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Abstract-
We present four abstract evolutionary algorithms for multi-
objective optimization and theoretical results that charac-
terize their convergence behavior. Thanks to these results
it is easy to verify whether or not a particular instantia-
tion of these abstract evolutionary algorithms offers the
desired limit behavior. Several examples are given.

1 Introduction

Theoretical results on multi-objectiveevolutionary algorithms
are scarce. This work extends the results given in Rudolph
(1998a) and van Veldhuizen (1999) for finitely large search
spaces. Related work treating continuous search spaces may
be found in Rudolph (1998b) and Hanne (1999).

The plan is as follows: It is assumed that the evolutionary
algorithms are Markov processes which have to cope with
partially ordered fitness values—this includes optimization
under a single objective function as well as multiple objec-
tive functions. Therefore section 2 recalls some background
material concerning partially ordered sets and finite Markov
chains. Abstract versions of evolutionary algorithms and their
convergence behavior are presented in section 3, whereas sec-
tion 4 contains results how to verify the preconditions of the
convergence results along with a variety of examples. Finally,
we draw conclusions in section 5.

2 Mathematical Prelude

2.1 Partially Ordered Sets

Let F be a set. A reflexive, antisymmetric, and transitive re-
lation “�” on F is termed a partial order relation whereas a
strict partial order relation “�” must be antireflexive, asym-
metric, and transitive. The latter relation may be obtained by
the former relation by setting x � y �� �x � y� � �x �� y�.
After these preparations one is in the position to turn to the
actual objects of interest.

Definition 1 Let F be some set. If the partial order relation
“�” is valid on F then the pair �F ��� is called a partially
ordered set (or short: poset). If x � y for some x� y � F then
x is said to dominate y. Distinct points x� y � F are said to
be comparable when either x � y or y � x. Otherwise, x and
y are incomparable which is denoted by x k y. If each pair of
distinct points of a poset �F ��� is comparable then �F ���

is called a totally ordered set or a chain. Dually, if each pair
of distinct points of a poset �XF ��� are incomparable then
�F ��� is termed an antichain. ut

For example, �IRn��� with n � � is a partially ordered
set when x � y means xi � yi for all i � �� � � � � n. One ob-
tains a strict partial order relation “�” from this partial order
relation if it is additionally required that x �� y. Notice that
the poset �IRn��� is neither a chain nor an antichain. The
situation changes for the poset �IR��� with x � y if and only
if x � y. Since each pair of distinct points in IR is compara-
ble the poset �IR��� is totally ordered and therefore a chain.
An example for an antichain is the set of “minimal elements”
introduced next.

Definition 2 An element x� � F is called a minimal element
of the poset �F ��� if there is no x � F such that x � x�.
The set of all minimal elements, denoted M�F ���, is said
to be complete if for each x � F there is at least one x� �
M�F ��� such that x� � x. ut

If the poset �F ��� is finite then the completeness ofM�F ���
is guaranteed—in contrast to infinitely large posets.

Let f � X 	 F be a mapping from some set X to the
poset �F ���. For some A 
 X the set

Mf �A��� � fa � A � f�a� �M�f�A����g

contains those elements from A whose images are minimal
elements in the image space f�A� � ff�a� � a � Ag.

2.2 Finite Markov Chains

If S is a finite set and fXt � t � IN�g an S-valued random
sequence with the property

PfXt�� � j jXt � i�Xt�� � it��� � � � � X� � i�g �
PfXt�� � j jXt � ig � pij

for all t � � and for all pairs �i� j� � S�S then the sequence
fXt � t � IN�g is called a homogeneous finite Markov chain
with state space S. Since S is finite the transition probabili-
ties can be gathered in the transition matrix P � �pij�i�j�S .
The row vector ��t� with �i�t� � PfXt � i g denotes the
distribution of the Markov chain at step t � �. Since

��t� � ��t � ��P � ����P t



for all t � �, a homogeneous finite Markov chain is com-
pletely specified by its initial distribution ���� and its transi-
tion matrix P . The kth step transition probabilities are

pij�k� � PfXk � j jX� � ig � ei P
k e�j �

where ei is the ith unit vector, such that

�j�t� �
X
i�S

�i��� 
 pij�t� �

A matrix A � n�m is termed nonnegative if aij � � and
positive if aij � � for all i � �� � � � � n and j � �� � � � �m. A
nonnegative matrix is called stochastic if each row sum equals
one. Thus, transition matrices are stochastic. A stochastic
square matrix P is irreducible if

�i� j � S � �k � IN � pij�k� � �

and it is primitive or regular if

�k � IN � �i� j � S � pij�k� � � �

Therefore, every positive matrix P is regular and every regu-
lar matrix P is irreducible.

Lemma 1 (Iosifescu 1980, p. 89)
A homogeneous Markov chain with finite state space and ir-
reducible transition matrix visits every state infinitely often
with probability one regardless of the initial distribution. ut

In order to clarify the notion of “stochastic convergence to
the set of minimal elements” we need measures on the dis-
tances between finite point sets. The first measure used here
is characterized as follows:

Remark 1 If A and B are subsets of a finite ground set X
then d�A�B� � jA �Bj � jA �Bj is a metric on the power
set of X.
Proof: Let X � fX�� X�� � � � � Xng and a � f�� �gn with
ai � �A�Xi� be the incidence vector of set A 
 X. Since

jA �Bj �
nX

i��

ai bi and

jA �Bj �
nX

i��

�ai � bi � ai bi�

one obtains

d�A�B� �
nX
i��

�ai � � ai bi � bi�

�
nX
i��

	��� bi� ai � ��� ai� bi


�
nX
i��

jai � bij � ka� bk� �

Thus, d�A�B� is equivalent to the Hamming distance be-
tween the associated incidence vectors and therefore a metric
on X. Clearly, d�A�B� � d�B�A�. ut

The second measure uses the quantity �B�A� � jAj�jA�Bj
counting the number of elements that are in set A but not in
set B.

Definition 3 Let At be the population of some evolutionary
algorithm at iteration t � � and F t � f�At� its associated
image set. The evolutionary algorithm is said to converge
with probability 1 to the entire set of minimal elements if

d�Ft�F
��	 � with probability 1 as t	�

whereas it is said to converge with probability 1 to the set of
minimal elements if

�F� �Ft�	 � with probability 1 as t	�

Here, F� denotes the set of minimal elements. ut

It is clear that d�Ft�F
�� 	 � implies �F��Ft� 	 �. But

in the first case the populations size will eventually grow at
least to the size of the set F�. If �F ��� is a chain (e.g.,
if there is only a single objective) then jF �j � �. But if
�F ��� is not a chain (e.g., if there are multiple objectives)
then jF�j may be almost as large as the search space. As
a consequence, the population size should have a manage-
able maximum size. Unfortunately, this requirement makes
the selection procedure more complicated. The next section
illustrates this fact.

3 Base Algorithms & Their Analysis

Let X be the finite search space and f � X 	 F � ff�x� �
x � Xg the fitness function where �F ��� is a partially or-
dered set. The target of the evolutionary search is the de-
tection of some or all members of the set of minimal ele-
ments M�F ���. Each of the following subsections presents
an “evolutionary base algorithm” and its convergence prop-
erty subject to certain conditions. We use the term “base al-
gorithm” because they may be instantiated with many vari-
ation and selection operators without affecting the conver-
gence properties negatively.

3.1 Base Algorithm VV

This base algorithm matches the preconditions of a result in
van Veldhuizen (1999) in the broadest sense.

B��� is drawn at random from X n

A��� �Mf �B������
t � �
repeat
B�t � �� � generate�B�t��
A�t� �� �Mf �A�t� �B�t � �����
t� t� �
until stopping criterion fulfilled



The proof of the result given in van Veldhuizen (1999) is
based on a result presented in Bäck (1996), p. 129, who re-
produced an unpublished result of Hartl (1990) incompletely:
Additional conditions imposed on the selection procedure are
missing. Moreover, Hartl’s proof tacitly presupposes a totally
ordered fitness set so that some special features of partially
(not totally) ordered sets are inevitably not taken into account.
For these reasons we have provided a new proof here.

Proposition 1
If the sequence �Bt�t�� is a homogeneous finite Markov chain
with irreducible transition matrix then d�f�A t��F

�� 	 �
with probability one and in mean as t	�.
Proof: By construction of the algorithm it is guaranteed that
the image set f�At� of At is an antichain and therefore the set
of minimal elements of the poset �f�At���� for all t � �. As
soon as an element of F� � M�F ��� has entered f�At� it
will stay there forever. It remains to show that all elements of
F� will be contained in f�A� � for some random time � with
Pf � � �g � �. Let B��t� � Mf �B�t���� and notice
thatMf �A�t� �B�t � ����� � Mf �A�t� �B��t � �����.
Let a � A�t�� with f�a� 	� F �. Since �F ��� is complete it
is guaranteed that there exists an elements x � X such that
f�x� � f�a�, i.e., a non-optimal element will be discarded
by a better (and finally optimal) one provided that such an el-
ement will occur in the sequence �B�t��t�� at some iteration
t with t � t�. Since the Markov chain is irreducible Lemma 1
ensures that every element of Xn will be visited infinitely of-
ten. This implies that the waiting time of the first occurrence
as well as between two consecutive occurrences of x is finite
with probability one. Therefore non-optimal elements will be
eliminated after a finite number of iterations with probability
one. Moreover, each element b � B��t � �� that is incom-
parable to all elements in A�t� will enter A�t � ��. If such a
b is optimal it will be member of each set A�
� after iteration
t. If it is not optimal then it will be replaced in finite time by
an optimal element (see above). The appearance of such in-
comparable elements b is ensured by the irreducibility of the
Markov chain �Bt�t��. Summing up: All optimal elements
will enter the set A�
� in finite time with probability one and
as soon as this has happened all non-optimal elements have
been discarded. Since optimal elements cannot get lost one
gets d�f�At��F

�� 	 � with probability one and, due to the
boundedness of d�
�F��, also in mean. ut

This base algorithm has a disadvantage: The size of the sets
At will finally grow to the size of the set of minimal elements.
Since this size may be huge this base algorithm offers only
limited usefulness in practice.

3.2 Algorithm AR1

We now describe a variation of base algorithm VV. In order to
constrain the size of the sets At the selection procedure must
be altered considerably. Let n � jBtj and m � n where m
denotes the maximum size of the sets At.

B��� is drawn at random from Xn

A��� �Mf �B������
t � �
repeat
B�t� � generate�B�t � ���
B��t� �Mf �B�t����
C�t� � �
foreach b � B��t� do
Db � fa � A�t� � f�b� � f�a�g
ifDb �� � then A�t�� �A�t� nDb� � fbg
if �a � A�t� � f�a� k f�b� then C�t�� C�t� � fbg

endfor
k � minfm� jA�t�j� jC�t�jg
A�t � �� � A�t�� draw�k�C�t��
t� t� �
until stopping criterion fulfilled

Here, the function draw�k�C� returns a set of at most k
distinct elements from set C drawn by an arbitrary method.

Proposition 2
If the sequence �Bt�t�� is a homogeneous finite Markov chain
with irreducible transition matrix then �F��f�At�� 	 � and
jAtj 	 minfm� jF�jg with probability one and in mean as
t	�.
Proof: By construction of the algorithm it is guaranteed that
the image set f�At� of At is an antichain and therefore the
set of minimal elements of the poset �f�At���� for all t � �.
An element a � At is deleted if and only if there is an ele-
ment in Bt (resp. B�

t ) whose image dominates f�a�. There-
fore an element of F� � M�F ��� will be a member of
the sequence f�At�t�� as soon as it has entered f�A� �. If
such an element b enters At then at least one member of At

is discarded. Elements in Ct are incomparable to all mem-
bers of At. Since the size of Ct may be as large as n it is
necessary to include only that many elements of Ct in At

such that jAtj does not exceed m. This is realized by the
operation At�� � At � draw�k�Ct�. It remains to show
that non-optimal elements in the sequence f�At� will be re-
placed by optimal elements in finite time. This can be veri-
fied by the same argumentation as in the proof of proposition
1: Since �Bt�t�� is an irreducible Markov chain optimal el-
ements will be generated infinitely often with probability 1.
These elements can enter the set A�
� directly, if they dom-
inate elements therein, or via the sets C�
�. Consequently,
�F� �f�At��	 � with probability 1 and in mean. ut

Remark 2 If the image set f�X � is totally ordered then the
base algorithms VV and AR1 are identical. ut

3.3 Algorithm PR

The base algorithms considered so far were using the sets
A�
� as an archive and not as the sets of parents. The next
base algorithm originating from Peschel and Riedel (1977)
makes A�
� to the set of parents.



B��� is drawn at random from Xn

A��� �Mf �B������
t � �
repeat
B�t � �� � generate�A�t��
A�t � �� �Mf �A�t� �B�t � �����
t� t� �
until stopping criterion fulfilled

Proposition 3
Let G be the homogeneous stochastic matrix describing the
transition behavior from A�t� to B�t � ��. If matrix G is
positive then d�f�At��F

�� 	 � with probability one and in
mean as t	�.
Proof: See Rudolph (1998a), p. 351. ut

Two points deserve special mention: First, the size of the
sets A�
�will grow to jF �j limiting the practical use of this al-
gorithm in general (especially if jF �j is large). Second, if ma-
trix G is an irreducible (or primitive) but non-positive transi-
tion matrix then convergence cannot be guaranteed in general.
To see this consider the following example: Let X � f�� �g�

whose partially ordered image set f�X � obeys the relations

f����� f����� f����� f�����

f����� f����� f����� f�����

� � �� � �

� � �� � �

�
�

��

�

Thus, f����� and f����� are minimal and therefore in-
comparable elements whereas incomparable and non-minimal
elements are, for example, f����� and f�����.

Now suppose that A�t� � f���� ���g for some t � �
and that the variation operation, represented by the function
generate(
), inverses exactly one bit uniformly at random in
the population. In this case transition matrix G is irreducible
but not positive. Similarly, if either exactly one bit is inverted
at random in the individual or the individual remains unal-
tered then matrix G is primitive but not positive. Since B�t�
�� can contain only elements from f���� ���� �������� ����
���g and neither of them dominates ��� or ���, one obtains
A�t � �� � A�t� � f���� ���g in the next step. Thus,
the set of minimal elements is not reachable from population
f���� ���gwhich in turn precludes convergence to F �.

3.4 Algorithm AR2

Now we describe a variant of base algorithm PR; actually, we
simply plug in the selection method already used in algorithm
AR1. Again, let n � jBtj and m � n where m denotes the
maximum size of the sets At.

B��� is drawn at random from Xn

A��� �Mf �B������
t � �
repeat
B�t� � generate�A�t � ���
B��t� �Mf �B�t����
C�t� � �
foreach b � B��t� do
Db � fa � A�t� � f�b� � f�a�g
ifDb �� � then A�t�� �A�t� nDb� � fbg
if �a � A�t� � f�a� k f�b� then C�t�� C�t� � fbg

endfor
k � minfm� jA�t�j� jC�t�jg
A�t � �� � A�t�� draw�k�C�t��
t� t� �
until stopping criterion fulfilled

Again, the function draw�k�C� returns a set of at most k
distinct elements from set C drawn by an arbitrary method.

Before we state and prove the limit properties of this base
algorithm it is useful to collect a number of facts. The first
two follow immediately from the construction of the algo-
rithm.

Fact 1
If an optimal element has entered A�
� it stays there forever.

Fact 2
If b � B��
� and f�b� dominates elements of f�A�
�� then b
moves to A�
� and the dominated elements leave A�
�.

The next fact captures a limitation of this base algorithm.

Fact 3
If b � B��
� is optimal then it moves either to A�
� or C�
�.

Thus, in case of jA�
�j � m an optimal element cannot be in-
cluded even ifA�
� contains non-optimal elements. This hap-
pens if the non-optimal elements are incomparable to all other
members of A�
� including the optimal element just found.

The last fact follows from the completeness of the poset
�f�X ����.

Fact 4
If there is a non-optimal element in A�
� there exists a domi-
nating element.

After these preparations we can state our result:

Proposition 4
Let G be the homogeneous stochastic matrix describing the
transition behavior from A�t� to B�t � ��. If matrix G is
positive then �F� �f�At�� 	 � and jAtj 	 minfm� jF�jg
with probability one and in mean as t	�.
Proof: Let m � jF�j and suppose that not all members of
A�
� are optimal. Fact 4 ensures that there exists at least one
element inX whose image dominates an image of an element
in A�
�. Since G is positive there exists a positive minimum
probability that an arbitrary element of X (and even X n) is



created by the operation generate(
) in one step. Owing to the
Borel-Cantelli Lemma (see e.g. Feller 1970, p. 201) it is guar-
anteed that this arbitrary (and therefore every) element will
be generated infinitely often and that the waiting time for the
first occurrence as well as for the second, third, and so forth
will be finite with probability �. Consequently, a dominating
element is generated in finite time with probability one and,
according to Fact 2, it will enter the set A�
�. By Fact 1, this
element will stay in A�
� forever iff this element is optimal.
If it is not optimal, then it will be replaced by an optimal one
after finite time by a repetition of the arguments given so far.
Summing up: The size ofA�
� increases up tom by including
optimal or non-optimal incomparable elements. Non-optimal
elements in A�
� will be replaced by optimal elements in fi-
nite time.

Let jF�j � m. As long as jA�
�j � jF�j the dynamics
of the algorithm is as in the previous case. The only inter-
esting difference surfaces if jF�j � jA�
�j � m. If these
inequalities are valid then the number of optimal elements in
A�
� is necessarily less than jF�j. Thus, A�
� contains sev-
eral non-optimal incomparable elements. But owing to Fact
4 and the positive transition matrix G it is ensured that opti-
mal elements dominating the non-optimal ones will be gen-
erated. It is clear that the optimal elements replace the non-
optimal ones. As soon as all optimal elements have been gen-
erated (which happens in finite time), set A�
� has size jF�j
with f�A�
�� � F � and no other element can enter anymore.
Since optimal elements cannot get lost by Fact 1 we have es-
tablished convergence in the sense of the proposition. ut

Remark 3 If the image set f�X � is totally ordered then the
base algorithms PR and AR2 are identical. They reduce to an
evolutionary algorithm with a �� � n�-selection scheme. ut

4 Instantiations

The proofs of the previous section have shown that we only
need to check whether the transition matrices are irreducible
(in case of base algorithms VV and AR-1) or positive (cases
PR and AR-2) in order to get convergence results. Since the
transition matrix, as it appears in the previous section, is usu-
ally a product of several other transition matrices (describing
e.g., mutation, crossover, preselection, etc.) it is useful to
find certain characteristics of stochastic matrices that imply
positiveness or irreducebility of the product of such matrices.
Here, we need two additional definitions: A stochastic matrix
is termed diagonal-positive if every diagonal entry is non-
zero, whereas it is called column-allowable if each column
contains at least one positive entry. Thus, every diagonal-
positive matrix is column-allowable.

Lemma 2
Let I�D�C� P�Abe stochastic matrices where I is irreducible,
D is diagonal-positive, C column-allowable,P positive, and
A arbitrary. Then the products

(a) AP and PC are positive,
(b) ID and DI are irreducible.

Proof:
(a) Rudolph (1994), p. 97. (b) Agapie (1998a), p. 188. ut

Remark 4
The conjecture that IC or CI are irreducible is wrong as can
be seen from the following counter-example: Let

I �

�
�

� � �
� � �
� � �

�
A and C �

�
�

� � �
� � �
� � �

�
A �

Notice that both stochastic matrices are irreducible as well
as column-allowable. Since C is the inverse of I we obtain
IC � CI � U where U is the unit matrix which is of course
not irreducible. ut

Hereinafter the following assumptions have been made:
First, the search space X is a product space X � A� where A
is a finite set. Second, the final transition matrix is a product
of three transition matrices describing the stochastic effects
of crossover, mutation, and “preselection.” We use the term
“preselection” to denote any form of favoring certain individ-
uals prior to the elitism-like selection procedure in the main
loop of the base algorithms, i.e., we only consider evolution-
ary operators that are subsumed in the function generate(
).

Since neither crossover nor preselection possess irreducible
(or primitive or positive) transition matrices—unusual con-
structions excluded—the mutation operator must establish such
a property. We now generalize the special case with A �
f�� �g already considered in section 3.3.

(a) Single spot mutation
Let x � X � A� be some individual. Choose an index k
between � and 
 at random. The entry xk is now mutated
according to some probability distribution on A. If every
element of A is accessible with positive probability, then
the transition matrix for mutation is primitive (and not
positive). If every element of A except the value of xk
may occur with positive probability then the transition
matrix for mutation is irreducible (and not primitive).

(b) Multiple spot mutation
Instead of choosing a single index at random, the muta-
tion operation is now applied at each index k � �� � � � � 
.
If xk may assume every element ofA with positive prob-
ability, then the transition matrix for mutation is positive.
If every element of A except the value of xk may oc-
cur with positive probability then the transition matrix
for mutation is irreducible (and not primitive).

Consequently, in order to establish the desired convergence
of base algorithms PR or AR-2 we choose the first version of
multiple spot mutation (positive transition matrix), an arbi-
trary crossover operator, and a column-allowable preselection
operator (see Lemma 2 and Propositions 3 resp. 4).

It remains to characterize column-allowable preselection
operators. If preselection is omitted, i.e., preselection is the
identity operation, then the transition matrix is the unit matrix



and therefore column-allowable. Alternatively, one may pro-
ceed as follows: The population is partitioned into antichains
A�� A�� � � � such that members of Ai dominate members of
Aj with j � i. Then individuals of antichain A i are given
rank i and one may use traditional selection operators based
on totally ordered fitness/ranks (like proportional or tourna-
ment selection) in order to get a preselection of individuals.
Since proportional and tournament selection may choose ev-
ery individual with positive probability, there is a positive
probability that preselection leaves the population unaltered.
As a consequence, the transition matrix is diagonal-positive
and therefore column-allowable. This remains true if the in-
dividuals within each antichain are additionally ranked by the
number of individuals they are dominating. See the surveys
of Fonseca and Fleming (1995) or Horn (1997) for a variety
of similar approaches for introducing a total order on the in-
dividuals.

Finally, we have to look for crossover operations with dia-
gonal-positive transition matrices. Under the assumption that
the individuals participating in the crossover operation are
drawn with replacement we obtain immediately a diagonal-
positive transition matrix because there is a positive probabil-
ity that a �-ary crossover operator draws the same individual
� times such that the preliminary offspring is identical to its
parents (e.g., single or multi-point crossover, gene pool re-
combination and others).

5 Conclusions

Many versions of multi-criteria evolutionary algorithms fit
into the theoretical framework developed here. The condi-
tions for convergence are “user-friendly” in the sense that it
suffices in many cases to verify properties of single opera-
tors in lieu of properties of the transition function of the en-
tire evolutionary algorithm. Needless to say, there are still
many versions of evolutionary algorithms that we did not ex-
amine here (and which possibly do not match our basic as-
sumptions). All kinds of fitness sharing mechanisms are just
one example.

Even though base algorithms VV and PR (the same with
RA1 and RA2) look very much alike, the stochastic models
behind them are quite different: the “working population” of
VV was �Bt�t�� – a homogeneous Markov chain with tran-
sition matrix G, whereas for PR the sequence of the “work-
ing population” is fB�� A�� B�� A�� � � �g which is no longer
Markovian, i.e., the irreducibility of transition matrix G from
Bt to At is no longer a convergence condition because G it-
self characterizes only “half” of the Markov chain.

Rather, the entire process is a random system with com-
plete connections (Iosifescu and Grigorescu 1990) which gen-
eralizes the notion of a Markov chain and may be an appro-
priate model for more sophisticated evolutionary algorithms
(Agapie 1998b).
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