technische universitat
dortmund

Computational Intelligence
Winter Term 2010/11

Prof. Dr. Gunter Rudolph
Lehrstuhl fur Algorithm Engineering (LS 11)
Fakultat fur Informatik

TU Dortmund

EA Parameters

Important Parameters of EAs (1)

e dimension n of search space
e no parameter of EA, but given by the problem
o measures the size of the search space: {0,1}", R", S,
o plays the same role as input length in classical runtime analysis
o other parameters are often chosen dependent on n
(e. g. mutation probability p,, = 1/n)
e population size p1
o obviously = n®1)
o often 1 = O(n) or ju = O(y/7)
e pu=0(1) or even y =1 are not unusual
e number of offspring A
obviously A = n®®)
often A =1
A= or A u not unusual

.
.
.
e selection method influences reasonable choice of A

EA Parameters
oe

Important Parameters of EAs ~ (2)

e crossover probability p.
o in general p. € [0;1] arbitrary
o often p. € [1/2;4/5] constant
o probability of applying mutation
o don’t confuse with mutation probability!
« we will always use 1
e Remark
Pm = 1/n = Prob (no mutation) = (1 — 1/n)" ~ 1/e

EA Parameters

sa0

Methods for parameter control

e static parameter control
parameter values constant during the whole run
o often used
+ simple
— maybe it's better to vary the parameter value during the run?!
e dynamic parameter control
parameter values change during the run according to some
time-dependent scheme
+ more flexible than static approach
— cannot deal with non-time-dependent changes
o unusual for EAs
e adaptive parameter control
parameter values can change dependently on
every individual and any random experiment
very flexible
— hard to analyze
— computationally expensive
often used for EAs

EA Parameters

Self-adaptation
Idea good parameter values evolve together with good
individuals

implementation code parameter values together with individual

formally S x @ instead of S
unchanged f: S — R

e.g. for mutation probability
o every individual has its own mutation probability
e first vary the mutation probability
o then mutate with varied mutation probability
o afterwards normal selection

e important don't swap steps

Hierarchy of parameter control methods

¥ . .
> 000 adaptive parameter control

2
S

dynamic parameter control

static
parameter control

Evolutionary Algorithms: Historical Notes

Idea emerged independently several times: about late 1950s / early 1960s.
Three branches / “schools* still active today.

e Evolutionary Programming (EP):
Pioneers: Lawrence Fogel, Alvin Owen, Michael Walsh (New York, USA).

Original goal: Generate intelligent behavior through simulated evolution.
Approach: Evolution of finite state machines predicting symbols.
Later (~1990s) specialized to optimization in R" by David B. Fogel.

e Genetic Algorithms (GA):
Pioneer: John Holland (Ann Arbor, MI, USA).

Original goal: Analysis of adaptive behavior.
Approach: Viewing evolution as adaptation. Simulated evolution of bit strings.
Applied to optimization tasks by PhD students (Kenneth de Jong, 1975; et al.).

e Evolution Strategies (ES):
Pioneers: Ingo Rechenberg, Hans-Paul Schwefel, Peter Bienert (Berlin, Germany).

Original goal: Optimization of complex systems.

Approach: Viewing variation/selection as improvement strategy. First in Z", then R".

technische universitat
dortmund

G. Rudolph: Computational Intelligence = Winter Term 2009/10

1

Evolutionary Algorithms: Historical Notes

“Offspring” from GA branch:

e Genetic Programming (GP):
Pioneers: Nichael Lynn Cramer 1985, then: John Koza (Stanford, USA).

Original goal: Evolve programs (parse trees) that must accomplish certain task.
Approach: GA mechanism transfered to parse trees.
Later: Programs as successive statements — Linear GP (e.g. Wolfgang Banzhaf)

Already beginning early 1990s:
Borders between EP, GA, ES, GP begin to blurr ...

= common term Evolutionary Algorithm embracing all kind of approaches
= broadly accepted name for the field: Evolutionary Computation

scientific journals: Evolutionary Computation (MIT Press) since 1993,
IEEE Transactions on Evolutionary Computation since 1997,
several more specialized journals started since then.

technische universitat
dortmund

G. Rudolph: Computational Intelligence = Winter Term 2009/10

2

Design of EAs

Idea Methodology to apply standard EAs

Goal standard EAs do not have to be changed

Requirement problem is given as g: A — B
g has to be maximized (or minimized)
A arbitrary set, B partially ordered

EA operates on search space S
‘maximizes’ fitness f: S — R

Definition of mappings
g
h ha

S R

Fitness f := hy 0 g o hy

hy is genotype-phenotype-mapping.

Design of Evolutionary Algorithms

Genotype-Phenotype-Mapping B" — [L, Rlc R

e Standard encoding for b € B"

n—1
— T R—L Ny Lot
X .L/—|_2n_1 ,LJOUn_ZL
1=

— Problem: hamming cliffs

L=0,R=7
=3

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

0 1 2 3 4 5 6 7
1Bit 2Bit 1Bit 3Bit 1Bit 2Bit 1Bit
T

Hamming cliff

G. Rudolph: Computational Intelligence = Winter Term 2009/10

technische universitat 3

dortmund

Design of Evolutionary Algorithms
Genotype-Phenotype-Mapping B" — [L, Rlc R

e Gray encoding for b € B"

a, ifi=1 ® = XOR

Let a € B" standard encoded. Then b, =
a.®a, ifi>1

000 | 001 | 011 | 010 | 110 | 111 | 101 | 100 |«— genotype

0 1 2 3 4 5 6 7 | «— phenotype

OK, no hamming cliffs any longer ...

= small changes in phenotype ,lead to“ small changes in genotype

since we consider evolution in terms of Darwin (not Lamarck):
= small changes in genotype lead to small changes in phenotype!

but: 1-Bit-change: 000 —» 100 = ®

technische universitat
dortmund

G. Rudolph: Computational Intelligence = Winter Term 2009/10
4

Design of Evolutionary Algorithms

Genotype-Phenotype-Mapping B" — Pn (example only)

e e.g. standard encoding for b € Bn

individual:

010 | 101 | 111 | 000 | 110 | 001 | 101 | 100 |<«— genotype

0 1 2 3 4 5 6 7 |<+— index

consider index and associated genotype entry as unit / record / struct;

sort units with respect to genotype value, old indices yield permutation:

000 | 001 | 010 | 100 | 101 | 101 | 110 | 111 |<«— genotype

EADesign

Requirements on h; and hy
obvious requirements
e hy and hy can be computed efficiently
e hy suits g, i.e. good points in B are mapped to good points
in R
e hy maps on many (all) important points of A
e Optima of f correspond to optima of g

Caution requirements can be hard to achieve in practice

for non-obvious requirements a metric is important

Mapping d: M x M — R is a metric on the set M &
@ o,y M: z#y < d(xy) >0 (positivity)
@ Va,y e M: d(z,y) = d(y,z) (symmetry)
© Vz,y,z € M: d(z,y) +d(y,z) > d(z, z) (triangle inequality)

3 5 0 7 1 6 4 2 <— old index
= permutation
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2009/10
dortmund 5

e000

Metric-based EAs

Assumption Metric d4 on A known
(d reflects application knowledge)
Requirement metric dg is known
if hy injective, dg(x,z") := da(hi(z), hi(2')) is metric
Requirement monotonicity
Va,2' 2" € S: ds(z,2') < dg(z,2")
= da(hi(z), h () < da(ha (@), (2"))

350

EA-Design
oeco

Variation as randomized mapping
now Design-rules for variation operators
hence Formalize variation operators as randomized mappings
r: X — Y randomized mapping
< r(z) € Y depends on 2 € X and random experiment
formally probability space (€2, p)
rXxQ-Y

Prob (r(z) = y) = pw)

weQ: r(mw)=y
Example 1-bit mutation
Q:={1,2,...,n},Vie Q: p(i) =1/n

1-bit mutation is randomized mapping m: {0,1}" — {0,1}"
where m(z,i) ==z ® 0°~110"

Tntroduction Evolutionary Algorthms _ Intialzation and Sefection Variation EA Parameters _ Typical EAs _EA-Design
- Soo Sooo0 83860 800 o coe0
Design-rules for mutation
favor small changes
Vr,a' 2" € S: ds(z,2') < ds(zx,2")

= Prob (m(z) = 2’) > Prob (m(z) = 2”)
no bias

Va, o' 2" € S: ds(x,2') = dg(z,2")

= Prob (m(z) = 2’) = Prob (m(z) = 2”)

Tntroduction Evolutionary Algorithms _ Initiaization and Selection Variation EA Parameters Typical EAs _EA-Design
Soo

Soaco 86300 000 co0e

Design-rules for crossover
offspring similar to parents

Va, o', 2" € S: Prob (c(z,2') = 2") > 0

= max {ds(z,2"),ds(2’,2")} < ds(z,2’)

no bias

Va,a' € S: Va € Ry :
Prob (dg(z, c(z,2")) = @) = Prob (ds(2’, c(z,2')) = a)

Any EA that fulfills these four design-rules is called a metric-based
EA (MBEA).

