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Abstract. This paper presents a novel evolutionary approach of approximating
the shape of the Pareto-optimal set of multi-objective optimization problems. The
evolutionary algorithm (EA) uses the predator-prey model from ecology. The
prey are the usual individuals of an EA that represent possible solutions to the
optimization task. They are placed at vertices of a graph, remain stationary, re-
produce, and are chased by predators that traverse the graph. The predators chase
the prey only within its current neighborhood and according to one of the op-
timization criteria. Because there are several predators with different selection
criteria, those prey individuals, which perform best with respect to all objectives,
are able to produce more descendants than inferior ones. As soon as a vertex
for the prey becomes free, it is refilled by descendants from alive parents in the
usual way of EA, i.e., by inheriting slightly altered attributes. After a while, the
prey concentrate at Pareto-optimal positions. The main objective of this prelim-
inary study is the answer to the question whether the predator-prey approach to
multi-objective optimization works at all. The performance of this evolutionary
algorithm is examined under several step-size adaptation rules.

1 Introduction

It may be discussed controversially, whether organic evolution is an adaptation or an
amelioration process, or neither of those. But, mimicking some rules of that “game of
life” has led to powerful optimum seeking algorithms [1]. Three different approaches
that emerged in the 1960s have been given the common denominator Evolutionary Al-
gorithm (EA) or Evolutionary Computation (EC) [2]. Together with Neural and Fuzzy
Computation, EC has become part of the new field called Computational Intelligence
(CI) [3]. The common feature of CI methods is their emphasis on “imitating life” by
subsymbolic information processing.

In many if not most cases, EAs are used to solve optimization tasks with just one
objective, where the (global) optimizer often turns out to be a unique position in the
decision parameter space. However, if several conflicting objectives are given, there is
a larger set of interesting solutions: the non-dominated or Pareto-optimal set. Tradeoff-
curves for two objectives at a time show how far one has to concede with respect to one
goal in order to win with respect to the other.

A couple of conventional approaches to multi-objective optimization have been
adopted to EAs [4–6]. In most cases, ambiguities are eliminated before the Pareto-
set is known, e.g., by weighting the criteria or Euclidean distances to the single-criteria
optimizers.



A novel approach of identifying the whole Pareto-optimal set within one run is pre-
sented in the following, using the predator-prey model from ecology. The prey are the
usual individuals of an EA that represent possible solutions to the optimization task.
They are placed, e.g., on a toroidal grid, reproduce, die off after a while, and are chal-
lenged by predators that might cut down their life span. While the prey remain stationary
on the vertices, each predator performs a random walk on the grid, chases the prey only
within its current neighborhood and according to one of the optimization criteria. Be-
cause there are several predators with different selection criteria, those prey individuals,
which perform best with respect to all objectives, are able to produce more descendants
than inferior ones. As soon as a grid place for the prey becomes free, it is refilled by
descendants from alive parents in the usual way of EA, i.e., by inheriting slightly al-
tered attributes. After a while, the prey are expected to concentrate at Pareto-optimal
positions. The principally asynchronous concept without global observer should ease
the use of parallel processing systems substantially.

The organization of this paper is as follows. After the introduction of the basic ter-
minology associated with the multi-objective optimization problem given in section 2,
we present the spatial predator-prey model in section 3. To get a first assessment of
the behavior of this evolutionary algorithm, we describe some initial numerical experi-
ments and discuss the results in section 4. Finally, section 5 summarizes our preliminary
conclusions.

2 Multi-Objective Optimization

Let f � X � IRq withX � IR� and q � � be a vector-valued function that maps a deci-
sion vector x � X to an objective vector y � f�x� � IRq. In the ideal case the objective
functions fi � X � IR should be minimized simultaneously for i � �� � � � � q. The prob-
lem is, however, that the set of objective vectors is not totally ordered. To understand the
problem to full extent it is important to keep in mind that the values f ��x�� � � � � fq�x�
of the q � � objective functions are incommensurable quantities and that the objectives
themselves are conflicting in general: While f� may measure the costs of producing a
car, f� may measure the level of pollution, f� the total weight, f� the probability of
a lethal injury in case of a frontal crash, and so forth. As a consequence, the notion
of the “optimality” of some solution needs a more general formulation than in single-
objective optimization. It seems reasonable to regard those decisions as being optimal
which cannot be improved with respect to one criterion without getting a worse value
in another criterion. Formally, this concept of optimality may be stated as follows.

Let F � ff�x� � x � X � IR�g � IRq be the set of objective vectors that are
attainable under the mapping f . An objective vector y� � F is said to be Pareto-optimal
with respect to f if there is no y � F with y �� y� such that yi � y�i for all i � �� � � � � q.
The setF� of all Pareto-optimal objective vectors is called the Pareto set. Each decision
vector x� � X� � fx � X � IR� � f�x� � F�g is termed an efficient solution or a
Pareto-optimal decision vector of the multi-objective optimization problem. Since the
sets X� and F� can be analytically determined only in exceptional cases and since the
dimension of X � as well as F� may be as large as minf�� q 	 �g, numerical methods
for finding the set of Pareto-optimal decisions are generally restricted to approximating
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the shape of the set X �. Needless to say, this will also be the goal of the evolutionary
algorithm to be presented shortly.

3 The Predator-Prey Model

3.1 Model Description

Let G � �V�E� be an undirected connected graph with jV j � n vertices and jEj � m
edges. Each vertex is associated with a prey which is represented by a decision vector.
The predator makes a random walk on graphG, i.e., a predator on some vertex v moves
with probability ��d�v� to one of its nearest neighbors where d�v� denotes the degree
of vertex v � V . More specifically, the transition probabilities of the predator’s random
walk are

pvw �

�
��d�v� if �v� w� � E

� otherwise.

Each predator chases the prey with respect to a single specific objective only. Thus, there
are at least q predators simultaneously chasing the prey with respect to the q different
criteria. An i-predator at vertex v � V will “catch” the prey in the neighborhood of
v which is worst with respect to objective function f i. If a prey has been caught by a
predator then it is erased from this vertex and successively replaced by a new individual
that is produced by mutation and possibly recombination of adjacent individuals.

3.2 Choice of Spatial Structure

If the evolutionary process is not stopped then each predator will visit every vertex/prey
infinitely often. This is an immediate consequence of the fact that a predator moves
through the graph according to a random walk. It seems reasonable to choose a graph
structure such that the predator visits every vertex equally often in the limit (there is
at least no obvious objection against this postulation). To identify the class of graphs
satisfying this requirement let N �v� k� be the number of times the random walk visits
vertex v � V in k steps. If the graph is non-bipartite then

lim
k��

N �v� k�

k
�

d�v�

� jEj
(1)

for every v � V [7]. Thus, non-bipartite regular graphs are appropriate candidates. But
bipartite d-regular graphs with bipartition fV �� V�g are acceptable as well, since the
distribution of the random walk oscillates between “almost uniform on V �” and “almost
uniform on V�” as k �
.

The inverse of the limit in (1) is the expected time until a random walk starting
at v � V returns to v for the first time. Thus, for d-regular non-bipartite graphs the
expected recurrence time is hv � �m�d for all v � V . This value is also approximately
valid for bipartite d-regular graphs.

Evidently, the frequency of selecting a prey with respect to the different criteria
depends on the graph structure on the one hand and on the number of predators per
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criterion on the other hand. Since the graph structure will be kept fixed we need a
measure permitting an assessment of this relationship.

The mean cover time E�C�G� 	 of a graph G represents the maximum expected
number of steps required by a predator until each vertex has been visited at least once.
For arbitrary graphs the mean cover time can be bracketed by �� 
 o����n logn �
E�C�G� 	 � �

��
n�
o�n�� [8, 9]. A cubic increase in the number of vertices is certainly

prohibitive for practical use. But the cubic upper bound decreases to a quadratic one for
vertex- and edge-symmetric graphs [10]. More specifically, �n	 ��Hn � E�C�G� 	 �
� �n	 ��� where Hn is the nth Harmonic number. The lower bound can be sharpened
for a specific symmetric graph, namely, the two-dimensional torus. In this case one
obtains E�C�G� 	 � ��n log� n� [11].

Thus, if the graph is a two-dimensional torus then the expected recurrence time per
predator is ��n and between n log� n and � �n 	 ��� random steps have to be waited
for until a predator has visited each prey. Larger cover times are easy to achieve—
but this would slow down the evolutionary process. Therefore, we have chosen the
two-dimensional torus for our experiments. A perhaps fruitful generalization for future
experiments is the introduction of different neighborhood graphs for reproducing prey
and for the random walk of the predators.

3.3 Step Size Control

The development of an appropriate step size control in case of multi-objective opti-
mization has received only little attention up to now. The few experiments made in
[12] reveal that the step size rules used in single-criterion EAs do not work very well
in the multi-criterion case. Actually, it is an open question of how to choose the step
size—especially for the evolutionary model considered here.

Apart from a fixed step size, we also experimented with the external step size rule
�k�� � � �k where � � ��� �� and the index k is incremented whenever a prey produces
an offspring. We conjecture that it is not possible to devise an internal step size rule
(self-adaptation) for this type of evolutionary algorithm. This assessment is supported
by the following observation: The predator-prey model may be seen as a generalization
of the steady state or �n 
 ��-evolutionary algorithm for single-criterion optimization,
and there is well-founded empirical evidence that the usual self-adaptation mechanism
does not work satisfactorily for this type of evolutionary algorithms.

4 Preliminary Experimental Results

4.1 Test Problems and Parameter Settings

The neighborhood graph used in the experiments was a toroidal grid of size �����, i.e.,
with ��� prey. The two test problems have two objectives and were chosen as follows:

f�x� �

�
x�� 
 x��

�x� 
 ��� 
 x��

�

g�x� �

�
	�� exp�	���

p
x�� 
 x���

jx�j
��� 
 jx�j

��� 
 
 �sin� x� 
 sin� x��

�
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The set of efficient solutionsX � associated with problem f��� can be determined ana-
lytically. It is the straight line between the optima of both objective functions, namely,
X� � fx � IR� � �x�� ��

� with 	 � � x� � �g. Consequently, the Pareto set is

F� � f�X �� � f�f�� f��
� � IR�

� � f� � ��	
p
f��

� where � � f� � �g �

We have chosen this test problem since it possesses no locally efficient solutions apart
from those which are also globally efficient. The second test problem g��� is more diffi-
cult since there are also locally efficient solutions that are not globally efficient. Need-
less to say, our selection of test problems is somewhat arbitrary—but the main objec-
tive of this preliminary study is the answer to the question whether the predator-prey
approach to multi-objective optimization is feasible or not.

For this purpose the initial individuals were drawn at random within the region
�	
�� 
�	� � IR� and the predators were randomly placed at vertices of the graph.
The standard deviations of the Gaussian mutations (the “step sizes”) were either kept
fixed with � � ��
 and � � ���
, or decreased by the schedule �k�� � �����k. For
each objective there was one predator, except for the decreasing schedule where we also
experimented with up to ��� predators per objective.

4.2 Discussion

The first surprising observation that can be drawn from our experiments is that the re-
combination of the decision vectors leads to a significantly worse approximation of the
Pareto-set than the usage of mutation alone. This phenomenon deserves further explo-
ration which is however beyond the scope of this preliminary study. As a consequence,
we have only employed mutations in our numerical experiments presented here.

Figure 1 shows the approximation of the Pareto-set and its associated decision vec-
tors for the first test problem f���. The top two rows represent the state of the predator-
prey EA with fixed step sizes � � ��
 and � � ���
 for one predator per objective
after ���� ��� random steps of each predator. Needless to say, the EA cannot stochas-
tically converge to the Pareto-set if the step sizes are fixed. But the prey individuals
are closely distributed in the vicinity of the Pareto-set, and the distribution becomes
the more concentrated the smaller is the step size. Since small step sizes require more
iterations than large step size in order to reach the stationary distribution, it seems rea-
sonable to begin with large step sizes and to decrease them in the course of the evo-
lution. We have experimented with various decreasing schedules—a good one was the
choice �k�� � �����k. The lower two rows show the state of the EA with this de-
creasing schedule after ���� ��� random steps per predator (one predator per objective)
and �� ��� random steps per predator in case of 100 predators per objective (last row).
Evidently, the population of prey decomposes into several isolated subsets if there is
only one predator per objective. We conjecture that this phenomenon is due to the fact
that the predators stay too long in the vicinity of a certain vertex (so that these prey are
pushed towards the solutions of only one criterion) and need too much time to commute
between far distant vertices. If there are several predators per objective (last row) then
each prey is more frequently evaluated by both objectives alternately. Apparently, this
leads to a more accurate approximation of the Pareto-set.
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Fig. 1. Approximation of the Pareto-set and its associated set of decision vectors of problem
f��� with two predators and constant � � ��� (row 1), � � ���� (row 2), decreasing schedule
�k�� � ���� �k (row 3), and decreasing schedule in case of 200 predators (row 4).
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Fig. 2. Approximation of the Pareto-set and its associated set of decision vectors of problem
g��� with two predators and constant � � ��� (row 1), � � ���� (row 2), decreasing schedule
�k�� � ���� �k (row 3), and decreasing schedule in case of 200 predators (row 4).
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Figure 2 shows the approximation of the Pareto-set and its associated decision
vectors for the second test problem g���. The top two rows represent the state of the
predator-prey EA with fixed step sizes � � ��
 and � � ���
 for one predator per
objective after ���� ��� random steps of each predator. This problem is more difficult
than the first test problem because of the existence of locally efficient solutions. If the
step size is relatively large (� � ��
) then there are many prey individuals that are
dominated by others. In case of a smaller step size, the number of dominated individ-
uals is much smaller and the Pareto-set is well approximated. Again, the decreasing
step size schedule (last two rows in fig. 2) only leads to some isolated subsets of the
Pareto-set. This phenomenon only partially disappears for several predators per objec-
tive (last row): about one third of the Pareto-set is not represented by the population of
prey. Thus, there must be additional reasons for this unpleasant behavior.

It might be speculated that a single step size for both objective functions is the
cause of the problem since the regions of successful mutations may have significantly
different sizes. In this case, the step sizes may be appropriate for one objective function
and too large/small for the other objective function. But this is a speculation that needs
further investigations in future.

5 Conclusions

The preliminary numerical study presented here has shown that the predator-prey model
of selection in evolutionaryalgorithms may be an alternative approach in multi-objective
optimization. Although there is some evidence that this method seems to work in prin-
ciple, there are some surprising phenomena awaiting an explanation. The role of re-
combination in case of multi-criteria optimization requires further elucidation, and the
question of how to choose an appropriate step size control remains still open.
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