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Abstract. Evolutionary multi-objective algorithms (EMOA) using per-
formance indicators for the selection of individuals have turned out to be
a successful technique for multi-objective problems. Especially, the selec-
tion based on the S-metric, as implemented in the SMS-EMOA, seems
to be effective. A special feature of this EMOA is the greedy (μ + 1) se-
lection. Based on a pathological example for a population of size two and
a discrete Pareto front it has been proven that a (μ + 1)- (or 1-greedy)
EMOA may fail in finding a population maximizing the S-metric. This
work investigates the performance of (μ+1)-EMOA with small fixed-size
populations on Pareto fronts of innumerable size. We prove that an opti-
mal distribution of points can always be achieved on linear Pareto fronts.
Empirical studies support the conjecture that this also holds for convex
and concave Pareto fronts, but not for continuous shapes in general.
Furthermore, the pathological example is generalized to a continuous
objective space and it is demonstrated that also (μ + k)-EMOA are not
able to robustly detect the globally optimal distribution.

1 Introduction

The main question addressed in this work is concerned with the general suitabil-
ity of a 1-greedy evolutionary multi-objective algorithm (EMOA) for the approx-
imation of continuous Pareto fronts, which consist of an innumerable number of
Pareto optimal solutions. As a 1-greedy EMOA, we denote a steady-state (μ+1)-
EMOA that replaces only one individual by greedily selecting the μ best ones
according to a preference relation (in the style of the definitions of k-greediness
by Zitzler et al. [ZTB08]). The question is of special interest, since—for some
time now—we advocate the use of an EMOA that adheres to the 1-greedy scheme
using the S-metric or dominated hypervolume as preference relation, namely the
SMS-EMOA [BNE07]. In contrast to other EMOA (e.g. NSGA-II [DPAM02]),
it accepts only one new individual per generation in order to monotonically im-
prove the quality of the Pareto front approximation. Naturally, one can ask if
exchanging only one individual at a time is sufficient to avoid getting stuck in
non-optimal configurations. However, past experience with the SMS-EMOA has
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nourished the belief that this algorithm is capable of coping with all practically
relevant situations, although a general proof in either direction is missing. This
kind of general proof, even if restricted to continuous Pareto fronts, is sophisti-
cated, unless impossible. Thus, the aim of this paper is to gradually phase this
task using both case-related formal proofs and empirical studies.

Recently, a simple discrete counter-example has been provided, which proved
that the 1-greedy scheme based on the dominated hypervolume can fail [ZTB08]
(cf. Sec. 2.3). However, the example is extreme in many aspects: It employs
a population of only two individuals on a Pareto front of four points. Thus,
we would like to know to what extend this phenomenon occurs in more realis-
tic scenarios. We are interested in continuous Pareto fronts and show that the
discrete counter example can easily be extended into the (piecewise) continu-
ous domain, with the essential property still holding: For most initializations,
a 1-greedy EMOA will fail to obtain the optimal distribution of points on that
Pareto front. To further investigate the cause of failure, we optimize the S-metric
value of the population directly using a (1, 5)- and a (5, 10)-CMA-ES (Covari-
ance Matrix Adaptation Evolution Strategy [HO01]). Our results show that not
only 1-greedy EMOA, but also non-elitist EMOA with λ > μ can fail with high
probability. This indicates that the problem is indeed very hard since the local
optimum is a strong attractor for any kind of optimizer. Studying the structure
of the problem, we give generalizing conjectures on the interrelationship of the
Pareto front and greediness.

Given the successful applications and assuming that the failure on the men-
tioned counter examples stem from the extreme constitution of the Pareto front,
we investigate the properties on connected simpler shapes. For linear Pareto
fronts, it is proved that a 1-greedy hypervolume selection scheme is sufficient to
reach the optimal distribution of points with respect to the dominated hypervol-
ume. Regarding convex Pareto fronts, we show that the problem of maximizing
the hypervolume with a given number of points is not concave, otherwise the
1-greediness would hold directly (cf. Sec. 4.1). However, the concavity is not a
necessary condition for 1-greediness. We perform empirical studies on Pareto
fronts of different curvature, which demonstrate that even a simplified SMS-
EMOA reaches the global optimum showing that the problem is solvable by a
1-greedy EMOA. Furthermore, these studies give counter-intuitive insights on
the optimal distributions of the points and their corresponding hypervolume
contributions, i.e., the amount that is disjointly dominated by a point and is
lost when the point is removed [BNE07].

The paper is structured as follows. In section 2 the basic definitions, which
are used in this paper, are provided and the discrete pathological example for
1-greedy indicator-based EMOA is recapitulated. The continuous variant of the
example is derived and, together with another problem with disconnected fronts,
empirically studied in section 3. Afterwards, we focus on continuous Pareto fronts
by analyzing and empirically studying connected fronts of different curvature in
section 4. For simple cases, also formal proofs are provided. Finally, the paper
is summarized and the important results are concluded in section 5.
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2 Hypervolume Selection and Greediness

2.1 Definitions of Greediness

Zitzler et al. [ZTB08] denote a preference relation as k-greedy if

1. for any given set, there exists a finite number of iterations resulting in the
optimal set regarding the preference relation, and

2. there is a sequence of improving populations per iteration when exchanging
k elements of a population at most.

We denote an EMOA as greedy if the selection is performed greedily accord-
ing to a preference relation, i.e., the best population regarding the preference is
selected. Greediness implies elitist selection and k is related to the number of off-
spring, i.e., the number of possible changes in the population per iteration. Thus,
a k-greedy EMOA performs a (μ + k) selection scheme regarding a pre-defined
preference relation. The problem of finding a population for a given optimization
problem which is optimally composed regarding the indicator of the preference
relation is termed k-greedy solvable if from any initial population there exists an
improving path to the optimum which can be traversed by changing at most k
element of the population per iteration. Note that the selection allows that any
problem is μ-greedy solvable for a (μ + k)-EMOA with k ≥ μ assuming that all
search points are sampled with positive probability. A problem is local k-greedy
solvable if the optimum can be obtained by exchanging only with neighboring
solutions in the objective space. If a problem is local k-greedy solvable, this im-
plies that it also is k-greedy solvable. We concentrate on 1-greediness regarding
the hypervolume indicator thus study if the population which achieves the high-
est possible hypervolume value given a fixed population size and a reference of
the S-metric is reachable by replacing at most one individual per generation by
selecting the subset of size μ which obtains the highest S-metric value among
all those μ + 1 subsets.

2.2 Considered Test Functions

For the experimental investigation of greedy EMOA, a set of academic minimiza-
tion problems is considered. This set contains the simple test functions T1-T4,
which have a continuous concave or convex Pareto front, where the sign of the
second derivative with respect to the first objective does not change. Test func-
tion T5 changes its curvature from concave to convex, while still being connected
and continuously differentiable. Note that T1 and T4 describe the same Pareto
front. The decision variable x ∈ [0, 1] is bounded to an interval, in which f1(x)
increases and f2(x) decreases in order to allow only non-dominated individuals.

T1: f1(x) = x2, f2 = (1 − x)2 Schaffer [Sch85], convex
T2: f1(x) = x, f2 = 1 − x DTLZ1 [DTLZ02], convex
T3: f1(x) = sin((π/2)x), f2 = cos((π/2)x) DTLZ2 [DTLZ02], concave
T4: f1(x) = x, f2(x) = (1 − x1/α)α, α = 2 convex
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T5: f1(x) = x, f2(x) = (1 − x1/α)α, α = 3x/2 + 1/2 concave-convex

T6: f1(x) = x, f2(x) =
{−(1/8)x + 6.125 x < 5

−x + 8 x ≥ 5
T7: f1(x) = x, f2(x) = 1 −√

x − x · sin(10πx) ZDT3 [ZT98]

For the experiments on T1-T4, the reference point applied in the selection of the
EMOA is fixed to R = (2, 2)T (superscript T denotes transposition). The two
test functions T6 and T7 are multi-modal with respect to the hypervolume of
the population. T6 is the continuous conversion of a pathological example given
by Zitzler et al. [ZTB08] (cf. Sec. 2.3). Its decision variable x ∈ [1, 7] is bounded
and R = (10, 7)T is used. T7 is defined in the domain of x ∈ [0, 1] being the
only function, for which not all x are Pareto optimal leading to a disconnected
Pareto front of five convex parts.

2.3 Pathological Example for a Finite Pareto Front

Zitzler et al. [ZTB08] proved that, in general, a 1-greedy EMOA is not able to
obtain the set which covers the maximal dominated hypervolume. They showed
this by a counter example in a two-dimensional objective space with a Pareto
front consisting of four points as reproduced in Fig. 1, where the algorithm shall
optimize the distribution of a population of two individuals. When the popula-
tion is initialized with the two points a and b, the global optimum formed by
the points c and d is unreachable for a 1-greedy EMOA. Any combination of
either a or b with a different point leads to a worse hypervolume value and is
therefore not accepted. Thus, the set {a, b} is a local optimum of the hyper-
volume maximization. The example can easily be extended to a higher number
of objectives by choosing all additional coordinates as 1, since multiplying by 1
does not change the hypervolume values.

Note which aspects are necessary to make the problem hard: The reference
point is chosen such that the objective values are weighted asymmetrically. Thus,
the points on the right have a high hypervolume contribution though being
quite close to each other. Furthermore, the second coordinate of the point a is

Fig. 1. Pathological example for 1-greedy EMOA with hypervolume-based selection.
Points c and d are optimal but the population is initialized with a and b which form a
local optimum.
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positioned close enough to the reference point to avoid an optimal distribution
which includes this point.

3 Pathological Examples with Innumerable Pareto Fronts

The discrete example of section 2.3 may easily be extended to the (piecewise)
continuous case by connecting the points of the original configuration by two line
segments as shown in Fig. 2 (cf. T6 in Sec. 2.2). The slope of the right segment
results in m2 = −1 and for the left one m1 = −1/8 is chosen, to correctly
transfer the situation of the discrete case in terms of the optimality properties
of the different point distributions. For m1 < −0.2, point a is no longer part of a
local optimum and the basin of attraction is shifted to the right. For reasons of
simplification, we further on discuss the problem as a two-dimensional parameter
optimization problem, whose parameters are the two x-coordinates of the two
search points on the Pareto front.

Fig. 2. Left: Conversion of the discrete pathological example for 1-greedy EMOA to
the continuous space with a disconnected Pareto front of two linear segments (T6).
Still the points c and d are optimal, whereas a and b form a local optimum. Right:
Dissection of the hypervolume for one point fixed at a and one moving on either the
left (hl,l) or right (hl,r) line (cf. Sec. 3.1 for details).

In the sense of parameter optimization, one may speak of multi-modality, and
the property of 1-greediness translates to the possibility to execute a successful
line search parallel to the coordinate axes. Thus, we can have multi-modality
while still being able to do a successful step out of a local optimum by moving in
parallel to one of the coordinate axes towards a better point. This especially is
the case for multi-modal but separable hypervolume landscapes, such as shown
for the problem T7 in the right plot of Fig. 3, where it is often necessary to cross
large areas of worse values, so that the function is not local 1-greedy solvable.

The hypervolume landscape of problem T6 is depicted in the left plot of Fig. 3.
The contour lines indicate that a 1-greedy EMOA is not able to leave the local
optimum. A μ-greedy scheme would not encounter this principal difficulty as it
allows for steps in any direction. However, it also faces the problem of locating
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Fig. 3. Hypervolume landscapes for two individuals on the disconnected test functions
T6 (left, R = (10, 7)T ) and T7 (right, R = (2, 2)T )

a good area, which may be also difficult. The analysis of both 1-greedy and
μ-greedy approaches on T6 is performed in the next subsections.

3.1 Proof: T6 Is Not 1-Greedy Solvable Regarding the S-Metric

In the following, we denote the two points of our population by their x-coordinates
so that a population is x = (x1, x2). It can be shown that for T6, the global op-
timum at x = (5, 7) can indeed not be reached by doing only 1-greedy steps from
the starting point x = (1, 6). To accomplish this, we have to look at the different
cases resulting from fixing one point and moving the other over the allowed inter-
val. In each case, the resulting hypervolume shall not exceed 25, which is the value
for x = (1, 6). Otherwise, a 1-greedy successful step would be possible.

Let the population start with x1 = 1 and x2 = 6, thus the locations a and b.
If x1 stays at x1 = 1 then x2 can either move on the right or the left line. We can
always compute the total hypervolume as sum of the volume beyond dominated
by (x1 = 1, 6) (hu = 9, cf. Fig. 2, left), and the contribution of the point at x2.
For x2 moving on the right line, the contribution hl,r(x2) is:

hl,r(x2) = (10 − x2) (6 − (−x2 + 8)) = −x2
2 + 12x2 − 20. (1)

The maximum of this upside-down parabola obtained by standard calculus is
at x2 = 6. That is, for moving on the right line, there is no better point than
x2 = 6, which leads to a total hypervolume of 25. If x2 moves on the left line
segment, its contribution hl,l(x2) is:

hl,l(x2) = (10 − x2)
(

6 −
(
−x2

8
+

6
8

))
(2)

This negative parabola has its optimum at x2 = 11
2 , which is unreachable in our

scenario as the largest x2 value is still below 5. The resulting total hypervolume
for this case is, thus, smaller than 13. When fixing x2 = 6, and moving x1, we
can either situate it on the left or the right line segment. For the former, the
whole hypervolume evaluates to:
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hl(x1) = (10−x1)
(

7 −
(
−x1

8
+

6
8

))
+4

(
6
8

)
− x1

8
−2 = −x2

1

8
− x1

8
+

25
4

(3)

This parabola has its maximum at x1 = − 1
2 , the best allowed point is x1 = 1,

for which the hypervolume is 25. The latter case considers x1 moving one the
right line segment. Here, we define a helper function hr,r(y, z), which computes
the hypervolume of any two points on that line, using the fact that the slope is
m2 = −1 so that the desired value is the difference of a large rectangle through
both points and the reference point and a small rectangle with both points as
diagonal corners:

hr,r(y, z) = (10− y) (7 − (z + 8))− (z− y)2 = −y2− z2 + yz + y +10z−10. (4)

For x1 < 6 (hr,r(x1, 6)) or respectively x1 > 6 (hr,r(6, x1)) this leads to

hr,r(x1, 6) = −x2
1 + 7 x1 + 14 and hr,r(6, x1) = −x2

1 + 16 x1 − 40 (5)

with the maximum values at

arg max
x1

(hr,r(x1, 6)) =
3
2

and arg max
x1

(hr,r(6, x1)) = 8

with corresponding largest attainable values hr,r(5, 6) = 24 and hr,r(6, 7) = 23.
Consequently, there is no 1-greedy move from x = (1, 6)T resulting in at least
the same hypervolume value of 25. �

3.2 Experiment: How µ-Greedy Solvable Is T6?

Pre-experimental planning: We consider a 1-greedy and a μ-greedy single-objec-
tive evolutionary algorithm (EA) moving on the Pareto front only (resembling,
e.g., SMS-EMOA and NSGA-II). So, the search space is the Pareto set and
the EA directly maximize the S-metric value of the population. A (1, 5)- and a
(5, 10)-CMA-ES are added to the set of algorithms. These do not have existing
EMOA counterparts, but shall be tested to see if moving with even more degrees
of freedom (non-elitist selection and a surplus of offspring) pays off. In our first
runs, we observed that the standard set of termination criteria as well as standard
boundary treatment (by quadratic penalties) deteriorate the performance of the
CMA-ES. The termination criteria make it stop too early, when there is still
a good chance to obtain the optimal solution of x = (5, 7), and the boundary
treatment hinders coming near to it. Both have been switched off hereafter.

Task: We expect that the μ-greedy EA performs significantly better than the
1-greedy EA in terms of success rates.

Setup: All four algorithms are run 100 times per mutation step size (0.1 and
0.5) allowing up to 5000 evaluations and a minimum hypervolume value of 25.9
is regarded as success. The start points are scattered uniformly at random over
the allowed domain (1 to 7).
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Table 1. Success rates (100 repeats) of different algorithm types for detecting the
globally optimal distribution of two individuals on the T6 Pareto front. The initial
mutation step size as the only free parameter is tested at 0.1 and 0.5. Only the CMA-
ES variants adapt it through the run.

Mutation step size 1-greedy EA μ-greedy EA (1, 5)-CMA-ES (5, 10)-CMA-ES

0.1 12% 15% 55% 100%

0.5 15% 13% 61% 100%

Results/Visualization: The results are given in Table 1 by means of success rates.

Observations: Table 1 documents that the 1-greedy EA indeed fails, but so also
does the μ-greedy EA. The CMA-ES solves the problem in more than half of the
runs. The effective run length (until stagnation) is very short for the 1-greedy
and μ-greedy EA, usually below 1000 evaluations. The CMA-ES often takes
much longer. At the same time, it can be observed that it pushes the internally
adapted mutation step sizes to very high values.

Discussion: The most surprising fact is surely that also the μ-greedy EA fails.
It seems that the small basin of the global optimum is hard to find, even if it
is possible to move there. A larger mutation step size could help in jumping
out of the vicinity of the local optimum, but it also scatters search steps over a
larger area. Furthermore, the attractor at (1, 6) is much stronger than expected.
Most runs end here, even if started at far distant points. The CMA-ES uses a
very interesting strategy by enlarging the mutation rates. It is finally able to
generate offspring over the whole domain of the problem, thereby degenerating
(by learning) to a random search. Presumably, this is necessary to hinder prema-
ture convergence to the point x2 = 6. Eventually, some points are placed in the
vicinity of the global optimum. Therefore, increasing the number of evaluations
most likely leads to higher success rates.

From the in-run distribution of the individuals, it is clear that the (5, 10)-
CMA-ES manages to place some of the 5 individuals in each basin of attraction
after some generations. Thus, it approximates the global optimum quite well.
However, a population of more than one parent would translate back to a multi-
population EMOA.

Summarizing, it shall be stated that although the function is of course μ-
greedy solvable, μ-greedy EA without additional features like step-size adapta-
tion have roughly the same chance of getting to the global optimum like 1-greedy
EA. Note that the same applies to the original discrete example presented by
Zitzler et al. [ZTB08], where, however, a much lower number of points to jump
to exists. This means that, where the discrete example does not pose a problem
to a μ-greedy scheme, the continuous one does.

3.3 More Points and a Strong Geometrical Argument

The provided example of a non 1-greedy function is fragile: Moving the ref-
erence point from R = (10, 7)T towards symmetry makes it 1-greedy solvable
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again. Also note that the whole construction breaks down when going to a three-
dimensional problem. Empirical tests with EMOA using a population with size
μ = 3 show that the optimal distribution x = (1, 5, 7) will always be obtained,
regardless of the chosen method (1-greedy or μ-greedy).

Continuing this line of thought, it is of course possible to build a problem
that is also misleading for 1-greedy algorithms with population sizes of three. In
fact, reducing the sizes of the basins of attraction in the hypervolume landscape
would be a move towards this goal (see Fig. 3). However, such a problem will
also become increasingly difficult for a μ-greedy algorithm, as empirically shown
in section 3.2.

Conjecture 1. Continuously defined functions, which are not 1-greedy solvable
for large population sizes (μ � 3) are not generally considerably easier for μ-
greedy algorithms.

One may however pose the question if these non 1-greedy solvable functions have
to be defined piecewise. From Fig. 3, we may deduct that piecewise definition
here is just a matter of construction and not a necessary condition. There is
no reason withstanding creation of a continuous and even continuously differ-
entiable non 1-greedy solvable function (so that the boundaries between pieces
become flat) except that its analytical formulation may be much more compli-
cated. Remember that, for non 1-greedy solvability, we only have to establish
that from one point, line searches in all dimensions fail. This leads us to the
following conjecture:

Conjecture 2. Non 1-greedy solvable, continuously differentiable functions can
be constructed for any finite population size.

4 S-Metric Properties on Continuously Differentiable
Pareto Fronts

This section analyzes the convergence of 1-greedy EMOA to the distribution max-
imizing the S-metric for two special cases in the first part. Afterwards, the proper-
ties of 1-greedy EMOA on differently shaped Pareto fronts are empirically studied.

4.1 Theoretical Analysis on Linear and Convex Pareto Fronts

Let f : IR2 → IR2 be a bi-objective function to be minimized. We assume that
the Pareto front f(X∗) associated with the Pareto set X∗ ⊂ IR2 is a Jordan arc
with parametric representation

f(X∗) =
{(

s
γ(s)

)
: s ∈ [ 0, 1 ] ⊂ IR

}
, (6)

where γ : [ 0, 1 ] → IR is twice continuously differentiable. Let
y(1), . . . , y(μ) ∈ f(X∗) be distinct objective vectors on the Pareto front. Ac-
cording to (6), we have y(i) = (si, γ(si))T for i = 1, . . . , μ. As a consequence, the
S-metric or dominated hypervolume of the points y(1), . . . , y(μ) is given by
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H(s) = (r1 − s1) [ r2 − γ(s1) ] +
μ∑

i=2

(r1 − si) [ γ(si−1) − γ(si) ] (7)

with reference point R = (r1, r2)T , 0 ≤ s1 < s2 < · · · < sμ ≤ 1 ≤ r1 and
r2 ≥ γ(0).

Whenever the S-metric is concave, the 1-greedy selection scheme of the SMS-
EMOA with fixed reference point and a population of μ individuals on a contin-
uous front will not get stuck prematurely since it is sufficient to move a single
variable si at each iteration towards ascending values of the S-metric in order
to reach its maximum. Furthermore, we are going to use the result that a twice
differentiable function is concave if and only if its Hessian matrix is negatively
semidefinite. Partial differentiation of (7) leads to

∂H(s)
∂s1

= γ(s1) − r2 + (s1 − s2) γ′(s1) (8)

∂H(s)
∂si

= γ(si) − γ(si−1) + (si − si+1) γ′(si) (i = 2, . . . , μ − 1) (9)

∂H(s)
∂sμ

= γ(sμ) − γ(sμ−1) + (r1 − sμ) γ′(sμ) (10)

and finally to

∂2H(s)
∂si∂si−1

= −γ′(si−1) (i = 1, . . . , μ − 1) (11)

∂2H(s)
∂si∂si

= 2 γ′(si) + (si − si+1) γ′′(si) (i = 1, . . . , μ) (12)

∂2H(s)
∂si∂si+1

= −γ′(si) (i = 2, . . . , μ) (13)

with sμ+1 := r1. Other second partial derivatives are zero. Thus, the Hessian
matrix ∇2H(s) of the S-metric as given in (7) is a tridiagonal matrix.

Linear Pareto Front. Suppose that γ(s) = m s + b is a linear function. Then,
γ(·) is strongly monotone decreasing with γ′(s) = m < 0 and γ′′(s) = 0 for all
s ∈ (0, 1). In this case, the Hessian matrix reduces to a tridiagonal matrix with
identical diagonal entries 2 m < 0 and identical off-diagonal entries −m > 0.
Recall that a square matrix A is weakly diagonal dominant if |aii| ≥

∑
j �=i |aij |

for all i and that a weakly diagonal dominant matrix is negatively definite if all
diagonal entries are negative. It is easily seen that these conditions are fulfilled.
As a result, we have proven:

Theorem 1. If the Pareto front of a bi-objective minimization problem is linear,
then the S-metric or dominated hypervolume of μ distinct points on the Pareto
front is a strictly concave function. �
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From this result, we can deduce that it is sufficient to move a single point at
a time for reaching the maximal S-metric value in the limit. Next, we try to
generalize this result.

Convex Pareto Front. Suppose that γ(·) is a convex function. Then, γ(·)
is strongly monotone decreasing with γ′(s) < 0 and γ′′(s) > 0 for all s ∈
(0, 1). Again, the Hessian matrix is tridiagonal, but the criterion of diagonal
dominance of the Hessian does not always hold. Actually, the Hessian is not
negatively semidefinite in general. This is easily seen from a counter-example: Let
γ(s) = (1−√

s)2 (T4, α = 2) with γ′(s) = 1− 1/
√

s < 0 and γ′′(s) = 1
2 s−

3
2 > 0

for s ∈ (0, 1) and reference point R = (1, 1)T . Consider three points on the
Pareto front with s1 = ( 1

10 )2, s2 = (19
20 )2, s3 = (20

21 )2 leading to the Hessian
matrix

∇2H(s) =

⎛
⎜⎜⎜⎜⎝

− 1857
4 9 0

9 − 326392
3024819

1
19

0 1
19 − 2461

16000

⎞
⎟⎟⎟⎟⎠ ,

whose leading principal minors are Δ1 < 0, Δ2 < 0 and Δ3 > 0 indicating that
the Hessian matrix with this particular choice of points s1, s2, s3 is not negatively
semidefinite. On the other hand, if s = ( 1

100 , 1
4 , 4

9 )T , it is easily verified that
Δ1 < 0, Δ2 > 0 and Δ3 < 0 indicating that the Hessian matrix is negatively
definite in this particular case. In summary, the Hessian matrix is indefinite and
we have proven:

Theorem 2. If the Pareto front of a bi-objective minimization problem is con-
vex, then the S-metric or dominated hypervolume of μ distinct points on the
Pareto front is not a concave function in general. �

However, this result does imply neither that there are no convex fronts with
concave S-metric nor that the 1-greedy selection scheme of the SMS-EMOA
gets necessarily stuck on convex fronts.

4.2 Empirical Results of SMS-EMOA on Connected Pareto Fronts

In this section, it is empirically analyzed whether the 1-greedy SMS-EMOA can
robustly obtain the S-metric-optimal distribution of points for the approxima-
tion of piecewise continuous Pareto fronts with different curvature (convex to
concave). It is assumed that the population has already arrived on the Pareto
front and performs only local refinements. Thereby, the local 1-greediness as
defined in section 2.1 of the considered test functions is empirically analyzed.
Recall that a local 1-greedy solvable problem is also 1-greedy solvable. To ac-
complish this, a comprehensive study on the set of simple test functions T1-T5 is
conducted (cf. Sec. 2.2). Due to the results in section 3.3, we restrict our analyses
on small populations.
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Pre-experimental planning: The SMS-EMOA selection operator discards the in-
dividual with the lowest hypervolume contribution, i.e., the amount that gets
lost when the individual is removed since the hypervolume part is disjointly
dominated by that individual. In order to provide a deeper understanding of
this selection, the areas of individuals, which enter the population, are visual-
ized in Fig. 5 for a given approximation using exemplarily the one-dimensional
test function T1 defined in Sec. 2.2. It can be seen that the areas of success are
directly adjacent to the solutions of the current approximation, which would be
discarded instead. They therefore indicate the direction in which this solution
should be shifted. Fig. 5 has been created based on T1, but the same fact holds
for T2-T5. Intuitively, one may assume that the hypervolume contributions of in-
dividuals tend to equal values for all points of an optimally distributed set since,
otherwise, a solution can move closer to the point with a higher contribution.

In order to investigate this conjecture, we compute these hypervolume con-
tributions for the analytically determined optimal distributions of populations
of five individuals, which are shown in Fig. 4 (left). For computing these dis-
tributions, test function T4 is considered with α ∈ {1/3, 1/2, 1, 2, 3} resulting
in two concave fronts for α < 1, convex fronts for α > 1, and a linear front
for α = 1. Furthermore, a reference point R = (1.0, 1.0)T positioned exactly at
the boundaries of the Pareto front is used. Due to the construction of T4, the
distribution is symmetrical to the bisecting line. Thus, the central point of the
population lies exactly on this line. Since the hypervolume of the population of
SMS-EMOA monotonically increases, the population will tend to these optimal
distributions in case of a successful optimization.

The right part of Fig. 4 shows the corresponding hypervolume contributions
sorted with respect to the first objective. The contribution values are symmet-
rical to the point in the middle. It can be observed that the contribution values
tend to grow with increasing α, when α < 3. On the concave Pareto front, the
point in the middle (in the knee region) has the highest contribution and the
contribution values are decreasing when going to the boundaries. On the convex
Pareto front, the values decrease from the boundaries to the middle, so the point
in the knee region has the lowest contribution. On linear fronts, the distribution
obtaining the maximal hypervolume value is the set of equally spaced points as
proved by Beume et al. [BFLI+07]. Only in this case, the contributions of all
points are equal. Therefore, our first intuition was misleading.

To further investigate the effect of single local refinements, a local search SMS-
EMOA, which uses only Gaussian mutations of single individuals of the current
population with small stepsize σ = 0.01 to generate new candidates for selection,
has been implemented. Fig. 5 plots the run of the decision space variables of this
local search (5+1)-SMS-EMOA on T4 with α = 1/3, when a fixed reference point
R′ = (2, 2)T is chosen. As starting positions, the optimal distributions for the
closer reference point R = (1.0, 1.0)T are used. It can be seen that the algorithm
is able to guide the solutions from the old to the new optimal positions. A closer
look on the resulting population yields that the contribution of the points at the
boundaries depends on the choice of the reference point. For the new reference
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Fig. 4. Optimal positions of points on Pareto fronts of different curvature (left) and
the corresponding hypervolume contributions of the points (right). The reference point
R = (1.0, 1.0) is chosen.

Fig. 5. Left: Acceptance of solutions depending on the decision space variable x for
test function T1 and a randomly initialized population. The decision space variables
of this population are indicated by black dots. Right: The run of the sorted decision
space variables, which result in the population, over the generations of the local search
(5 + 1)-SMS-EMOA on the concave test function T4 with α = 1/3, when a fixed
reference point R′ = (2, 2)T is chosen.

point R′, which is situated at a greater distance to the Pareto front, the optimal
points move closer to the boundaries and the contributions near the boundaries
grow1. As a consequence, the other points follow these extremal solutions to
cover the resulting distance. The optimal distribution does emerge.

The following experiment is conducted to empirically support the arising
assumption that even a local search-based (μ+1) SMS-EMOA is able to ap-
proximate a set of optimally distributed Pareto-optimal points for continuous
problems with convex and concave shaped Pareto fronts.

Task: Check the hypothesis that the local search SMS-EMOA is able to approxi-
mate the optimally distributed subset of the Pareto front of the given continuous

1 For R′ the sorted contributions are (0.61, 0.015, 0.016, 0.015, 0.61).
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test problems T1-T5 for fixed population sizes μ ∈ {1, . . . , 6} with an accuracy
limited by the step size σ = 0.01.

Setup: For each test function T1-T5 and population sizes μ ∈ {1, . . . , 6}, ap-
proximations for the S-metric-optimal distribution are globally calculated by
the MATLAB implementation of the (5,10)-CMA-ES [HO01], where no limit on
the function evaluations, but a lower limit on σi (i = 1, . . . , μ) of 10−12 is spec-
ified. The successful application of this algorithm for the calculation of optimal
distributions, even for multi-modal hypervolume landscapes, has already been
shown in section 3.2. For each configuration 10, 000 runs of the local search SMS-
EMOA are performed using different random initializations and the results after
μ · 1, 000 generations are compared to the approximations found by the global
optimization of the CMA-ES. A run is denoted as failed when the hypervolume
of the found approximation is below 99% of the approximated optimal one.

Observations: The local search SMS-EMOA detects the optimal distribution
in all runs for the convex and concave test function T1-T5 except for 10% of
the initializations on the concave-convex Pareto front T5 for μ = 1. When the
initial solution is situated close to the left border (x < 0.1), the local search SMS-
EMOA converges to the left border, which indicates the optimum for the concave
part of the Pareto front, instead of detecting the globally optimal position in the
inflection point.

Discussion: Based on thorough experimentation, it can be assumed that even
a local search SMS-EMOA robustly detects the globally optimal distribution in
cases where the sign of the second derivative with respect to the first objective
does not change. However, due to emerging effects of the local refinements and
their interaction, for higher population sizes, this result seems to hold also for
concave-convex Pareto fronts.

5 Conclusions

In this paper, we have investigated how a 1-greedy EMOA performs on different
kinds of continuous Pareto fronts using both formal proofs and empirical anal-
yses. So far, only an artificial discrete problem existed to show that a 1-greedy
EMOA with hypervolume selection is not able to obtain the set covering the
maximal hypervolume. We have shown that this problem can be converted to
the continuous space while preserving its important properties. Thereby, it has
been demonstrated that the local optimum is not only a singularity, but has an
actual attractor, which makes the problem also hard for μ-greedy EMOA.

Furthermore, it has been shown that even a local-search-based 1-greedy EMOA
successfully detects the globally optimal distribution for most connected continu-
ous Pareto front types. Failures have only been observed for very small population
sizes and we therefore think that the risk of not being 1-greedy decreases with in-
creasing population size. First hints on possible explanations have been provided.
Additionally, we have proven that the hypervolume is 1-greedy on linear Pareto
fronts and formalize the necessary condition of 1-greediness in general.



Effects of 1-Greedy S-Metric-Selection 35

In this work, we only consider situations, in which the points are located ex-
actly on the Pareto front, which is not realistic for continuous spaces. We claim
that the risk of getting stuck in a local optimum decreases when the popula-
tion is not close to the Pareto front since there are more improving directions.
Future work shall further investigate the influence of the reference point on the
properties of the distribution of points and the convergence to the distribution
obtaining the optimal S-metric value.
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