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Abstract

It is shown by means of Markov chain analysis that unimodal binary

long path problems can be solved by mutation and elitist selection in a

polynomially bounded number of trials on average�



� Unimodality of Binary Functions

The notion of unimodal functions usually appears in the theory of optimization in

IR�� Elster et al� ��


�� pp� �������� provide a precise de�nition that is specialized to

functions in IR� whereas the de�nition in Bronstein and Semendjajew ��
���� p� ��
� for

functions in IR� with � � � presupposes di�erentiability� Here� the following de�nition

for functions over IB� will be used�

Definition �

Let f be a real�valued function with domain IB� where IB � f�� �g� A point x� � IB� is

called a local solution of f if

f�x�� � f�x� for all x � fy � IB� � k y � x�k� � �g ���

where kx k� �
P�

i�� jxi j is the Hamming norm� If the inequality in ��� is strict� then

x� is termed a strictly local solution� The value f�x�� at a �strictly� local solution is

called a �strictly� local minimum of f � A function f � IB� � IR is said to be unimodal�

if there exists exactly one local solution� �

The above de�nition is very close to that in Antamoshkin et al� ��

��� p� 	�� and Horn

et al� ��

	�� p� ���� But there is an important di�erence� In their de�nition a local

solution is always strict� Consequently� a function that is constantly � except for one

point with function value � would be unimodal and the minimization problem would

be NP�hard in general � a situation that is quite counter�intuitive to the notion of

unimodal functions in IR�� De�nition � excludes such cases�
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� Unimodal Long Path Problems

By de�nition� for each point x � IB� n fx�g of an unimodal problem there exists at least

one path to the optimum with strictly decreasing function values� where consecutive

points on the path di�er in one bit only� If the expected number of trials of some

probabilistic algorithm to invert a single speci�c bit is of order O���� an upper bound

on the expected number of trials to reach the minimum is given by the length of the

longest path times O���� Horn et al� ��

	� succeeded in constructing paths that

grow exponentially in � and can be used to build unimodal problems� Consequently�

the upper bound derived by the above reasoning either is too rough or indicates that

polynomial bounds do not exist� It is clear that such a long path must possess much

structure� because the ��bit path has to be folded several times to �t into the �box�

IB�� One might expect that there exist many shortcuts by appropriate ��bit steps� that

decrease the order of the upper bound considerably�

Before checking this hypothesis it is necessary to know how to construct a long path�

Horn et al� ��

	�� p� ���� proposed the following blueprint� Let P� be a long path in

odd dimension �� Create subpath S�� by prepending ���� to each point in path P� and

subpath S�� by prepending ���� to each point in the reverse of path P�� The bridge

point is built from the last point in path P� prepended by ����� Finally� concatenate

subpath S��� the bridge point and subpath S�� to obtain the long path P��� of dimen�

sion ���� Using the initial long path P� � ��� ��� the long path of dimension � is

P� � ����� ���� ���� ���� ����� The length of the paths is described by the recurrence

�



equations

jP� j � �

jP��� j � � jP� j� �

whose solution is jP�j � � � �������� � � � O���� for odd � � �� Thus� the length of the

path grows exponentially in �� Figure � shows a long path in dimension � � 
�
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Fig� �� A long ��bit path for dimension � � ��

Of course� one needs a fast algorithm that decides whether a point is on or o� the path�

Since each point on the path can be represented by the regular language

���j��������j���j�����j������������

where � is the end symbol of the string and the string is accepted from left to right�

it is clear that the on�o��path decision can be done by a �nite state machine in O���

	



time� Horn et al� ��

	�� p� ���� presented a recursive algorithm that either returns the

position of the point in the path or indicates that the point is o� the path after O���

steps� An iterative� table�driven version is given in Fig� �� The program either returns

the position on the path or indicates by a negative return value that the string is o�

the path� The end symbol � is replaced by a ��

static int GetToken�	��
� � ��������� �	�
�����

static int GetState�
���� � ������
�������� �
�
�
�	�
���� �	�
�
�
���
���

static int GetAction�
���� � ����������	�
�� �����������	�� ���������	�����

int Pos�int Length� int �Str�

�

register i� Sign� Pos� Token� State� Action�

Sign � ��

Pos � State � ��

for �i � Length � �� i � �� i �� 	� �

Token � GetToken�Str�i���Str�i�����

Action � GetAction�State��Token��

switch �Action� �

case �� break�

case �� return�����

case 	� return�Pos��

case 
� return�Pos � Sign��

case �� Pos �� �
 � �� �� ��i � �� � 	�� � 	� � Sign�

Sign � �Sign�

break�

case �� Pos �� �
 � �� �� ��i � �� � 	 � ��� � �� � Sign�

break�

�

State � GetState�State��Token��

�

�

Fig� �� An ANSI C program to determine the position on the path� Note

that Length � �	� since Str is vector x with symbol � appended�

A negative return value indicates that the point is o
 the path�

To construct the unimodal function let Pos�x� � f��� �� �� � � � � � � �������� � �g return

the position of string x � IB� on the path for odd � where Pos�x� � � indicates that x

is o� the path� Then

f�x� � � � �������� � ��

����
���

Pos�x� if Pos�x� � �

�kxk� otherwise

���
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is an unimodal function� Each point x �� x� on the path has exactly one better point

within Hamming distance one� namely its successor on the path� whereas its predecessor

and all remaining points within Hamming distance one do have worse function values�

Each point x � IB� o� the path has at least one better point is its neighborhood� If an

arbitrary � in x is inverted� then the resulting point is either o� the path with better

objective function value or on the path� where all function values are better than those

o� the path�

� Optimization by Mutation and Elitist Selection� The ������EA

Consider the following algorithm� hereinafter called �� � ���EA� Let X�t� � IB� at

some iteration t � �� The mutated point Y �t� is obtained by inverting each bit with

mutation probability p � ��� independently� Thus� the probability to generate some

point y � IB� from x � IB� by mutation is Pfx M� y g � pk ���p���k where k � kx�y k��

If f�Y �t�� � f�X�t�� then the mutated point is accepted �i�e�� X�t��� � Y �t�� otherwise

it is rejected �i�e�� X�t��� � X�t���

This method may be regarded as the discrete version of the �� � �� evolution strategy

that optimizes over continuous variables �Rechenberg �

��� There are many deter�

ministic as well as probabilistic optimization algorithms that are related to the discrete

�� � ���EA�

�� The classical steepest descent algorithm calculates the objective function values of

all points in the ��bit neighborhood of the current point and moves to the point

with the best objective function value� The algorithm halts if no better point was

found in the neighborhood�

�� The �rst improvement or next descent algorithm �Horn et al� �

	� is a variation

of the steepest descent algorithm� Again� the points in the ��bit neighborhood are
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successively tested in some order� but as soon as a better point than the current

one is detected� the algorithm moves to this point�

�� The random bit�climbing algorithm used in Davis ��

�� is a randomized version

of the �rst improvement algorithm� All points in the ��bit neighborhood to be

tested are put into a list that is permuted at random� The point in this list that

o�ers the �rst improvement is accepted�

	� The random mutation hill�climbing algorithm �Mitchell and Holland �

�� chooses

a point from the ��bit neighborhood at random and accepts this point if it is im�

proving� otherwise it is rejected�

Since each of the above algorithms only searches in the ��bit neighborhood of the current

solution they require exponentially many function evaluations to reach the optimum of

the long path problem if being started with the zero string� But as soon as a ��bit

neighborhood is used in lieu of the ��bit neighborhood� these local search methods

require considerably fewer function evaluations when searching for the minimum of the

long path problem� The proof of this claim will not be given here � rather� it is shown

in the next section that the �� � ���EA requires O���� function evaluation on average

to �nd the optimum of long path problems�

	 A Polynomial Bound for the Number of Objective Function Evaluations

To derive an upper bound on the expected number of trials the �� � ���EA is approxi�

mated by a simpli�edMarkov chain that has provable worse performance than the exact

Markov chain� The basic idea is as follows� The search space IB� can be decomposed into

a partition of disjoint subsets S�� � � � � Sk such that the inequality f�x� � f�y� is valid

for every x � Si and y � Sj with � � i � j � k� Since worse points are not accepted






it is impossible to move from Sj to Si with i � j� Notice that a �ctitious �� � ���EA

that does not accept jumps over better sets must have worse performance than the

original �� � ���EA on average� In the worst case the �� � ���EA must successively

move through all sets S� to Sk �in this order�� Consequently� if the expected number of

mutations that are necessary to transition from Si to Si�� for each i � �� � � � � k � � are

known then the sum of these numbers is just an upper bound on the expected number

of mutations that are needed to reach the optimum� The proof of the theorem below

o�ers a more detailed description�

Theorem �

The �� � ���EA minimizes function ��� in O���� expected trials with mutation proba�

bility p � ��� regardless of the initial point�

Proof�

Suppose that the initial point is not on the path� Then at most O�� log �� trials are

necessary to reach position � on the path �i�e�� the zero vector� ignoring potential

shortcuts to the path �M�uhlenbein �

���

Next assume that the current point is on the path� Note that any accepted point

is necessarily on the path from now on� The set O� of points on the path can be

decomposed in the following manner�

S� � f����� � � � �� � O�g � fbridge pointg

S� � f������� � � � �� � O�g � fbridge pointg

S� � f��������� � � � �� � O�g � fbridge pointg

S� � f����������� � � � �� � O�g � fbridge pointg
���

���

S������� � f����� � � � ������ � O�g � fbridge pointg

S������� � f����� � � � ������ � O�g

�



These disjoint sets de�ne a partial ordering of the points with respect to their position

on the path� If x � Si and y � Sj with � � i � j � �� � ���� then Pos�x� � Pos�y�

and therefore f�x� � f�y�� Under the assumption that only ��bit improvements are

possible the Markov chain must follow the long ��bit path that passes through all sets

Si in ascending order so that the path length is jS�j� � � � � jS�������j � � � �������� � �

provided that the zero vector was the starting point� But as it is evident from the

decomposition of O�� for any point x � Si �except the bridge point� there exists a ��bit

shortcut to a set Sj with � � i � j � �� � ����� For example� if x � S� and the two

leftmost bits are inverted simultaneously� then the resulting point is on the path and

therefore in some set Sj with j � �� The worst case is of course a shortcut to the set

S�� A similar argumentation applies to the other sets� If x � Si is the bridge point then

the set Si�� is entered by an ��bit improvement�

These observations lead to the following simpli�ed Markov chain� Only ��bit and ��

bit mutations will be considered� It will be assumed that ��bit improvements are

solely caused by ��bit mutations� whereas ��bit mutations can only cause the shortcut�

Moreover� a shortcut from set Si always leads to the set Si��� Under this setting the

simpli�ed Markov chain will have worse performance than the original one�

To calculate the absorption time of the simpli�ed Markov chain� it is su�cient to

determine the expected time to transition from set Si to Si�� for i � �� � � � � �� � �����

For this purpose the simpli�ed Markov chain is split into �� � ���� segments� each

segment representing an absorbing Markov chain� Evidently� the sum of the absorption

times of these Markov chains is just the absorption time of the simpli�ed Markov chain

and thereby an upper bound of the original Markov chain�

Thus� a Markov chain of a segment can take three di�erent actions at every iteration

prior to absorption�






�� It can follow the path via an ��bit improvement caused by an ��bit mutation

with probability a�

�� It can take a shortcut to the next subset via an appropriate ��bit mutation with

probability b�

�� It remains at the current position with probability r � �� �a� b��

An example of the transition table of Markov chain C� with path length d � 	 is given

below�

C� � � � � 	

� r a � � b

� � r a � b

� � � r a b

� � � � � � a a

	 � � � � �

The Markov chain C� has reached the next subpath if it is in state 	� As soon as it is

in state � a shortcut cannot occur any longer� Thus� the transition to state 	 must be

realized by a ��bit mutation� The expected time for this event is of course ��a� This

suggests a further simpli�cation of the Markov chain C�� State � may be considered as

an additional absorbing state� because at most ��a iterations are necessary on average

to transition from state � to state 	 of the Markov chain C�� Thus� if E�T� � is the

absorption time of the further simpli�ed Markov chain C� then the absorption time of

C� can be bounded by E�T� � � E�T� � � ��a� Therefore� the transition matrix P of

Markov chain C� with path length d is given by

��



P �

�
BBBBBBBBBBBB�

r a � � � � � � b
� r a b

� � r
� � � b

���
� � � � � �

���
� r a b
� � � �
� � � � � � � � �

�
CCCCCCCCCCCCA

of size �d � �� 	 �d � ��� To determine the the absorption time delete the last two

rows and the two rightmost columns of matrix P which yields submatrix Q� Then set

A � I �Q where I is the unit matrix� Evidently� matrix

A �

�
BBBBBBBBBBBB�

�� r �a � � � � � � �
� �� r �a �

� � � � r
� � � �

���
� � �

� � �
���

� �� r �a �
� � �� r �a
� � � � � � � � � � r

�
CCCCCCCCCCCCA

is of size �d � �� 	 �d � ��� Let matrix B � A�� be the inverse of A and let T� be the

random time until absorption of Markov chain C� when starting at state �� As known

from �nite Markov chain theory �Iosifescu �
��� p� ��	� the expectation of T� is given

by the row sum of the top row of matrix B � �bij�� i�e��

E�T� � �
d��X
k��

b�k � ���

To obtain these values note that the inverse of A can be computed via its adjugate�

B � A�� �
�

detA
adjA �

Let Aij be the submatrix of A where row i and column j has been deleted and set

A�i� j� � ����i�j detAij� Then the adjugate of A is given by adjA � �A�i� j���� Con�

sequently�

b�k � A�k� �� �detA � ����k � detAk� �detA �	�

��



for k � �� � � � � d� �� Evidently� the determinant of A is detA � ��� r�d��� It remains

to derive the determinants of submatrices Ak�� To this end delete the leftmost column

and the kth row of A with k � �� � � � � d � �� It is easily seen that

detAk� � ��a�k ��� r�d���k� ���

Insertion of �	� and ��� into ��� leads to

E�T� � �
d��X
k��

b�k �
�

� � r

d��X
k��

	
a

� � r


k
�

�

b

�
��

	
a

a� b


d�� �

and �nally� since a � p �� � p���� and b � p� ��� p����� to

E�T� � �
�� ��� p�d��

p��� � p����
� �� exp���

�
� �

	
� � �

�


d�� �
� �� exp��� ���

with p � � ��� Note that the rightmost bound in ��� is independent from the length d

of the segment� Since E�T� � � E�T� � � ��a and since the simpli�ed Markov chain was

split into �� � ���� segments� the absorption time of the original Markov chain can be

bounded by

E�T � � � � �

�
E�T� � � �� �

�
exp��� ��� � �� � exp��� � log � � O���� �
�

by insertion of ��� and adding the expected time to reach a point on the path� �

Table � summarizes the statistics of the �rst hitting time T obtained from ����� in�

dependent runs per dimension �� When taking into account the constants in �
� one

obtains the bound E�T � � d��	 ��e for � � �� which is about three times as large

as the sample mean� Since the �empirical� skewness and excess of T deviates consid�

erably from zero in general� it cannot be expected that T is approximately normally

distributed� Therefore the standard model of �weighted� regression analysis to estimate

the true constants cannot be applied� Indeed� the relative frequencies of the observed

��



�rst hitting times given in �g� � clearly illustrate why the empirical standard deviation

is so large and why the skewness as well as the excess is not close to zero�

� d��	 ��e mean std� dev� skewness excess

�� 	
�� ���
��
� 
����� ������ �������

�
 ��

 �
������ ��
	��� ����
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Table �� Empirical mean� standard deviation� skewness and excess of the �rst hitting

time T based on ����� independent runs per dimension ��
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Figure �� Relative frequencies of the observed �rst hitting time for dimensions � � ��� ��� ��� 	�
 Note

the number of �outliers� close to zero



 Shorter but more di�cult path problems

The long path problem is not a real challenge for a ������EA with mutation probability

p � ���� Horn et al� ��

	�� p� ������
� discussed some ideas how to construct longer

paths� But since it is likely that longer paths have more structure that can eventually be

exploited by an EA to take shortcuts� an unimodal problem does not necessarily become

�	



more di�cult this way� In contrast� shorter paths �but still of exponential length�

might be more di�cult� because the structure�regularity in the path can be decreased�

Another route will be considered here� The structure of the path will essentially remain

the same but to take a shortcut many bits must be altered simultaneously� Horn

et al� ��

	�� p� ��
� also mentioned this approach but they did not o�er a method to

construct those paths� The method given below is a straightforward generalization of

the original method for usual long paths�

Let P� be a long path of dimension �� Create subpath S� by prepending k � � zeroes

to each point in path P� and subpath S� by prepending k � � ones to each point in

the reverse of path P�� The bridge path consists of k � � points� each of them built

from the last point in P� prepended by substring �� � � ����� �� � � ������ ���� � � � �� and

��� � � � �� � IBk respectively� Finally� concatenate substring S�� the bridge path and

substring S� to obtain a long path of dimension � � k� Long paths constructed in

this manner will be called long k�paths� Note that long ��paths are equivalent to long

paths in Horn et al� ��

	�� The length of a long k�path is determined by the recursive

equations

jP� j � �

jP��k j � � jP� j� �k � ��

whose solution is

jP� j � �k � �� �������k � k � � ���

for k � � and where �� � ���k � IN�

Are these problems more di�cult Consider the ������EA as in Theorem � and assume

that the current position is on the k�path� where the �rst k bits are zeros� If the �rst k

bits are !ipped while the others remain unaltered� then a successful k�bit shortcut has

occurred� Since the probability for this event is pk �� � p���k� the expected time is less

��



than e �k� In the worst case the bits k � � to � k are ones� Again� for a k�bit shortcut

these k bits must be !ipped simultaneously whereas the others remain unaltered� The

expected time for this event is less than e �k� Since there are �� � ���k such shortcuts�

the expected time to reach the end of the path at x� �with k ones and �� k zeros from

left to right� can be bounded by O��k���k�� Thus� it was proven�

Theorem �

Let k � � and �� � ���k � IN� The �� � ���EA traverses a long k�path in dimension �

in O��k���k� expected trials when using mutation probability p � ���� �

Note that O��k���k� is an upper bound on the expected number of trials� For k � �� �

one obtains O������ which is an exponential bound� But insertion of k � � � � in ���

reveals that the path length reduces to � � � which can be traversed by appropriate

��bit improvements in O���� time� In general� choosing k proportional to � yields a

path length of O��� so that the bound on the expected number of trials is O�����

The choice of k � ��� ����� is more interesting� The path length reduces to O�
p
� �

p
��

so that the bound on appropriate ��bit improvements is not polynomial� Moreover� the

argumentation in Theorem � leads to the bound of O��
p
�� trials� Both bounds are not

polynomial� But since they are upper bounds it may be that a more detailed analysis

yields lower �polynomial� bounds� It is� however� not obvious how the structure in the

long O�
p
���path can be exploited in another manner to achieve such bounds� Varying

mutation rates like p�t� � �� � tmod ���� may be a solution� But this requires a more

detailed investigation� Thus� the question� whether long O�
p
���path problems can be

solved in polynomial expected time by a �� � ���EA must be left unanswered in this

note�

��



� Final Remark

It was claimed in the title of this note that mutation and selection can solve long path

problems in polynomially bounded expected time� As a consequence� the �� � ���EA

must output the correct answer whenever it terminates� Since local and hence global

optimality can be checked by considering the objective function values of the points

in the ��bit neighborhood of the current solution� the expected runtime of the EA

increases to O��	�� But note that it is su�cient to check local optimality after every

�th trial� This increases that number of trials by a factor of two� so that the bound

O���� remains valid�
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