Technical Note:

How Mutation and Selection Solve Long Path

Problems in Polynomial Expected Time

Gunter Rudolph

rudolph@icd.de

Informatik Centrum Dortmund (ICD)
Center for Applied Systems Analysis (CASA)

Joseph—von—Fraunhofer—Str. 20

D-44227 Dortmund / Germany

Abstract

It is shown by means of Markov chain analysis that unimodal binary
long path problems can be solved by mutation and elitist selection in a

polynomially bounded number of trials on average.

1 Unimodality of Binary Functions

The notion of unimodal functions usually appears in the theory of optimization in
R'. Elster et al. (1977), pp. 228-230, provide a precise definition that is specialized to
functions in R whereas the definition in Bronstein and Semendjajew (1988), p. 137, for
functions in R with ¢ > 1 presupposes differentiability. Here, the following definition

for functions over IB* will be used:

DEFINITION 1

Let f be a real-valued function with domain IB® where IB = {0,1}. A point z* € B’ is

called a local solution of f if
fla®) < fla) forallw € {y € B' : ||y —2"|i = 1} (1)

where ||z ||; = Y'_, | #; | is the Hamming norm. If the inequality in (1) is strict, then
2™ is termed a strictly local solution. The value f(a*) at a (strictly) local solution is

called a (strictly) local minimum of f. A function f : B’ — R is said to be unimodal,

if there exists exactly one local solution. a

The above definition is very close to that in Antamoshkin et al. (1990), p. 433 and Horn
et al. (1994), p. 150. But there is an important difference: In their definition a local
solution is always strict. Consequently, a function that is constantly 1 except for one
point with function value 0 would be unimodal and the minimization problem would
be NP—-hard in general — a situation that is quite counter—intuitive to the notion of

unimodal functions in IR’. Definition 1 excludes such cases.

2 Unimodal Long Path Problems

By definition, for each point # € IB*\ {2*} of an unimodal problem there exists at least
one path to the optimum with strictly decreasing function values, where consecutive
points on the path differ in one bit only. If the expected number of trials of some
probabilistic algorithm to invert a single specific bit is of order O({), an upper bound
on the expected number of trials to reach the minimum is given by the length of the
longest path times O(f). Horn et al. (1994) succeeded in constructing paths that
grow exponentially in ¢ and can be used to build unimodal problems. Consequently,
the upper bound derived by the above reasoning either is too rough or indicates that
polynomial bounds do not exist. It is clear that such a long path must possess much
structure, because the 1-bit path has to be folded several times to fit into the “box”
B*. One might expect that there exist many shortcuts by appropriate 2-bit steps, that
decrease the order of the upper bound considerably.

Before checking this hypothesis it is necessary to know how to construct a long path.
Horn et al. (1994), p. 152, proposed the following blueprint: Let P, be a long path in
odd dimension (. Create subpath Syg by prepending “00” to each point in path P, and
subpath Si; by prepending “11” to each point in the reverse of path P,. The bridge
point is built from the last point in path P, prepended by “01”. Finally, concatenate
subpath Spg, the bridge point and subpath Si; to obtain the long path Pyy5 of dimen-
sion £+ 2. Using the initial long path P; = (0,1), the long path of dimension 3 is

P; = (000,001,011,111,110). The length of the paths is described by the recurrence

equations

‘Al =2
[Pry2| = 2[F|+1
whose solution is |P;| = 3 -20¢=1/2 — 1 = O(2*) for odd ¢ > 1. Thus, the length of the

path grows exponentially in {. Figure 1 shows a long path in dimension ¢ = 9.

Pos(x) x Pos(x) X

0 000000000 46 110000000
1 000000001 45 110000001
2 000000011 44 110000011
3 000000111 43 110000111
4 000000110 42 110000110
5 000001110 41 110001110
6 000011110 40 110011110
7 000011111 39 110011111
8 000011011 38 110011011
9 000011001 37 110011001
10 000011000 36 110011000
11 000111000 35 110111000
12 001111000 34 111111000
13 001111001 33 111111001
14 001111011 32 111111011
15 001111111 31 111111111
16 001111110 30 111111110
17 001101110 29 111101110
18 001100110 28 111100110
19 001100111 27 111100111
20 001100011 26 111100011
21 001100001 25 111100001
22 001100000 24 111100000
23 011100000

Fig. 1: A long 1-bit path for dimension £ = 9.

Of course, one needs a fast algorithm that decides whether a point is on or off the path.

Since each point on the path can be represented by the regular language

(00[11)*((0%]1$)[01(1%]10(00)*0%)),

where § is the end symbol of the string and the string is accepted from left to right,
it is clear that the on/off-path decision can be done by a finite state machine in O(()

4

time. Horn et al. (1994), p. 153, presented a recursive algorithm that either returns the
position of the point in the path or indicates that the point is off the path after O(()
steps. An iterative, table-driven version is given in Fig. 2: The program either returns
the position on the path or indicates by a negative return value that the string is off

the path. The end symbol § is replaced by a 2.

static int GetToken[2][3]
static int GetState[3][6]
static int GetAction[3][6]

{{0,1,4}, {2,3,5}};
{{0,1,3,0,4,4}, {3,3,3,2,3,4}, {2,3,3,3,4,3}};
{{0,5,1,4,2,3}, {1,1,1,0,1,2}, {0,1,1,1,2,1}};

int Pos(int Length, int #*Str)

{
register i, Sign, Pos, Token, State, Action;
Sign = 1;
Pos = State = 0;
for (i = Length - 1; 1 > 0; i -= 2) {
Token = GetToken[Str[i]]l[Str[i-1]1];
Action = GetAction[State] [Token];
switch (Action) {
case 0: break;
case 1: return(-1);
case 2: return(Pos);
case 3: return(Pos + Sign);
case 4: Pos += (3 * (1 << ((i - 1) / 2)) - 2) * Sign;
Sign = -3ign;
break;
case b: Pos += (3 *x (1 << ((i - 1) /2 -1)) - 1) * Sign;
break;
¥
State = GetState[State] [Token];
¥
¥

Fig. 2: An ANSI C program to determine the position on the path. Note
that Length = {4 1 since Str is vector & with symbol 2 appended.
A negative return value indicates that the point is off the path.
To construct the unimodal function let Pos(z) € {—1,0,1,...,3-20=1/2 — 2} return

the position of string # € BB’ on the path for odd ¢ where Pos(z) < 0 indicates that

is off the path. Then

os(z if Pos(z
flz)=3-202072 _9 Poste) iPoste) 20 (2)

—llz]li otherwise

is an unimodal function: Each point x # 2* on the path has exactly one better point
within Hamming distance one, namely its successor on the path, whereas its predecessor
and all remaining points within Hamming distance one do have worse function values.
Each point 2 € B off the path has at least one better point is its neighborhood: If an
arbitrary 1 in z is inverted, then the resulting point is either off the path with better
objective function value or on the path, where all function values are better than those

off the path.

3 Optimization by Mutation and Elitist Selection: The (1+1)-EA

Consider the following algorithm, hereinafter called (1 4+ 1)-EA: Let X® ¢ B’ at
some iteration ¢ > 0. The mutated point Y is obtained by inverting each bit with
mutation probability p = 1/¢ independently. Thus, the probability to generate some
point y € B’ from = € B’ by mutation is P{ z M y}=p"(1—-p)~* where k = ||z—y |
If f(Y®) < f(X®) then the mutated point is accepted (i.e., X+ = Y) otherwise
it is rejected (i.e., X+ = X)),

This method may be regarded as the discrete version of the (1 + 1) evolution strategy
that optimizes over continuous variables (Rechenberg 1973). There are many deter-

ministic as well as probabilistic optimization algorithms that are related to the discrete

(1+1)-EA.

1. The classical steepest descent algorithm calculates the objective function values of
all points in the 1-bit neighborhood of the current point and moves to the point
with the best objective function value. The algorithm halts if no better point was

found in the neighborhood.

2. The first improvement or next descent algorithm (Horn et al. 1994) is a variation

of the steepest descent algorithm: Again, the points in the 1-bit neighborhood are
6

successively tested in some order, but as soon as a better point than the current

one is detected, the algorithm moves to this point.

3. The random bit—climbing algorithm used in Davis (1991) is a randomized version
of the first improvement algorithm: All points in the 1-bit neighborhood to be
tested are put into a list that is permuted at random. The point in this list that

offers the first improvement is accepted.

4. The random mutation hill-climbing algorithm (Mitchell and Holland 1993) chooses
a point from the 1-bit neighborhood at random and accepts this point if it is im-

proving, otherwise it is rejected.

Since each of the above algorithms only searches in the 1-bit neighborhood of the current
solution they require exponentially many function evaluations to reach the optimum of
the long path problem if being started with the zero string. But as soon as a 2-bit
neighborhood is used in lieu of the 1-bit neighborhood, these local search methods
require considerably fewer function evaluations when searching for the minimum of the
long path problem. The proof of this claim will not be given here — rather, it is shown
in the next section that the (1 + 1)-EA requires O({?) function evaluation on average

to find the optimum of long path problems.

4 A Polynomial Bound for the Number of Objective Function Evaluations

To derive an upper bound on the expected number of trials the (1 4+ 1)-EA is approxi-
mated by a simplified Markov chain that has provable worse performance than the exact
Markov chain. The basic idea is as follows: The search space B can be decomposed into
a partition of disjoint subsets Sg,..., Sk such that the inequality f(z) > f(y) is valid

for every v € S; and y € 5; with 0 < ¢ < 7 < k. Since worse points are not accepted

it is impossible to move from S; to S; with 7 < j. Notice that a fictitious (1 + 1)-EA
that does not accept jumps over better sets must have worse performance than the
original (1 + 1)-EA on average. In the worst case the (1 + 1)-EA must successively
move through all sets Sy to Sy (in this order). Consequently, if the expected number of
mutations that are necessary to transition from S; to S;1; for each : =0,...,k—1 are
known then the sum of these numbers is just an upper bound on the expected number
of mutations that are needed to reach the optimum. The proof of the theorem below

offers a more detailed description.

THEOREM 1

The (1 + 1)-EA minimizes function (2) in O({*) expected trials with mutation proba-
bility p = 1/¢ regardless of the initial point.

PRrOOF:

Suppose that the initial point is not on the path. Then at most O({ log () trials are
necessary to reach position 0 on the path (i.e., the zero vector) ignoring potential
shortcuts to the path (Miihlenbein 1992).

Next assume that the current point is on the path. Note that any accepted point
The set Oy of points on the path can be

is necessarily on the path from now on.

decomposed in the following manner:

So {(00%*x *) € Oy} U {bridge point}
Sh {(1111% *) € Oy} U {bridge point}
Sy {(110011%* *) € Oy} U {bridge point}
Ss {(1100001 1%x *) € Oy} U {bridge point}
S(e=3)/2 {(1100 0011%) € Oy} U {bridge point}
Ste-1y/2 {(1100 0000%) € O}

8

These disjoint sets define a partial ordering of the points with respect to their position
on the path: If + € 5; and y € S; with 0 <7 < j < (£ —1)/2 then Pos(x) < Pos(y)
and therefore f(x) > f(y). Under the assumption that only 1-bit improvements are
possible the Markov chain must follow the long 1-bit path that passes through all sets
S; in ascending order so that the path length is [So| + -+« + |S(_1y/2| = 3 -207D/2 —1
provided that the zero vector was the starting point. But as it is evident from the
decomposition of Oy, for any point « € S; (except the bridge point) there exists a 2-bit
shortcut to a set S; with 0 < ¢ < j < (£ —1)/2. For example, if © € Sy and the two
leftmost bits are inverted simultaneously, then the resulting point is on the path and
therefore in some set S; with y > 0. The worst case is of course a shortcut to the set
S1. A similar argumentation applies to the other sets. If # € S; is the bridge point then
the set S;11 is entered by an 1-bit improvement.

These observations lead to the following simplified Markov chain: Only 1-bit and 2-
bit mutations will be considered. It will be assumed that 1-bit improvements are
solely caused by 1-bit mutations, whereas 2-bit mutations can only cause the shortcut.
Moreover, a shortcut from set S; always leads to the set S;y1. Under this setting the
simplified Markov chain will have worse performance than the original one.

To calculate the absorption time of the simplified Markov chain, it is sufficient to
determine the expected time to transition from set 5; to S;4q for ¢ = 0,...,(¢ — 3)/2.
For this purpose the simplified Markov chain is split into ({ — 1)/2 segments, each
segment representing an absorbing Markov chain. Evidently, the sum of the absorption
times of these Markov chains is just the absorption time of the simplified Markov chain
and thereby an upper bound of the original Markov chain.

Thus, a Markov chain of a segment can take three different actions at every iteration

prior to absorption:

1. It can follow the path via an 1-bit improvement caused by an 1-bit mutation

with probability a.

2. It can take a shortcut to the next subset via an appropriate 2-bit mutation with

probability b.
3. It remains at the current position with probability r = 1 — (a + b).

An example of the transition table of Markov chain C; with path length d = 4 is given

below:

|01 2 3 4

310 0 0 1—a a

440 0 0 0 1

The Markov chain C; has reached the next subpath if it is in state 4. As soon as it is
in state 3 a shortcut cannot occur any longer. Thus, the transition to state 4 must be
realized by a 1-bit mutation. The expected time for this event is of course 1/a. This
suggests a further simplification of the Markov chain Cy: State 3 may be considered as
an additional absorbing state, because at most 1/a iterations are necessary on average
to transition from state 3 to state 4 of the Markov chain C;. Thus, if E[T2] is the
absorption time of the further simplified Markov chain Cy then the absorption time of
Cy can be bounded by E[Ti] < E[T2] + 1/a. Therefore, the transition matrix P of

Markov chain Cy with path length d is given by

10

0 b
0 0 r b
P=1 :
0 7 b
0 0 1 0
0o 00 - 0 1

of size (d + 1) x (d +1). To determine the the absorption time delete the last two
rows and the two rightmost columns of matrix P which yields submatrix). Then set

A =1 — () where [is the unit matrix. Evidently, matrix

l—r —a o - 0 0 0
0 l—r —a 0
0 0 1—r . 0
A= . . .
0 l—r —a 0
0 0 l—r —a
0 0 0 0 0 1—r

is of size (d — 1) x (d — 1). Let matrix B = A™" be the inverse of A and let T; be the
random time until absorption of Markov chain Cy when starting at state 0. As known
from finite Markov chain theory (losifescu 1980, p. 104) the expectation of T} is given

by the row sum of the top row of matrix B = (b;;), i.e.,

E[Ty] = z:jbOk. (3)

To obtain these values note that the inverse of A can be computed via its adjugate:

B 1
~ det A

B=A"" adj A.

Let A; be the submatrix of A where row i and column j has been deleted and set
A(i,j) = (=1)™7 det A;;. Then the adjugate of A is given by adj A = (A(7,7)). Con-
sequently,

bow = A(k,0)/det A = (—1) - det Ayo / det A (4)

11

for k =0,...,d — 2. Evidently, the determinant of A is det A = (1 —r)*~'. It remains
to derive the determinants of submatrices Ary. To this end delete the leftmost column

and the kth row of A with £ =0,....d — 2. It is easily seen that
det Ay = (—a)k (1- r)d_Q_k. (5)
Insertion of (4) and (5) into (3) leads to

d—2 1 d—2 a k 1 a d-1
E[T5] = by, = —— =— 1=
12 kZ:%Ok l—rk:()(l—r) b[(a—l—b)]

and finally, since @ = p (1 — p)*~* and b= p* (1 — p)*~2%, to

E[Ty] = M < % exp(l) [1 — (1 - %)d_l < 0% exp(1) (6)

p*(1 = p)=?

with p = 1 /(. Note that the rightmost bound in (6) is independent from the length d
of the segment. Since E[T}] < E[T32] 4 1/a and since the simplified Markov chain was

split into (¢ — 1)/2 segments, the absorption time of the original Markov chain can be

bounded by
(—1 (—1 5 3
E[T] < 5 E[T1] < 5 exp(l) (% +0) + exp(1) { log { = O(L°) (7)
by insertion of (6) and adding the expected time to reach a point on the path. a

Table 1 summarizes the statistics of the first hitting time 7" obtained from 1,000 in-
dependent runs per dimension ¢. When taking into account the constants in (7) one
obtains the bound E[T] < [1.4¢°] for { > 15 which is about three times as large
as the sample mean. Since the (empirical) skewness and excess of T' deviates consid-
erably from zero in general, it cannot be expected that T is approximately normally
distributed. Therefore the standard model of (weighted) regression analysis to estimate

the true constants cannot be applied. Indeed, the relative frequencies of the observed

12

first hitting times given in fig. 3 clearly illustrate why the empirical standard deviation

is so large and why the skewness as well as the excess is not close to zero.

0 [1.40°7] mean std. dev. skewness excess
15 4725 1139.295 756.86 0.5530 -0.1288
17 6879 1716.263 1174.36 0.5592 -0.1276
19 9603 2335.859 1635.294 0.7569 0.6716
21 12966 3519.185 2280.433 0.4617 -0.1246
23 17034 4675.412 3078.554 0.5437 -0.0779
25 21875 5977.070 4029.706 0.6533 0.4521
27 27557 7879.390 4910.918 0.4165 -0.1011
29 34145 9756.216 6176.630 0.3728 -0.2976
31 41708 12203.919 7329.924 0.5070 0.3285
33 50312 15323.342 9241.186 0.3388 -0.1998
35 60025 19166.404 10989.280 0.1929 -0.3539
37 70915 21545.718 12723.423 0.2538 -0.3052
39 83047 27991.581 15244.430 0.1436 -0.2718
11 96490 32228.906 17309.202 0.2491 -0.0786
43 111310 37623.133 21057.253 0.2954 0.0870
45 127575 42537.464 22450.626 0.1556 -0.1897
47 145353 50015.188 27072.361 0.1306 -0.2241
49 164709 5H56741.727 30508.643 0.1699 -0.1470

Table 1: Empirical mean, standard deviation, skewness and excess of the first hitting

time T based on 1,000 independent runs per dimension (.

13

observed first hitting time x 10

3

0.10 0.10
0.08] b=15 0.08F b= 25
> >
O O
o o
S 0.06¢ S 0.06¢
o o
L L
(] (]
2 0.041 2 0.041
O O
o o
0.027 0.027
0.00 ‘ e B 0.00 . . ; Mo oo
0 1 2 3 54 0 8] 10 15 20 525
observed first hitting time x 10 observed first hitting time x 10
0.10 0.10
0.08F =35 0.08F b= 45
> >
O O
o 1 o
S 0.06¢ S 0.06¢
o o
L L
(] (]
2 0.041 2 0.041
O O
o o
0.02 7 0.027
0.00 ‘ ‘ ‘ b 0.00 ‘ ‘ ‘ e
0 10 20 30 40 50 60 0 20 40 60 80 100 120

observed first hitting time x 10

Figure 3: Relative frequencies of the observed first hitting time for dimensions £ = 15,25, 35, 45. Note

the number of “outliers” close to zero.

5 Shorter but more difficult path problems

The long path problem is not a real challenge for a (141)-EA with mutation probability
p = 1/0. Horn et al. (1994), p. 156-157, discussed some ideas how to construct longer
paths. But since it is likely that longer paths have more structure that can eventually be

exploited by an EA to take shortcuts, an unimodal problem does not necessarily become

14

more difficult this way. In contrast, shorter paths (but still of exponential length)
might be more difficult, because the structure/regularity in the path can be decreased.
Another route will be considered here: The structure of the path will essentially remain
the same but to take a shortcut many bits must be altered simultaneously. Horn
et al. (1994), p. 157, also mentioned this approach but they did not offer a method to
construct those paths. The method given below is a straightforward generalization of
the original method for usual long paths.

Let P, be a long path of dimension (. Create subpath Sy by prepending k& > 2 zeroes
to each point in path P, and subpath S; by prepending k£ > 2 ones to each point in
the reverse of path P,. The bridge path consists of & — 1 points, each of them built
from the last point in P, prepended by substring (0...01), (0...011), (001...1) and
(01...1) € B* respectively. Finally, concatenate substring Sy, the bridge path and
substring 57 to obtain a long path of dimension ¢ 4+ k. Long paths constructed in
this manner will be called long k—paths. Note that long 2—paths are equivalent to long

paths in Horn et al. (1994). The length of a long k—path is determined by the recursive

equations
Al =2
[Prve| = 2[P]+ (k=1)
whose solution is
1P| = (k4 1)20=0/F — k41 (8)

for k > 2 and where (¢ —1)/k € IN.

Are these problems more difficult? Consider the (14+1)-EA as in Theorem 1 and assume
that the current position is on the k—path, where the first & bits are zeros. If the first &
bits are flipped while the others remain unaltered, then a successful £-bit shortcut has

occurred. Since the probability for this event is p* (1 — p)*=*, the expected time is less

15

than e /*. In the worst case the bits k£ + 1 to 2k are ones. Again, for a k-bit shortcut
these k bits must be flipped simultaneously whereas the others remain unaltered. The
expected time for this event is less than e (*. Since there are ({ — 1)/k such shortcuts,

the expected time to reach the end of the path at «* (with k& ones and ¢ — k zeros from

left to right) can be bounded by O((**!/k). Thus, it was proven:

THEOREM 2
Let k> 2 and ({ —1)/k € IN. The (1 4+ 1)-EA traverses a long k—path in dimension ¢

in O((**!/k) expected trials when using mutation probability p = 1//. O

Note that O((*+1/k) is an upper bound on the expected number of trials. For k = ¢ — 1
one obtains O(¢*~!) which is an exponential bound. But insertion of & = ¢ — 1 in (8)
reveals that the path length reduces to ¢ + 2 which can be traversed by appropriate
1-bit improvements in O(¢?) time. In general, choosing k proportional to ¢ yields a
path length of O(() so that the bound on the expected number of trials is O(¢?).

The choice of k = (¢ —1)"/? is more interesting: The path length reduces to O(v/¢ 2\/2)
so that the bound on appropriate 1-bit improvements is not polynomial. Moreover, the
argumentation in Theorem 2 leads to the bound of O(ﬁ\/z) trials. Both bounds are not
polynomial. But since they are upper bounds it may be that a more detailed analysis
yields lower (polynomial) bounds. It is, however, not obvious how the structure in the
long O(\/Z)fpath can be exploited in another manner to achieve such bounds. Varying
mutation rates like p = (1 + ¢ mod()/{ may be a solution. But this requires a more
detailed investigation. Thus, the question, whether long O(\/Z)fpath problems can be
solved in polynomial expected time by a (1 + 1)-EA must be left unanswered in this

note.

16

6 Final Remark

It was claimed in the title of this note that mutation and selection can solve long path
problems in polynomially bounded expected time. As a consequence, the (1 + 1)-EA
must output the correct answer whenever it terminates. Since local and hence global
optimality can be checked by considering the objective function values of the points
in the 1-bit neighborhood of the current solution, the expected runtime of the EA
increases to O({*). But note that it is sufficient to check local optimality after every
(th trial: This increases that number of trials by a factor of two, so that the bound

O((?) remains valid.

References

Antamoshkin, A.N., V.N. Saraev, and E.S. Semenkin (1990). Optimization of uni-

modal monotone pseudoboolean functions. Kybernetika 26(5), 432-441.

Bronstein, ILN. and K.A. Semendjajew (1988). Taschenbuch der Mathematik;
Erginzende Kapitel (5th ed.). Thun: Verlag Harri Deutsch.

Davis, L. (1991). Bit—climbing, representational bias, and test suite design. In
R. Belew and L. Booker (Eds.), Proceedings of the Fourth International Conference

on Genetic Algorithms, pp. 18-23. San Mateo, CA: Morgan Kaufmann.

Elster, K.-H., R. Reinhardt, M. Schiduble, and G. Donath (1977). FEinfihrung in die

nichtlineare Optimierung. Leipzig: Teubner.

Horn, J., D.E. Goldberg, and K. Deb (1994). Long path problems. In Y. Davidor,
H.-P. Schwefel, and R. Manner (Eds.), Parallel Problem Solving from Nature, 3, pp.
149-158. Berlin and Heidelberg: Springer.

losifescu, M. (1980). Finite Markov Processes and Their Applications. Chichester:
Wiley.

17

Mitchell, M. and J.H. Holland (1993). When will a genetic algorithm outperform hill
climbing? In S. Forrest (Ed.), Proceedings of the Fifth International Conference on
Genetic Algorithms, p. 647. San Mateo, CA: Morgan Kaufmann.

Miihlenbein, H. (1992). How genetic algorithms really work I: Mutation and hill-
climbing. In R. Méanner and B. Manderick (Eds.), Parallel Problem Solving from
Nature, 2, pp. 15-25. Amsterdam: North Holland.

Rechenberg, 1. (1973). FEwvolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Stuttgart: Frommann—Holzboog Verlag.

18

