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Abstract— For solving multimodal problems by means of evolu-
tionary algorithms, one often resorts to multistarts or niching
methods. The latter approach the question: ‘What is else-
where?’ by an implicit second criterion in order to keep
populations distributed over the search space. Induced by
a practical problem that appears to be simple but is not
easily solved, a multiobjective algorithm is proposed for solving
multimodal problems. It employs an explicit diversity criterion
as second objective. Experimental comparison with standard
methods suggests that the multiobjective algorithm is fast and
reliable and that coupling it with a local search technique
is straightforward and leads to enormous quality gain. The
combined algorithm is still fast and may be especially valuable
for practical problems with costly target function evaluations.

I. INTRODUCTION

A multitude of methods from within and beyond evolutionary
computation (EC) has been applied to real-valued multimodal
optimization problems. These are generally considered the
harder, the more basins of attraction they contain, and the
less smooth the fitness landscape is. Additionally, a search
space that extends over a large number of dimensions is said
to complicate search for the desired global or good local
optima (e.g. [1]).
However, in a real-world setting, even a low dimensional
problem may turn out to be quite difficult. This can stem
from different factors, one of which would be a very small
extent of the basins that contain the sought optima. Fig. 1
visualizes the fitness landscape of an optimization problem
which possesses this property. The application background
will be detailed in §III, but for now it suffices to know that
there are only two variables x1 and x2, and that the desired
optima (function values do not depend on variable order and
are thus symmetric to the main diagonal, we minimize) are
located near (0.650, 0.001) and (0.001, 0.650), respectively.
It is easy to see that the appropriate basins are small; in the
figure, they are hardly recognizable at all.
Another complicating factor would be uncertainty about the
relative target function value of the sought optima. If it is not
a priori known whether we are looking for global, or even
the best local optima, there is no way around enumerating
all existing optima and choose the ’right’ solution out of
these afterwards. Such difficulties may occur in cases where
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it is not possible to integrate the whole available application
specific knowledge into the established target function, i.e.
if its value must be obtained by simulation and the existing
simulation tool is not able to represent all important features
of the real system.
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Fig. 1. 400× 400 points grid sample of 2-dimensional example problem,
minimization. Desired optima near (0.650, 0.001) and (0.001, 0.650).

Nevertheless, many different evolutionary algorithms (EAs)
may be employed to tackle problems that exhibit both types
of difficulties because they are able to detect several optima
simultaneously or subsequently. The latter may be achieved
by multistart approaches as sequential niching [2], whereas
the former is established by means of diversity maintenance.
That is, candidate solutions of the search populations are pre-
vented from converging to the same region by implicitly or
explicitly keeping them apart (see [3]). Prominent examples
are crowding [4] and fitness sharing [5], and their successors.
More recent approaches include, but are not limited to:
UEGO [6], clearing [7], species conservation [8], clustering
based niching [9], and cellular EA (CEA) [10]. Although
there is no commonly accepted formal definition of what a
niching method is (see [11]), most of these algorithms may
be subsumed under the term niching EA. They all use the
distance between candidate solutions (diversity) as implicit
criterion which shall be maximized.



However, nothing prevents us from utilizing a diversity crite-
rion directly. A step into this direction has been taken in the
shifting balance GA [12]. But although it employs a separate
diversity evaluation via subpopulation distance computation,
it finally resorts to a single objective by weighting distance
and target function values.
In this work, we suggest a more radical approach and
introduce diversity in search space as an additional objective
and treat the resulting combined problem by an evolutionary
multiobjective algorithm (EMOA). The expected benefit is
twofold:

• It enables placing solution candidates in basins that
would otherwise go unnoticed due to their small size.

• We obtain a good overview of the available ’interesting’
search space regions in a single run.

One may argue that the suggested method is doomed to
fail for high-dimensional original problems. However, we do
not make claims concerning such problems but instead only
demonstrate its usefulness on a low-dimensional real-world
problem.
In the next sections, we will first concretize our main goals
(§II), followed by an introduction of the sample application
(§III). We treat the example problem by simple multistart
EAs (§IV) and introduce our multiobjective approach in
§V, followed by hybridizations of multiobjective/local search
algorithms for improved solution quality (§VI), and the
conclusions.

II. AIMS AND METHODS

The main objective of this paper is to investigate if the newly
suggested multiobjective approach to solve multimodal prob-
lems is feasible. Concerning efficiency and solution qual-
ity, it shall be at least competitive to well adapted naive
multistart EAs, namely (1+1) and (µ,λ) evolution strategies
(ESs). Furthermore, we want to relate its performance to
the one measured for CEAs as a representative of EAs
specialized on multimodal problems. It may be expected
that multistart methods will outperform our multiobjective
approach in terms of solution quality (approximation error).
We thus additionally investigate if this anticipated advantage
can be outrun by a 2-phase algorithm resulting from the
hybridization of multiobjective with local search methods.
We perform all comparisons experimentally, and parameter
values of the employed algorithms are adapted to the problem
by means of the sequential parameter optimization (SPO)
[13], a largely automated tuning method specially designed
for nondeterministic optimization techniques. We measure
performance by means of the average evaluations to solution
(AES) and mean best fitness (MBF) indicators. Alternatively,
the success performance 2 (SP2) measure [14] could be used.
However, it enforces stopping the optimization process at
the first encounter of the optimum, resulting in variable run
lengths. As this is undesirable from the viewpoint of the
tuning method, we allow for repeated multistarts even after

the first hit, counting up the number of hits per run under a
fixed run length.
The AES cannot be determined properly with an upper bound
of evaluations for one run T , because T may still be too
small to let runs terminate naturally. We therefore resort
to estimating it from the number of hits h of the sought
optimum over all repeats r for a given parametrization. Note
that the approximation error introduced by this simplification
shall be rather small for multistart techniques as the separate
subruns are independent. Only the result obtained from the
last subrun may be wrong because it ends prematurely.

AES ≈ AES =
T · r∑r
i=1 hi

(1)

To avoid a possible zero denominator, we report the average
number of hits ∅hi, which is equivalent to T

AES
. As a

side effect, our measure gets Poisson-distributed instead of
geometrical.
As we undertake a first study, the obtained assessment of
our approach is necessarily very rough. However, it shall
only motivate or obviate further research in this direction.
We therefore abstain from using many test problems and
concentrate on only one interesting instance.

III. PHASE-EQUILIBRIA CALCULATION PROBLEMS

The knowledge of phase equilibria is required for the design
and optimization of separation processes which are essential
parts of typical chemical plants. The aim of phase-equilibria
calculation (PEC)1 is to quantitatively relate the variables
(in particular, temperature T , pressure p, and composition
x) which describe the state of equilibrium of two or more
homogenous phases [15].
In any problem concerning the equilibrium distributions of
some component i between two phases α and β, one must
always begin with the equality of the chemical potential µ
as

µα
i = µβ

i , ∀i (2)

To establish the relation of µα
i

2 to T , p, and xα
i , it is

convenient to introduce a certain auxiliary function such as
fugacity coefficient ϕα

i (T, p, xα
i ) which can be calculated by

a thermodynamic model. Then, (2) can be rewritten

xα
i · ϕα

i = xβ
i · ϕ

β
i , ∀i (3)

Typically, the calculation is performed at constant tempera-
ture and pressure, and the remaining concentrations xα

i and
xβ

i , respectively, are to be found.
Solving phase-equilibria problem according to (3) may lead
to trivial solutions, i. e. xα

i = xβ
i , which are mathematically

correct but have no physical meaning (except at the so-called

1This is not a standard abbreviation, we use it only for simplification.
2We use the domain specific notation with upper index denoting different

phases and lower index standing for separate substances.



critical demixing point). To avoid this, the initial guesses for
the minimization procedure are not allowed to be too far
away from the correct solutions, provided that the correct
solutions are known.
In case of polymer solutions, initialization is very critical,
because the concentration of the polymer in the solvent-
rich phase can be in the magnitude of 10−20, which is a
numerical challenge for a simulation program [16]. Another
difficulty rises as the number of components in the mixture
increases, because the possible number of additional phases
also increases. All of these point out the need for a robust al-
gorithm to solve the phase-equilibria calculation for arbitrary
number of components and phases, which is also applicable
to polymer solutions.
As representative for a relatively simple test problem in the
context of phase-equilibria calculation, we use a simple two-
component mixture of water and pentanol, hereafter referred
to as PEC1. This type of liquid-liquid equilibrium data are
necessary for the design and optimization of liquid-liquid
extractors and of decanters in distillation systems.
The two variables x1 and x2 denote xα

i and xβ
i , respectively.

They correspond to the concentrations of water in the water-
rich phase (for the larger of the two) and in the pentanol-
rich phase (for the smaller one). Under the assumption that
x1 > x2, and the x1 and α stand for water and x2 and β for
pentanol, we have x1 = xα

1 , and x2 = xβ
1 .

For this two-component problem, two equations of type (3)
have to be satisfied, resulting in two error values e1 and e2.
A feasible solution to the problem shall exhibit errors below
10−10 due to practical requirements. In the following, we
aggregate e1 and e2 into a single target function value by
using the sum of squares (4), which is to be minimized.

f(x1, x2) = e2
1 + e2

2 (4)

Additionally, we define a criterion for detecting the search
points in the basin of attraction of the sought optimum (5).
As the exact basin is not known, it is estimated from a grid
sample.

√
(x1− 0.65)2 + (x2− 0.001)2 ≤ 0.07 ∧ f(x1, x2) ≤ 0.01

(5)
If not otherwise stated, we model the PEC1 problem at
a temperature of 90°C, for which the sought optimum
is located near the coordinates (0.650, 0.001). As system
properties change with temperature and pressure, the pursued
optimum also moves through the search space. Table I depicts
approximate solutions for different temperatures and constant
pressure of 1.0132 bar.

IV. TREATMENT WITH STANDARD EAS

As can be seen from Fig.1, the predominant diffulty any
optimization method must overcome in order to solve PEC1
is to find the ‘right’ basin of attraction. Different evolutionary
algorithms possess different abilities to handle this global

TABLE I
THE SOUGHT OPTIMUM OF PCE1 AT DIFFERENT TEMPERATURES

variable 40°C 60°C 90°C
x1 0.74698 0.7097 0.65084
x2 0.00020913 0.00038142 0.00082809

search. Most approaches fall in the categories of diversity
maintenance or multistart, or both, as previously stated.
However, parallelization of search in time or space gradually
decreases local search performance if the effort is kept
constant, so that at some point, hybrids of EAs with local
search methods may get interesting. We thus concentrate
on the basin finding step first, and, for the time being,
leave it open whether optimization within a basin is done
with another algorithm. To achieve an overview over the
performance of standard EAs on the basin finding part of
the PEC1 problem, we apply (1+1) and (µ,λ) evolution
strategies (ESs), and CEAs with Watts-Strogatz small-world
model connections on top of a ring topology as utilized in
[17] (these are called swn-CEA in the following). Recent
investigations indicate that multistart methods are often at
least competitive to more complex EAs [18], so that all three
algorithms are enhanced with a simple multistart mechanism,
triggered by a number of generations without improvement.
For the CEAs, this resembles a number of loosely coupled
(1+1)-EAs that are all started anew if they all fail to improve
during a certain number of iterations. As only global search
capabilities are of interest here, we also initiate a restart
whenever the ‘right’ basin is found.
The available PEC1 simulator is relatively fast and allows
for ≈ 20 to 50 target function evaluations per second on a
modern PC. But then, in a real-world situation, engineers
dealing with these problems want them solved in minutes at
most. Consequently, we can afford only around 104 simulator
calls.

A. Experiment 1: Are naive (multistart) EAs or CEAs effi-
cient in detecting the desired optimum of the PEC1 problem?

Pre-experimental planning: First experiments indicate that
without multistart, the desired optimum is very rarely at-
tained for (1+1) and (µ,λ)-ES as well as for CEAs. A
manually parametrized (stagnation stop s = 20, σinit =
0.1, τ = 0.1, one mutation strengh self-adaptation after
Schwefel [19]) multistart (1+1)-ES detects the optimum 20
times in 10 runs of 20000 evaluations each. Its estimated
AES is thus 10000. We therefore determine the run length
for the SPO runs to this number of evaluations as we expect
that the tuned variants will perform even better.

Task: Compare the performance of well parametrized simple
hillclimbing (1+1)-EA and (µ,λ)-EA in terms of the number
of hits h of the basin of the predefined optimum. As our data
is Poisson distributed and most likely not normal (h < 9),
we employ the Mann-Whitney U-test to detect non-equality
(p-value < 0.05) between the best performing variants of the
three algorithms.



TABLE II
SPO ALGORITHM DESIGN

LHDini budget repeats merge
100× 4 1000 4 : 30 mean

Setup: The parameters of all three algorithms are tuned by
means of the SPO method, using the design given in Tab. II,
with only one new parameter set tested in every iteration. The
number of repeats is successively increased up to 30 until
the new and the current best configuration can be separated
at a p-value below 0.05 by a random permutation test as
described in [20]. The resulting best configurations and
the medium configurations from the initial latin hypercube
design (LHD) are validated with 30 repeats, respectively.
Wherever appropriate, 2-point crossover is applied to the
object variables, and intermediate recombination to the mu-
tation strenghts. All runs are stopped after T = 10000
evaluations. Limits for the tuned parameters are given in
Tab. III.

Results/Visualization: The best found configurations for all
three algorithms (SPO best) are depicted in Tab. IV, together
with the median configuration of the initial LHD as represen-
tative of an ‘average’ parameter setting. Figures 2 and 3 show
the parameter settings of all SPO tested configurations, for
the (1+1)-EA and the swn-CEA, respectively. They are split
into 3 equally sized groups according to quality.

Observations: Tab. IV indicates that (1+1)-EA and swn-CEA
perform a lot better than the (µ,λ)-EA. Furthermore, none
of the initial LHD parameter settings for the latter lead to
any detection of the sought basin. Whether an average (1+1)
parameter setting performs reasonably well, this is not so for
the swn-CEA. However, after tuning, it is able to detect the
important region approximately as often as an average (1+1)-
EA. Figures 2 and 3 exhibit interesting similarities between
successful parameter settings of (1+1)-EA and swn-CEA:

TABLE III
EA ALGORITHM DESIGNS: POPULATION SIZE, SELECTION PRESSURE,
LEARNING RATE, INITIAL MUTATION STRENGTH, STAGNATION STOP,

REWIRING PROBABILITY

EA µ λ
µ

τ σinit s β

(1+1) (1) (1) 0 : 1 0.01:0.5 10:100 —
(µ,λ) 5:150 3:10 0 : 1 0.01:0.5 1:20 —
swn-CEA 5:150 (1) 0 : 1 0.01:0.5 1:20 0:0.2

TABLE IV
EA BEST DETECTED ALGORITHM DESIGNS (SEE TAB. III)

µ λ
µ

τ σinit s β ∅hi

(1+1), top: median LHD, bottom: best SPO
(1) (1) 0.635 0.385 61 — 4.13
(1) (1) 0.18 0.350 10 — 7.50
(µ,λ), top: median LHD, bottom: best SPO

13 6.89 0.125 0.066 11 — 0.00
7 3.24 0.020 0.493 18 — 0.53
swn-CEA, top: median LHD, bottom: best SPO

77 (1) 0.075 0.110 7 0.035 0.33
5 (1) 0.033 0.500 1 0.140 4.00
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Fig. 2. Parameter effect split plots of the (1+1), depicting all configurations
tested by SPO, separated into 3 groups of equal size. Parameters: learning
rate, initial mutation strength, and stagnation stop (number of unsuccessful
generations).

The initial mutation strengths (step sizes) are driven towards
the upper limit of 0.5, and the stagnation stop towards the
lower limit (10 and 1, respectively). Lower rewiring (only
CEA) and learning rates have a tendency to enable better
performance, and small population sizes (only CEA) are
obviously better than larger ones.
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Fig. 3. Parameter effect split plots for the swn-CEA, all SPO-tested
configurations, separated into 3 groups of equal size. Parameters: population
size, rewiring rate for the small-world connectivity, learning rate, initial
mutation strength, and stagnation stop.

Discussion: Mann-Whitney U-tests between the tuned and
the median LHD variant of each of the three algorithms as
depicted in Tab. IV return p-values below 10−4 in all cases.
That is, the best found configurations perform significantly
better than their average untuned counterparts. As the re-
ported differences are quite large, this is well in accordance
with intuition. In the same manner, we can safely reject
all hypotheses which pairwise assume equal distributions
behind the best variants. Here, p-values are even lower
(< 10−5), meaning that all visually detected differences are
also statistically siginificant. This indicates that the (1+1)-EA
performs better than the swn-CEA, which is in turn better
suited for basin finding on the PEC1 problem than the (µ,λ)-
EA.
On a first glance, the tuned parameter settings may seem
surprising. However, they are optimized for enabling as many
restarts as possible. Interestingly, with an initial stepsize
of around 0.5, we nearly arrive at random search. Self-
adaptation of mutation strengths is almost switched off as



would be the case for τ = 0. Adaptation of well performing
(1+1)-EA into a rapid multistarter is relatively fast (in terms
of the tuning effort) as it has only three parameters instead
of 5 and its population size is already set ‘right’.
The swn-CEA ‘emulates’ a rapid multistarter by reducing
its population size to a minimum. Within such small popu-
lations, modifying the rewiring rate does not entail much
change in algorithm behavior, as topology diameters are
also very small. The remaining parameters follow the same
tendency as for the (1+1)-EA, resulting in a very globally
oriented and very stochastic search process.
This is exactly the feature the (µ,λ)-EA is missing: It can
not adapt into a rapid multistarter because it requires at least
5 × 3 = 15 evaluations per iteration, whether the swn-CEA
needs only 5 in a minimal configuration.
Concluding, one can state that for the basin finding phase,
successful algorithms shall put small weight on search paths,
but detect stagnation as fast as possible and initiate search at
a new location. With nearly 600 restarts in 10000 evaluations
for the best (1+1)-EA, an average search path is shorter
than 20 steps. In effect, a restart is done whenever success
probabilities drop below a certain level. We conjecture that
it is even profitable to errorneously stop search at a good
location if some ‘unlucky’ mutations occur. A disadvantage
of this technique may be that it is presumably difficult to
cluster the final solutions obtained from the restarts as they
may still be far away from the corresponding optimum.

V. A NEW APPROACH: EMOAS AS MULTIMODAL EAS

Experiment 1 has shown that it is possible, but difficult to
obtain a search point within the basin of attraction of the
sought optimum by means of multistart EAs. This holds even
if diversity maintenance schemes are applied as is the case
for the swn-CEA. Additionally, one ends up with a set of
search points that is fairly scattered over the available space.
It would thus be difficult to determine which of the many
search paths lead to the same optimum, so that some sort of
clustering has to be applied.
To overcome this difficulty, we suggest to employ a multiob-
jective optimization algorithm, namely an EMOA, and use a
diversity-based criterion next to the original target function.
Note that in contrast to measuring pairwise distances between
search points as is common in niching techniques, our second
criterion shall only depend on the position of a single
individual, without taking the rest of the population into
account. Any dependency on other individuals would lead
to changes in the second’s criterion values of large parts of
the population if one or more individuals are moved due
to application of search operators. This would prevent fast
approximation of the Pareto front as the true front itself then
moves, according to the movement of the population. We
thus switch from relative to absolute distances.
In case of our two-variable PEC1 problem, such an absolute
criterion is easy to achieve: The distance is obtained from
|x1 − x2|, and it can be converted to a similarity value by

subtracting it from 1, which is the maximum of this term for
x1, x2 ∈ [0, 1]. This transformation enables to minimize on
this criterion (6) as well as on the original target function.
Note that it makes sense to reward individuals with small
similarities as we know in advance that for the trivial solution
of PEC1, x1 always equals x2.

fsim(x1, x2) = 1− |x1− x2| (6)

Several evolutionary multiobjective optimization algorithms
are available, i.e. NSGA2 and SPEA2. In principle, each
of them could be applied. However, we choose the SMS-
EMOA [21] as it is known to perform reasonably well even
in case of very limited function evaluation budgets. For the
same reason, we employ a small population size (20). On
the one hand, this is motivated by our need for fast progress
towards the Pareto Front. On the other hand, it is desirable
to obtain a small approximate Pareto Set with at least one
search point within the sought basin.
The task for the EMOA is to filter out search points that
lead to the same optimum. It is presumed to work nearer
to the basin level than to the local search level, or, stated
differently, as a global search method. This is exactly what
we demand from the multistart methods in §IV.
In the following experiment, we investigate the SMS-EMOA
with the original target function and the additional similarity
criterion (6) under similar conditions as applied to the
multistart methods in experiment 1.

A. Experiment 2: Are EMOAs capable of reliably detecting
points in the sought basin of attraction?

Pre-experimental planning: First test runs lead to the
conclusion that evolution strategy (ES)-like search operators
lead to unsatisfactory results as they require much longer runs
to achieve the same level of S-metric (hypervolume) values
than standard NSGA-2 operators SBX and PM. With these,
it was found that tuning has only little effect on performance.
We therefore do not apply SPO here. The critical run length
seems to be at around 2000 evaluations, which are needed
to obtain S-metric values larger than 0.9 . Further analysis
reveals that this seems to be a good indicator for placement
of individuals in vicinity of the sought optimum.

Task: Within each run, the EMOA shall put at least one
individual of the final approximated Pareto front into the
sought basin with probability near 1.

Setup: The SMS-EMOA is run 30 times for T = 2500
evaluations. The population size is 20, we employ crossover
and mutation operators SBX and PM with distribution indices
ηc = 15 and ηm = 20, as common for NSGA-2. Hits
of the sought basin are detected via (5), tested against all
individuals of the final population.

Results/Visualization: In 30 runs, 31 of the obtained indi-
viduals fulfill the basin condition (5), sometimes up to three
per run. 80 % deliver at least one point in the basin, 6 do not.
However, the final populations of the unsuccessful runs all



contain individuals that are very near to the basin. Figure 4
depicts 3 example final populations.
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Fig. 4. Three of 30 randomly picked final populations, left column: Pareto
sets, right: Pareto fronts. The interesting region is around x1 = 0.65.

Observations: Two interesting facts are recorded. Firsty, the
final populations appear to be very homogenous, as can be
seen in Fig. 4. Secondly, it often happens that individuals of
the final front are placed on both sides of the sought basin,
none of them coming too near, as if driven apart by each
other. Additionally, it shall be noted that very few individuals
of the final fronts point to the trivial solution. Usually, only
one of each front is recognizable located near to it.

Discussion: We can state that the SMS-EMOA is able to de-
tect ‘good’ points with high probability. A direct comparison
to the multistart methods is not possible with the available
data as their runs are much longer. However, it is obvious
that the multiobjective approach is at least competitive to
them, with the additional advantage of returning only a small
result set. It may well be possible to increase the EMOA
performance even further by taking a closer look at its
parameters, or at the modeling of the second objective. For
the multistart methods, this is unlikely, unless new search
operators are introduced.
As it frequently happens that the interesting region is sur-
rounded by two or more individuals with none of them

getting really close, one may reconsider the basin condition
(5); it may be too strict. However, this condition has been
set up as a heuristic only. Determining the real value of the
returned points is only possible by additionally applying a
local search method afterwards.

VI. A HYBRID EMOA/LOCAL SEARCH APPROACH

The idea is obvious and its realization straightforward. As
the EMOA delivers a set of nearly Pareto-optimal points that
represent relatively low error in phase equlibrium approxi-
mation over a range of distances to the trivial solutions, it is
still necessary to decide for each of these points whether
it is close to a nontrivial solution. For this purpose we
deploy a deterministic direct search algorithm, namely the
Hooke and Jeeves [22] method, to each solution in decision
space of the EMOA. If the local search approaches a trivial
solution it is aborted. This rule fires if |x1 − x2| < 0.01.
Oherwise the method shall get stuck somewhere in the
search space [0, 1] × [0, 1]. In this case only solutions with
singleobjective function value less than 10−10 are candidates
for the nontrivial solutions of the phase equilibrium detection
problem.

A. Experiment 3: Does the hybrid approach with MOEA and
local search lead to a realiable detection and accurate local-
ization of the nontrivial solutions of the phase equilibrium
detection problem?

Pre-experimental planning: It must be precluded that the
effect of hybridization to be observed is actually caused
by the direct search method used in the second phase of
the hybrid algorithm. As a consequence, we have run the
Hooke/Jeeves method in a multistart manner 500 times with
starting points sampled independently from a uniform dis-
tribution with support [0, 1]2. We applied the decision rules
described above for distinguishing the outcomes of the local
search. Table V summarizes the results of our experiments
for temperatures at 40◦, 60◦, and 90◦ Celsius. Notice that
the Hooke/Jeeves search method is parameterized to stop if
the step size is less than 10−10. Therefore it may get stuck
with considerable distance to an optimum.

TABLE V
PERFORMANCE OF HOOKE/JEEVES ALGORITHM

Temperature #runs to #runs to #runs relative
(in Celsius) trivial nontrivial got success

solution solution stuck frequency
40◦ 494 4 2 0.008
60◦ 494 4 2 0.008
90◦ 482 14 4 0.028

Evidently, the success probabilities are much too small for
deploying such an approach in practice. The hybrid method
should have a significantly higher success rate.

Task: For each approximated Pareto set of the EMOA, apply
the Hooke/Jeeves direct search method for each point of
the set. If necessary, apply a statistical test to check for
significant differences in the success rates if compared to the
performance of the multistart variant documented in table V.



Setup: We do not use parameter tuning at this point. Simply
deploy some standard implementation of the Hooke/Jeeves
method (step size contraction factor ρ = 0.5, initial step
size s = 0.001) that is stopped as described above. The
EMOA is run with population size of 20 individuals and a
maximum number of 2500 function evaluations in total. The
remaining parameters are identical to the parameters chosen
in the previous section.
Results/Visualization: The EMOA was run 25 times and the
resulting solution set of each run was fed to the Hooke/Jeeves
direct search method in a multistart fashion. The results are
summarized in table VI.

TABLE VI
AVERAGE PERFORMANCE OF HYBRID ALGORITHM

temperature #runs to #runs to #runs relative
(in Celsius) trivial nontrivial got success

solution solution stuck frequency
40◦ 11.2 ± 2.7 7.0 ± 3.1 1.8 ± 2.3 0.35 ± 0.15
60◦ 8.5 ± 3.1 10.0 ± 3.3 1.5 ± 1.7 0.50 ± 0.17
90◦ 3.8 ± 2.2 15.1 ± 2.9 1.1 ± 1.6 0.76 ± 0.15

For example, at temperature 90◦ Celsius on average 15.1 of
the 20 individuals of each EMOA run were ’transformed’
to nontrivial solutions of the phase equilibrium problem.
In other words: The preprocessing step with the EMOA
has generated starting points for the Hooke/Jeeves multistart
method such that the success probability is about 15.1/20
≈ 76 %. For sake of a fair comparison, we have to take
into account the 2500 function evaluations of the EMOA in
the preprocessing step. Here, we take the most pessimistic
point of view by assuming that these function evaluations
have been used for runs to a trivial solution. Since such
a run requires 138.0 function evaluations on average (see
second column of last row in table VIII), we regard the 2500
function evaluations of the preprocessing step as 2500/138.0
< 19 runs to a trivial solution. As a consequence, our con-
servative estimator of the success probability is 15.1/(20+19)
> 38.7 %. Table VII provides an overview regarding the
improvment of the success probability.

TABLE VII
IMPROVEMENT OF SUCCESS PROBABILITY

temperature Success Probability
(Celsius) Hooke&Jeeves Hybrid Approach Hybrid Approach

(Multistart) (EMOA + H&J) (pessimistic)
40◦ 0.008 0.350 0.212
60◦ 0.008 0.500 0.303
90◦ 0.028 0.756 0.387

Observations: The runtime of the Hooke/Jeeves method
significantly depends on the solution finally obtained (see
table VIII). This behavior is caused by the effective stopping
criterion for runs heading to a trivial solution. The effort
required to locate a nontrivial solution to the desired accuracy
is a order of magnitude higher. An effective stopping criterion
for runs to nontrivial solutions might be useful. For example,
we can stop such a run if we recognize that it is heading to a
nontrivial solution that has been accurately localized already.
Discussion: Using the multiobjective approach as a pre-
processing step to obtain promising starting points for some

TABLE VIII
AVERAGE NUMBER OF FUNCTION EVALUATIONS OF HYBRID ALGORITHM

temperature #FEs #FEs #FEs
(in Celsius) to trivial to nontrivial until

solution solution stuck
40◦ 199.0 2018.5 2101.9
60◦ 195.0 2173.5 2384.6
90◦ 138.0 1476,5 4313.6

local search method has boost the success probability from
2.8 % to 75.6 % (or 38.7 %, depending on the point of
view) when considering the test problem with 90◦ Celsius.
Needless to say, this is a significant improvement. For
lower temperatures the success probability does not increase
that dramatically. This behavior is probably caused by the
location of the optima: The lower the temperature, the closer
moves the optimum to the border of the search space.

VII. CONCLUSIONS

The phase equlibrium detection problem has revealed the
limitations of the standard optimization approaches. Al-
though it is possible to find nontrivial solutions to the
problem by multistart techniques the success probabilities for
locating a nontrivial solution are too low such that the effort
required is prohibitive for practical use. In such a case the
integration of domain knowledge into the solution approach
is inevitable. Here, we formulated the application-specific
knowledge about the process in a second objective function
and we used a multiobjective evolutionary algorithm to gen-
erate promising starting points for a local search method that
is applied in a multistart manner. The experimental results
obtained so far clearly indicate a significant improvement
with respect to standard approaches. We are confident that
the approach presented here can be developed to a technique
suited for practical use also for more complicated problems.
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