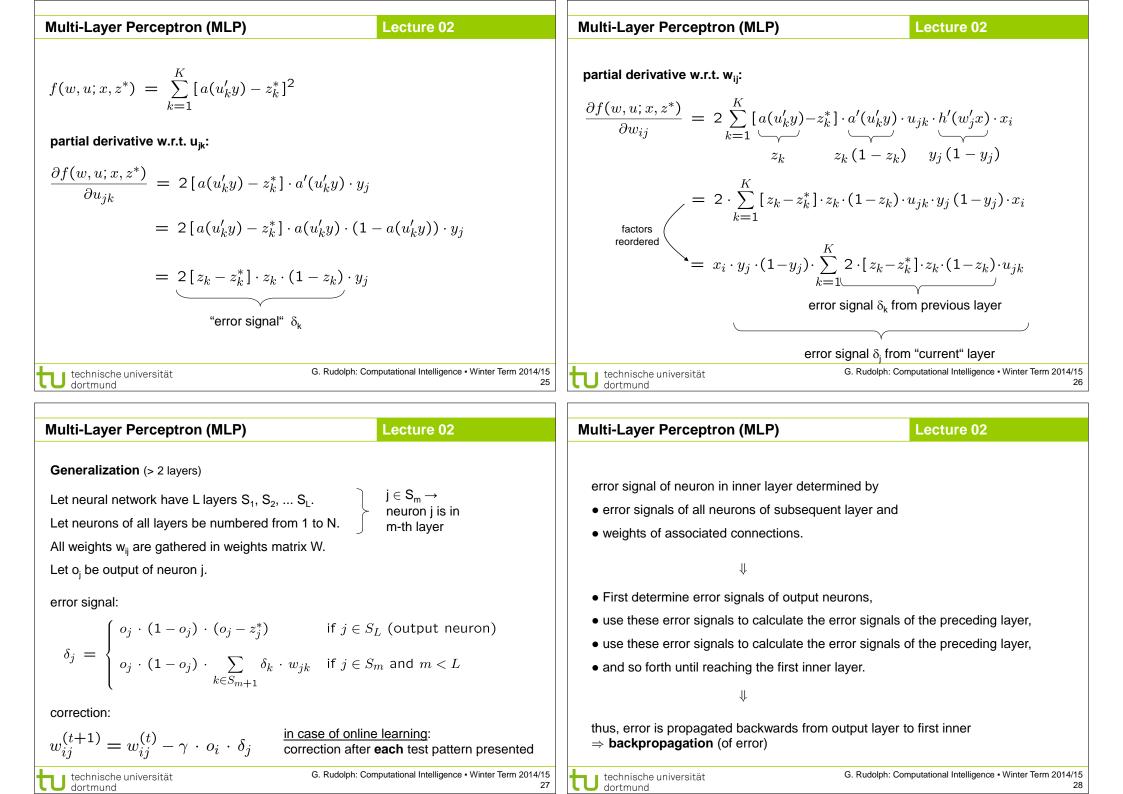
 $y_i = h(\cdot)$

 $z_k = a(\cdot)$

Multi-Layer Perceptron (MLP) Locture 02
Multi-Layer Perceptron (MLP) Locture 02

$$y_{j} = h\left(\sum_{i=1}^{J} w_{ij} \cdot w_{i}\right) = h(w_{j}^{J} x)$$
 output of neuron j
after 1st layer
 $z_{k} = a\left(\sum_{j=1}^{J} u_{jk} \cdot h\left(\sum_{i=1}^{J} w_{ij} \cdot x_{i}\right)\right) = a(w_{k}^{J} y)$ output of neuron k
after 2nd layer
 $= a\left(\sum_{j=1}^{J} u_{jk} \cdot h\left(\sum_{i=1}^{J} w_{ij} \cdot x_{i}\right)\right)$
error of input x:
 $f(w, w; x) = \sum_{k=1}^{K} (z_{k}(x) - z_{k}^{*}(x))^{2} = \sum_{k=1}^{K} (z_{k} - z_{k}^{*})^{2}$
output of neuron k
 $= a\left(\sum_{j=1}^{J} u_{jk} \cdot h\left(\sum_{i=1}^{J} w_{ij} \cdot x_{i}\right)\right)$
error of input x:
 $f(w, w; x) = \sum_{k=1}^{K} (z_{k}(x) - z_{k}^{*}(x))^{2} = \sum_{k=1}^{K} (z_{k} - z_{k}^{*})^{2}$
 $output of neuron k$
 $= a\left(\sum_{j=1}^{J} u_{jk} \cdot h\left(\sum_{i=1}^{J} w_{ij} \cdot x_{i}\right)\right)$
error of input x:
 $f(w, w; x) = \sum_{k=1}^{K} (z_{k}(x) - z_{k}^{*}(x))^{2} = \sum_{k=1}^{K} (z_{k} - z_{k}^{*})^{2}$
 $output of neuron k$
 $= a\left(\sum_{k=1}^{J} \sum_{i=1}^{J} \frac{du_{ik}(w, w; x, z^{*})}{0} - \frac{du_{ik}(w, w; x, z^{*})}{0} = \frac{du_{ik}(w, w; x, z^{*})}{0}$
 $= a\left(\sum_{k=1}^{J} \sum_{i=1}^{J} \frac{du_{ik}(w, w; x, z^{*})}{0} - \frac{du_{ik}(w, w; x, z^{*})}{0} + \frac{du_{ik}(w, w; x, z^{*})}{0} +$

1 [



Multi-Layer Perceptron (MLP)

Lecture 02

- \Rightarrow other optimization algorithms deployable!
- in addition to **backpropagation** (gradient descent) also:
- Backpropagation with Momentum take into account also previous change of weights:

$$\Delta w_{ij}^{(t)} = -\gamma_1 \cdot o_i \cdot \delta_j - \gamma_2 \cdot \Delta w_{ij}^{(t-1)}$$

• QuickProp

assumption: error function can be approximated locally by quadratic function, update rule uses last two weights at step t - 1 and t - 2.

• Resilient Propagation (RPROP)

exploits sign of partial derivatives: 2 times negative or positive \Rightarrow increase step! change of sign \Rightarrow reset last step and decrease step! typical values: factor for decreasing 0,5 / factor of increasing 1,2

• evolutionary algorithms individual = weights matrix

later more about this!

U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2014/15 29