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Plan for Today

● Single-Layer Perceptron

 Accelerated Learning

 Online- vs. Batch-Learning

● Multi-Layer-Perceptron

Model

 Backpropagation
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Acceleration of Perceptron Learning

Assumption: x 2 { 0, 1 }n ) ||x|| ≥ 1 for all x ≠ (0, ..., 0)‘

If classification incorrect, then w‘x < 0.

Consequently, size of error is just  δ = -w‘x > 0.

) wt+1 = wt + (δ + ε) x    for ε > 0 (small) corrects error in a single step, since

≥ 0 > 0

w‘t+1x = (wt + (δ + ε) x)‘ x

= w‘t x + (δ + ε) x‘x

=   -δ + δ ||x||2 + ε ||x||2

= δ (||x||2 – 1) + ε ||x||2 > 0        
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Generalization:  

Assumption: x 2 Rn ) ||x|| > 0 for all x ≠ (0, ..., 0)‘

as before:   wt+1 = wt + (δ + ε) x    for ε > 0 (small) and δ = - w‘t x > 0

< 0 possible! > 0

w‘t+1x = δ (||x||2 – 1) + ε ||x||2)

Idea: Scaling of data does not alter classification task! 

Let =  min { || x || : x 2 B } > 0

Set      x =^ x ) set of scaled examples  B̂

) || x || ≥ 1 )   || x ||2 – 1 ≥ 0     )   w’t+1 x  > 0   ^^^

Single-Layer Perceptron (SLP)
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There exist numerous variants of Perceptron Learning Methods.

Theorem: (Duda & Hart 1973)

If rule for correcting weights is wt+1 = wt + γt x       (if w‘t x < 0)

1. 8 t ≥ 0 : γt ≥ 0

2.

3.

then wt → w* for t → 1 with 8 x‘w* > 0. ■

e.g.: γt = γ > 0    or    γt = γ / (t+1)  for γ > 0
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as yet: Online Learning

→ Update of weights after each training pattern (if necessary)

now: Batch Learning

→ Update of weights only after test of all training patterns

wt+1 = wt + γ xΣ
w‘t x < 0

x 2 B

→ Update rule:

(γ > 0)

vague assessment in literature:

• advantage : „usually faster“

• disadvantage : „needs more memory“ just a single vector!

Single-Layer Perceptron (SLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2010/11
7

find weights by means of optimization

Let F(w) = { x 2 B :  w‘x < 0 } be the set of patterns incorrectly classified by weight w.

Objective function: Σf(w) = – w‘x   → min!
x 2 F(w)

Optimum: f(w) = 0       iff F(w) is empty

Possible approach: gradient method

wt+1 = wt  – γ rf(wt) (γ > 0) 
converges to a local
minimum (dep. on w0)
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Gradient method

wt+1 = wt  – γrf(wt)

Gradient

Gradient points in direction of 
steepest ascent of function f(¢)

Caution:
Indices i of wi
here denote 
components of 
vektor w; they are 
not the iteration 
counters!

Single-Layer Perceptron (SLP)
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Gradient method

gradient

thus:

gradient method ⇔ batch learning
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How difficult is it 

(a) to find a separating hyperplane, provided it exists?

(b) to decide, that there is no separating hyperplane?

Let B = P [ { -x : x 2 N }    (only positive examples), wi 2 R,  θ 2 R , |B| = m

For every example xi 2 B should hold:

xi1 w1 + xi2 w2 + ... + xin wn ≥ θ → trivial solution wi = θ = 0 to be excluded!

Therefore additionally:  η 2 R
xi1 w1 + xi2 w2 + ... + xin wn – θ – η ≥ 0

Idea: η maximize → if η* > 0, then solution found

Single-Layer Perceptron (SLP)
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Matrix notation:

Linear Programming Problem:

f(z1, z2, ..., zn, zn+1, zn+2) = zn+2     →  max!

s.t.    Az ≥ 0

calculated by e.g. Kamarkar-
algorithm in polynomial time

If zn+2 = η > 0, then weights and threshold are given by z.

Otherwise separating hyperplane does not exist! 
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What can be achieved by adding a layer?

● Single-layer perceptron (SLP)

) Hyperplane separates space in two subspaces

● Two-layer perceptron

) arbitrary convex sets can be separated

● Three-layer perceptron

) arbitrary sets can be separated (depends on number of neurons)-

P

N

connected by
AND gate in 

2nd layer

several convex sets representable by 2nd layer,

these sets can be combined in 3rd layer

) more than 3 layers not necessary!

Multi-Layer Perceptron (MLP)

convex sets
of 2nd layer

connected by
OR gate in 
3rd layer
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XOR with 3 neurons in 2 steps

x1 x2 y1 y2 z

0 0 0 1 0

0 1 1 1 1

1 0 1 1 1

1 1 1 0 0

≥ 2

x1

x2

-1 1

-1

y1

z

1y2

1

1

convex set
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XOR with 3 neurons in 2 layers

x1 x2 y1 y2 z

0 0 0 0 0

0 1 0 1 1

1 0 1 0 1

1 1 0 0 0

≥ 1

≥ 1

x1

x2

-1 1

1

y1

z

≥ 1 1y2

1

-1

without AND gate in 2nd layer

Multi-Layer Perceptron (MLP)
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XOR can be realized with only 2 neurons!

≥ 2 ≥ 1

x1

x2

1

1

-2
1

1

y z

x1 x2 y -2y x1-2y+x2 z

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 0 1 1

1 1 1 -2 0 0

BUT: this is not a layered network (no MLP) !
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Multi-Layer Perceptron (MLP)

Evidently:

MLPs deployable for addressing significantly more difficult problems than SLPs!

But:

How can we adjust all these weights and thresholds?

Is there an efficient learning algorithm for MLPs?

History:

Unavailability of efficient learning algorithm for MLPs was a brake shoe ...

... until Rumelhart, Hinton and Williams (1986): Backpropagation

Actually proposed by Werbos (1974) 

... but unknown to ANN researchers (was PhD thesis)
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Quantification of classification error of MLP

● Total Sum Squared Error (TSSE)

output of net 
for weights w and input x

target output of net 
for input x

● Total Mean Squared Error (TMSE)

TSSE

# training patters # output neurons
const.

leads to same 
solution as TSSE
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Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

... ... ...

1
...

2

m

1

2

x1

x2

xn

w11

wnm

u11

f(wt, ut) = TSSE   →   min!

Gradient method

ut+1 = ut - γru f(wt, ut)

wt+1 = wt - γrw f(wt, ut)

Multi-Layer Perceptron (MLP)

idea: minimize error!

BUT:

f(w, u) cannot be differentiated!

Why?  → Discontinuous activation function a(.) in neuron!
θ

0
1

idea: find smooth activation function similar to original function !
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good idea: sigmoid activation function (instead of signum function)
θ

0
1

0

1

• monotone increasing

• differentiable

• non-linear

• output 2 [0,1] instead of 2 { 0, 1 }

• threshold θ integrated in
activation functione.g.:

●

●

values of derivatives directly 
determinable from function 
values

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)
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Gradient method

... ... ...

1

...

2

J

1

2

x1

x2

xI

w11

wnm

u11

f(wt, ut) = TSSE

ut+1 = ut - γru f(wt, ut)

wt+1 = wt - γrw f(wt, ut)

K

z1

z2

zK

y1

y2

yJ
yj : values after first layer

zk: values after second layer

xi : inputs

yj = h(¢)

zk = a(¢)

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)
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output of neuron j 
after 1st layer

output of neuron k 
after 2nd layer

error of input x:

target output for input xoutput of net
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error for input x and target output z*:

total error for all training patterns (x, z*) 2 B:

(TSSE)

Multi-Layer Perceptron (MLP)
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gradient of total error:

thus:

and

vector of partial derivatives w.r.t. 
weights ujk and wij
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assume: )

and:

chain rule of differential calculus:

outer 
derivative

inner 
derivative

Multi-Layer Perceptron (MLP)
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partial derivative w.r.t. ujk:

“error signal“  δk
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partial derivative w.r.t. wij:

error signal δk from previous layer

factors 
reordered

error signal δj from “current“ layer

Multi-Layer Perceptron (MLP)
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Generalization (> 2 layers)

Let neural network have L layers S1, S2, ... SL.

Let neurons of all layers be numbered from 1 to N.

All weights wij are gathered in weights matrix W.

Let oj be output of neuron j.

j 2 Sm → 
neuron j is in 
m-th layer

error signal:

correction:
in case of online learning: 
correction after each test pattern presented
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error signal of neuron in inner layer determined by

● error signals of all neurons of subsequent layer and

● weights of associated connections.

)

● First determine error signals of output neurons,

● use these error signals to calculate the error signals of the preceding layer,

● use these error signals to calculate the error signals of the preceding layer, 

● and so forth until reaching the first inner layer.

)

thus, error is propagated backwards from output layer to first inner
) backpropagation (of error)

Multi-Layer Perceptron (MLP)
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) other optimization algorithms deployable!
in addition to backpropagation (gradient descent) also:

● Backpropagation with Momentum
take into account also previous change of weights:

● QuickProp
assumption: error function can be approximated locally by quadratic function,
update rule uses last two weights at step t – 1 and t – 2.

● Resilient Propagation (RPROP)
exploits sign of partial derivatives:
2 times negative or positive ) increase step! 
change of sign ) reset last step and decrease step!
typical values: factor for decreasing 0,5 / factor of increasing 1,2 

● evolutionary algorithms
individual = weights matrix

Multi-Layer Perceptron (MLP)

later more 
about this!


