
Parallel Clustering on a Unidirectional Ring

G�unter Rudolph�

University of Dortmund� Department of Computer Science� LS XI� D������ Dortmund

Abstract� In this paper a parallel version of the squared error clus�
tering method is proposed� which groups N data vectors of dimension
M into K clusters such that the data vectors within each cluster are as
homogeneous as possible whereas the clusters are as heterogeneous as
possible compared to each other� The algorithm requires O�NMK�P �
time on P processors assuming that P � K� Speed up measurements
up to �� processors are given� It is sketched how this algorithm could
be applied to parallel global optimization over continuous variables�

�� Introduction

Cluster algorithms are a valuable tool for exploratory pattern analysis� They are used
to group a set of data vectors 	patterns
 into clusters such that the data vectors within
each cluster are as homogeneous as possible whereas each cluster is as heterogeneous as
possible among the other clusters according to some similaritymeasure� The assignment
of the data vectors to clusters depends on the choice of the similarity measure used�
Here� it is assumed that the data vectors are elements of theM�dimensional Euclidean
space IRM � so that the usage of the Euclidean norm as the similarity measure is feasible�

Let N denote the number of M�dimensional data vectors which are to be grouped
into K clusters� The data vectors are gathered in the data matrix X of size N �M �
The sets C�� C�� � � � � CK represent the clusters and they contain numbers in the range
�� �� � � � � N which identify the data vectors according to their position in the data matrix�
It is required that C� � C� � � � � � CK � f�� �� � � � � Ng with Ci � Cj � � for i �� j and
jCij � � for all clusters� Then the tuple C � 	C�� C�� � � � � CK
 is called a partition of
length K� For each cluster the center

xk�
�

jCkj

X
j�Ck

xj

is just that point which minimizes the sum of 	squared
 distances to all points within
the cluster� i�e� xk� argminfSk	y
 j y � IRMg� where

Sk	y
 ��
X
j�Ck

kxj � yk�

�The author is supported under project ��� ��� �� by the Research Initiative Parallel Computing

of Nordrhein�Westfalen� Land of the Federal Republic of Germany	



denotes the sum of squared distances between y and any other element of cluster Ck�
The deviation sum of a partition C can be de
ned as the sum of the minimal squared
distances of all clusters�

D	C
 �
KX
k��

Sk	xk
 � 	�


Let P 	K�N
 denote the set of all feasible partitions of N data vectors into K clusters�
A partition C� � P 	K�N
 is called optimal with respect to 	�
 if

D	C�
 � minfD	C
 jC � P 	K�N
g � 	�


The task to determine a partition C� with property 	�
 is a NP�hard combinatorial
optimization problem� Since the number of feasible partitions is

�

K�

KX
k��

	��
K�k

�
K
k

�
kN

the choice of a solution method for 	�
 is restricted to iterative improvement methods�
which do not guarantee the determination of the global optimal partition� The method
that will be used in the following� however� has the property that its solution ful
lls at
least the necessary condition for an optimal partition 	for more details see e�g� ���
�

In the next section the squared error clustering technique is described before the
parallelization is carried out in section �� Numerical results concerning speed up and
e�ciency of the parallel version can be found in section �� The usage of this tool in
parallel global optimization over continuous variables is discussed in section ��

�� Squared error clustering

The squared error clustering technique starts with an initial partition C that can be
chosen arbitrarily as long as the restrictions jCij � � are obeyed� The deviation sum of
this partition is determined by computing the K centers and by calculating the squared
distances between each of the N data vectors and the center of the cluster the vector
has been assigned to� Both steps can be done in O	NM
 time� A new partition is
constructed as follows� For each data vector xi calculate the distance to each center
xk and assign xi to the cluster with smallest distance� This assignment step requires
O	NMK
 time� Now the deviation sum of the new partition is computed as described
before� This procedure is iterated until the deviation sum of a new partition is not better
than the previous one or until a maximal number of iterations has been performed� so
that the time complexity of the squared distance clustering method is O	NMKI
�
where I denotes the maximal number of iterations� Consequently� a parallelization of
this method is desirable� The sequential algorithm is sketched in 
gure ��

�� Parallelization on a unidirectional ring

The squared error clustering method has been parallelized on several parallel computers
with di�erent architectures 	see ��� and the references therein
� Ranka and Sahni 	����

designed a parallel algorithm for a MIMD parallel computer with a tree topology� Their
algorithm requires O	NMK�P � MK logP 
 time� where P denotes the number of
processors� In the following it is shown that the time complexity can be reduced to
O	NMK�P �MK�P 
 although the topology of the processors is a unidirectional ring
with much larger diameter�



choose any initial partition
determine the center matrix
determine the deviation sum
repeat

for each xi 	i � �� � � � � N

for each center xk 	k � �� � � � �K


calculate distance kxi� xk k
�

endfor
assign xi to cluster with minimal distance

endfor
determine new center matrix
determine new deviation sum

until termination criterion applies

Figure �� Skeleton of the squared error clustering method

Assume that the data matrix is distributed on P processors so that each of Q �
NmodP processors gets dN�P e data vectors and the remaining P �Q processors get
bN�P c data vectors each as proposed in ���� Moreover� each processor is assumed to have
a copy of the center matrix� which contains the center vectors of the K clusters� The
assignment step can then be performed in parallel and it requires O	NMK�P 
 time�
The only problem is how to build up the new center matrix in parallel� Each processor
can compute the partial sums of the center vectors according to the assignment of the
data vectors which are kept in memory� Thus� each processor computes a partial center
matrix in O	NM�P 
 time� The sum of these P partial center matrices then gives the

nal center matrix�

Ranka and Sahni ��� solved this subproblem by passing and adding the partial
center matrices from the leave processors of their tree topology to the root processor�
so that the 
nal center matrix is known to the root processor in O	MK log P 
 time� A
broadcast operation from the root returns the 
nal center matrix to all other processors
in O	MK log P 
 time� Using this method on a unidirectional ring topology would result
in a time complexity of O	MKP 
� In the following a more sophisticated strategy is
proposed which requires only O	MK
 time assuming that P 	 K� which is a reasonable
assumption for our application as can be seen in section ��

Assume that the partial center matrices have been computed� The partial center
matrix is divided into P submatrices so that the 
rst KmodP submatrices contain
dK�P e center vectors and the remaining contain bK�P c center vectors each� Now each
processor p � f�� �� � � � � P � �g sends its pth submatrix to processor 	p � �
modP �
where the received submatrix is added to the the processor�s own submatrix� This can
be done in O	KM�P 
 time� Then each processor sends that submatrix to its neighbor
processor� After P � � communications on each processor there is a submatrix of the

nal center matrix� With the same communication scheme these submatrices are sent
through the ring� Again� each step requires O	KM�P 
 time� Therefore� the total time
complexity is O	� 	P � �
KM�P 
 � O	KM
�

To illustrate the method consider the case for P � � processors� Let Aij denote the
jth submatrix on processor i� Figure � shows the communication scheme� where the
numbers k above the arrows represent the k�th parallel communication step� In this
case k � �� � � � � � 	P � �
� The numbers in parenthesis denote the steps with a subse�
quent store operation whereas those without parenthesis are steps with a subsequent



submatrix addition operation�
For example� submatrix A�� is sent to processor � in the 
rst communication step�

Processor � computes the sum A���A�� and stores the result as its new submatrix A�

��
�

In the second communication step the new submatrix A�

��
is sent to processor � which

computes the sum A���A�

��
� A���A���A�� and stores it as its new submatrix A�

��
�

In the third communication step submatrix A�

��
is sent to processor � which computes

the new submatrix A�

��
� A�� � A�

��
� A�� � A�� � A�� � A��� Clearly� submatrix

A�

��
is submatrix � of the 
nal center matrix� These operations are performed for all

submatrices in parallel� so that the 
nal center matrices are distributed over the ring
after P � � � � communication steps� Table � gives a snapshot of the contents of the
partial center matrices on each processor after P � � � � communication steps� Now
P �� � � additional communication steps are required to sent and copy the 
nal center
submatrices to each processor in parallel�

It is still left open how to compute the deviation sum of the new partition� After

A��

A��

A��

A��

A��

A��

A��

A��

A��

A��

A��

A��

A��

A��

A��

A��

�

�	�


�

	�


�

�

�

�	�


�

�	�


�

�	�


�

	�


�

�

�

�

�

�	�


�

�	�


�

	�


�	�


�

�	�


�

�

�

	�


�

Figure �� Communication scheme to compute the center matrix
on � processors

processor � processor �
A�� A�� �A��

A�� �A�� �A�� �A�� A��

A�� �A�� �A�� A�� �A�� �A�� �A��

A�� �A�� A�� �A�� �A��

processor � processor �
A�� �A�� �A�� A�� �A�� �A�� �A��

A�� �A�� A�� �A�� �A��

A�� A�� �A��

A�� �A�� �A�� �A�� A��

Table �� Snapshot of the contents of the partial center matrices
on � processors after � communication steps



the new center matrix is known to each processor� each processor computes the partial
deviation sum by summing up the distances of its data vectors to the centers they have
been assigned to� This can be done in O	NM�P 
 time� Now the partial deviation sum
value of each processor is sent through the ring so that the 
nal deviation sum value is
known after O	P 
 time on each processor� Summarizing� the time complexities for the
di�erent steps within one iteration are

step operation time
� assign data vectors to clusters O	NMK�P 

� compute partial center matrix O	NM�P 

� build up 
nal center matrix O	MK

� compute partial deviation sum value O	NM�P 

� build up 
nal deviation sum value O	P 


Consequently� the total time complexity for one iteration is O	NMK�P �MK �
P 
 � O	NMK�P �MK
 � O	NMK�P 
 for P 	 K�

�� Numerical results� speed up and e�ciency

The parallel clustering algorithm has been implemented on a transputer system with
�� T������ and � T������ transputers with � MB memory each� They are connected
as a mesh of size �� �� The code was written in the programming language C and the
communication is performed by using the POSIX�library under the operating system
Helios�

The program has been tested for N � ����� ���� and ���� data vectors of dimension
M � �� uniformly distributed in a hypercube in the range ��� ������ which are to be
grouped intoK � �� clusters� The use of random data vectors is justi
ed because speed
up and e�ciency measurements are of primary concern here� Therefore the algorithm
was stopped after I � �� iterations� Figures � and � summarize the speed up and
e�ciency results� respectively�

Of course� the e�ciency becomes better the more data vectors are to be clustered�
For example� the time required for ���� data vectors on one processor drops from ������
seconds to ����� seconds when �� processors are used�

The relation between computing and communication time could be improved in
several ways� Firstly� the so�called task force manager 	TFM
 maps the parallel code
onto the physical processor network� which is a ��� grid in this case� It is the strategy
of the TFM to minimize the distances to the root processor which is connected to the
host computer� This results in the following mapping for the logical ring topology used
for the parallel clustering algorithm with �� processors�

shell root �� �� �� ��
�� �� �� �� �� ��
�� �� �� �� �� ��
�� �� �� �� �� �
�� �� �� �� � �
�� �� �� � � �
�� �� � � � �
� � � � � �



0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

s
p
e
e
d
 
u
p

processors

8192

4096

2048

Figure �� Speed up for N � ����� ����� ���� data vectors of di�
mension M � �� assigned to K � �� clusters�

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

e
f
f
i
c
i
e
n
c
y
 
(
%
)

processors

2048

4096

8192

Figure �� E�ciency for N � ����� ����� ���� data vectors of di�
mension M � �� assigned to K � �� clusters�

Note that the algorithm sends its data via the path �
 � 
 � � �
 �� 
 �� There�
fore� the time required to move data from one processor to its neighbor di�ers between
� and � time units� This problem might be circumvented by an explicit assignment of
processes to nodes by the user� Secondly� the use of the POSIX library for communi�
cation reduces the data transfer rate a transputer is capable of� There are low level
routines which are provided with better transfer rates� Despite these shortcomings the
e�ciency measurements of the current implementation are not too bad and they are
expected to be improved signi
cantly after the modi
cations suggested above�



�� Application to global optimization

One way to 
nd the global minimum f	x�
 � minff	x
 jx � D � IRMg of the objective
function f in the feasible region D is to sample a number of points uniformly distributed
over D and to select the best point as the candidate solution� The multistart technique
employs a local search algorithm which is applied several times with di�erent starting
points� The best local solution found is regarded as the candidate solution� Although
these method can be parallelized easily they are not very e�cient in terms of function
evaluations� Better strategies are available which can be parallelized� too 	see ���
� The
idea to use clustering algorithms as a tool in the 
eld of global optimization dates back
to the ��s 	see ��� for a survey
�

Usually� a number of points are sampled uniformly over D� Then only a fraction of�
say� �� percent of the best solutions are selected for further processing� It is assumed
that this fraction of selected points re�ect the shape of the regions of attraction of the
local minimizers� Now the clustering method is used to identify the these shapes by
grouping the corresponding points into clusters� Finally� a local search technique is
applied from each center of the clusters to locate the local minimum� Again� the best
local minimum found is regarded as the candidate solutions�

Obviously� this method can be used only for moderate problem dimension on a
uniprocessor system� A parallel version might be implemented as follows� The gener�
ation of the sample points as well as their evaluation can be done in parallel without
communication� Then each processor selects the fraction of the best solutions� Note
that this is not the same as to select this fraction of the best solutions over all sampled
points� One can expect� however� that the di�erence becomes smaller and smaller the
more points are sampled� The parallel clustering method as described before can be
used to identify the shapes of the regions of attractions� Since it is only necessary to
get a rough approximation of these regions only few iterations of the clustering method
have to be performed� Finally� each processor selects a center point from the center
matrix and applies a local search� For an e�cient use of the parallel computer it is
desirable that there are at least as much center points as processors� This is why the
assumption P 	 K was termed reasonable in a previous section�

	� Conclusions

The squared error clustering method has been parallelized on a MIMD parallel computer
with unidirectional ring communication with a time complexity of O	NMK�P 
 if P 	
K� Speed up measurements indicate that improvements are to be expected as soon as
some shortcomings of the Helios operating system are circumvented� The parallelized
algorithm can be used as a tool in sophisticated parallel global optimization methods�
It was sketched how this algorithm could be designed�

References

	
� H� Sp�ath� Cluster�Formation und �Analyse� Oldenbourg� M�unchen and Wien� 

���

	�� S� Ranka and S� Sahni� Clustering on a hypercube multicomputer� IEEE Transactions on

Parallel and Distributed Systems� �����
�
�
��� 



�

	�� G� Rudolph� Parallel approaches to stochastic global optimization� In W� Joosen and
E� Milgrom �eds��� Parallel Computing� From Theory to Sound Practice� Proceedings of



the European Workshop on Parallel Computing �EWPC 
��� IOS Press� Amsterdam�



�� pp� ��������

	�� A� T�orn and A� Zilinskas� Global Optimization� Lecture Notes in Computer Science
Vol� ���� Springer� Berlin and Heidelberg� 

�
�


