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Abstract. The choice of the selection method used in an evolutionary algorithm
may have considerable impacts on the behavior of the entire algorithm. There-
fore, earlier work was devoted to the characterization of selection methods by
means of certain distinguishing measures that may guide the design of an evo-
lutionary algorithm for a specific task. Here, a complementary characterization
of selection methods is proposed, which is useful in the presence of noise. This
characterization is derived from the interpretation of iterated selection procedures
as sequential non-parametric statistical tests. From this point of view, a selection
method is risky if there exists a parameterization of the noise distributions, such
that the population is more often directed into the wrong than into the correct
direction, i.e., if the error probability is larger than 1/2. It is shown that this char-
acterization actually partitions the set of selection methods into two non-empty
sets by presenting an element of each set.

1 Introduction

Selection methods may occur on two occasions during the population’s life cycle of an
evolutionary algorithm. They are used for choosing mating partners if recombination
operators are used, and if the parents produce a surplus of offspring then they are used
for keeping the population at a constant size. In both cases, these selection methods
are responsible for moving the population towards regions with better fitness values.
Since this happens differently fast or reliable for the variety of selection methods com-
monly in use, it has been tried to characterize these selection methods by quantities
like takeover time, takeover probability, selection intensity, and related metrics [1-5].
Recently, it was also examined to which extent these measures are affected by noisy
fitness functions [6-8]. Here, a complementary characterization of selection methods
in the presence of noise is proposed. The key idea rests on the observation that the re-
peated application of some selection method to a population of random elements may
be interpreted as a sequential non-parametric statistical test [9]. From this point of view,
there are many measures that may serve to characterize the statistical power of a selec-
tion method. For example, a first simple distinguishing feature of a selection method
might be based on its ability of keeping the error probability below 1/2. Remarkably,
this type of characterization actually partitions the set of selection methods into two
non-empty sets. This is shown in sections 3 and 4 by presenting a member of each
class. The theoretical foundation of these sections is introduced next.



2 Theoretical Framework

Suppose that the determination of the fitness value (to be maximized) is stochastically
perturbed by additive noise which continuous distribution (with support IR) is symmet-
rical with respect to zero. More specifically, let i be the true, unperturbed fitness value
of some individual. Then the perturbed fitness value is given by u + ¢ 2 where o > 0
and the median of random variable 7 is zero. If E[|Z]|] < oo then also E[Z] = 0,
otherwise the expectation of 2 does not exist. An assumption regarding the scale of 2
is not yet necessary.

Let the initial population consist of » individuals (n even) where n/2 individuals
are of type = and the remaining half of type y. An individual is said to be of type «
(resp. y) if its random fitness value X (resp. Y') possesses the distribution function

Fx(z) = Fz (Z - “x) resp. Fy(z) = Fy (ﬂ) . (1)
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Without loss of generality it is assumed that .. > p,. In this case, pu, > u, if and
only if P{ X < Y } < 1/2. Repeated application of some selection method will lead
to a uniform population with probability one, i.e., each individual is either of type «
or of type y. One might expect that a proper selection method leads more often to a
uniform population of type # individuals than to type y individuals. As it is shown in
the subsequent sections this property is not valid for all selection methods commonly
used in evolutionary algorithms.

In general, this scenario can be modeled by homogeneous finite Markov chains
which state space and transition probabilities depend on the selection method under
consideration and on the spatial structure, if any, of the population. In any case, the
resulting Markov chain has only two absorbing states, namely, the states representing
uniform populations.

Definition

Let the initial population consists of n/2 individuals of type « and »/2 individuals of
type y with distribution functions as specified in equation (1). A selection method is
called risky if there exists a parameterization of the distributions, i.e., parameter val-
ues (tte, iy, 0z, 0y) With ue > py, such that the absorption probability to a uniform
population with lower median 4, is larger than the absorption probability to a uniform
population with higher median s . O

For the sake of brevity, only three local selection methods on a certain spatially
structured population will be investigated. The imposition of this limitation has the com-
pensating advantage that the associated Markov chain models reduce to less complex
random walk models. Suppose that the individuals are arranged in a one-dimensional
array of size n. Initially, the first n/2 cells of the array are filled with individuals of
type x and the remaining cells with individuals of type y. Prior to selection the random
fitness values of the individuals are calculated. The type of each cell after selection only
depends on the fitness values before selection of the cell itself and its nearest neighbors.
It is clear that the type of a cell is unaltered if its type is identical to the type of both



neighboring cells. Therefore, it is sufficient to restrict the attention to the section of the
array where type z individuals meet type y individuals. For this purpose consider the
4-tuple (X1, X2, Y1, Ys) of independent random variables. Notice that the leftmost and
rightmost cell will not alter their type since there are further type « cells to the left and
type y cells to the right. Only the two cells in between can change their type. Thus, there
are four possible arrangements after selection: (zyyy), (zzxy), (zzyy), and (zyzy).
Assume that the probability of the last outcome is zero whereas

P{(zzyy) = (zyyy) } = o
P{ (zxyy) = (vzzy) } =43 > )
P{ (zzyy) — (zzyy) } =1 - (a 1),

Let NV be the random number of type « cells at step & > 0. Then N performs a
random walk on the state space {0, 1,...,n} so that the transition probabilities given
in equation (2) are now expressible by

P{Nyy1=i—1|Ny =i} =«
P{Ngt1 =i+ 1|Ny=i}=p
P{Nipr =i Ne =i} =1 (a+ )

fori =2,...,n—2.1f i € {1, n — 1} then the transition probabilities will generally
be different from « and 3, but these differences may be neglected if the population size
is large enough. A formal proof of this claim will be published in a subsequent paper.
Under the assumption that the population size is sufficiently large the probability of
absorption a,, from initial state n /2 to state n is

b
L+ (a/B)2/?

ap —

whereas the probability of absorption to state zero isag = 1 — a,, [10]. Thus, ag > a,
if &« > § or, equivalently, if the replacement error p = o/(av + ) > 1/2. If this case
may occur for some local selection method then it will be classified risky.

3 A Risky Local Selection Method

3.1 Characteristics of Local Best Offspring Selection

The local best offspring selection method works as follows: Each cell adopts the type of
that cell with largest fitness value among the cell itself and its nearest neighbors. To de-
termine the transition probabilities o and 3 consider the random tuple (X 1, X4, Y1, V3).
The second cell changes its type if and only if max{X;, X5} < Y; whereas the third
cell changes its type if and only if max{Y7,Y>} < X,. Notice that these events are
mutual exclusive. As a consequence, one obtains

a:P{X2;2<Y} and ﬁ:P{Y2:2<X}



where X532 = max{X;, X2} and Y2.2 = max{¥7, Y2}. These probabilities can be
calculated via

o = P{X22 <Y} = Fx,,(Y) = const. = E[Fx,,(Y)]

= / Fx,n(y) fy (v) dy = / FX(y) fy (y) dy )
where fy (y) = % Fy (y), and analogously for 3. In general, the inequality o < 3 is
nonlinear and can be solved only in exceptional cases. For example, the integrals can
be used to consider the case ¢, = o, = > 0. Owing to equations (1) and (3) one
easily obtains

a:/_oo F%(z—&’)fz(z)dz< /00 F%(z—i—&’)fz(z)dz:ﬁ

oQ — 00

where & = (e — pty)/n > 0. The situation changes if o, is sufficiently larger than o .

3.2 Determination of Critical Parameter Ranges

Unless the distribution of the noise is specified it is hardly possible to determine the
parameter ranges for which o > /. A parameterization with this property will be termed
critical.

To consider the most usual case let G; ~ N(u,0%) and Z; ~ N(0,1) withi = 1,2
be independent normal random variables. As usual, the symbol “~” means that the
random variable on its left hand side possesses the distribution specified on its right
hand side. Similarly, the symbol “~,” indicates that the distributional relationship is
approximately valid.

Since G; 4 i+ o Z; it follows that G 5.5 4 it + o Z5.5 and hence

—1
% and V[ Gan] = 02 V[ Zoin] = o FT

where the operator £ indicates that the random variables on its left and right hand side
possess the same distribution. The approximation of the replacement error rests on the
observation that the distribution of G 5.2 is well approximated by a normal distribution
with expectation E[ Gi2.» ] and variance V[ (2.2 ]. As a consequence, if X; ~ N (p, 02)
and Y; ~ N (uy, o) are normally distributed random variables with s, > y,, then

E[Geo]l=p+cE[Zan]=pu+

Oy m—1
X2:2_Y~aN<ﬂx_ﬂy+_Uz - +0'5)
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and hence

1/2
a:P{Xm—Y<0}~1—@<(M k] )
0

m—1+4c2m)l/2

sal/?—¢en
=P{Yso- X <0} ~ &
p=pl = x <o~ o ()



where § = pp — pty > 0,7 = 0, and oy = c o, With ¢ > 0. Assume that ¢ and » are
fixed. Since

strictly monotonically increasing whereas

N | —

a—1—9(0) =

strictly monotonically decreasing

o —

B—o1-—0((r—1)"1?) <

as ¢ — oo there must exist a value ¢y > 0 such that « > g and therefore p > 1/2 for
all ¢ > ¢o. It remains to ensure that this property is not an artifact of the approximation
via the normal distribution above. Owing to equation (3) the values for « and 5 can
be reliably calculated via numerical integration. For this purpose let y, = 1, py, = 0,
and n = 1. Figure 1 reveals that c¢q ~ 4.2 for this particular choice of parameters.
Thus, the approximation via the normal distribution already offers considerable insight
into the situation. One may conclude that for every choice of the triple (u o, tiy, o)
with g > p, there exists a critical value ¢y > 0 such that the replacement error p is
larger than 1/2 for every o, = co, With ¢ > ¢¢. As a consequence, this type of local
selection may lead more often into the wrong than into the correct direction—at least
for the specific initial population considered here.
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Fig. 1. Probabilities o and 3 for (ua, py, 02, o) = (1,0, 1, ¢) and varying scaling factor c.



3.3 Numerical Validation for Random I nitial Populations

The analysis presented so far presupposes a very special initial population: The first n /2
cells are of type  whereas the last n/2 cells are of type y. It is by no means obvious that
the results remain valid if the initial population is a random permutation of the initial
population considered previously. In this case there are

() o

equally likely initial populations with n/2 cells of each type = and y. The existence of
the critical scale parameter ¢, in this more general situation may be validated by nu-
merical experiments with random initial populations. More specifically, for each popu-
lation size n € {50, 100} and scale parameter ¢ = 2(0.05)6 the process was run 1000
times with random initial populations. The relative frequency of the event “absorption
at uniform population of type y cells” is an estimator of the absorption probability a .
Figure 2 reveals that there actually exists a value ¢ for which ag > 1/2 if ¢ > ¢q
and vice versa. Moreover, the value of ¢, is apparently between 4.20 and 4.25, which
is in agreement with the value found in the previous subsection. This observation pro-
vides evidence that the random walk model is an appropriate approximation of the more
general situation.
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Fig. 2. Empirical absorption probability o based on 1000 experiments per population size n €
{50, 100} with parameters (jtz, i1y, 02, 0y) = (1,0, 1, ¢) and random initial population.



To sum up, we can say that this selection method may become risky if the scale
of the noise is a strictly monotonous increasing function of the distance between the
individual’s fitness value p and the maximum fitness value p*, ie., ¢ = h(p* — p)
for some strictly monotonous increasing function 2 : IRy — IR4 with A(z) = 0 if
and only if z = 0. In this case it is ensured that individuals with low true fitness will
encounter larger additive noise than individuals with high true fitness. Notice that this
is exactly the situation which may lead to predominantly wrong selection decisions.

4 ArethereNon-Risky Local Selection Methods?

4.1 Characteristics of Local Random Neighbor Tournament Selection

Local random neighbor tournament selection [9] works as follows: For each cell the
individual chooses either its left or right neighbor with the same probability and adopts
the chosen neighbor’s type if this neighbor’s fitness value is larger than the fitness value
of the cell itself. Again, consider the random tuple (X, X, Y7, Y2) of fitness values.
Only the second and third cell may change their type. The second cell changes its type
if and only if it competes with its right neighbor and X ; < Y7 whereas the third cell
changes its type if and only if it competes with its left neighbor and X ; > Y. Notice
that these event are mutual exclusive. As a consequence, one obtains

l—~
=3 and 8= 5
where v = P{X < Y } < 1/2 (because of u, > p,; See section 2). Since o < 3
(or p < 1/2) this leads to a, > ao regardless of the scaling parameters o, and o,
i.e., despite potentially arbitrarily scaled noise the local random neighbor tournament
selection method leads more often into the correct than into the wrong direction.

If the initial population is drawn at random then the situation is considerably more
complicated since the probability distribution of the number of type = cells may now
depend on the ordering of all n in lieu of only four random variables. A formal analysis
of this situation is beyond the scope of this paper. Needless to say, the non-existence of a
critical parameterization for random initial populations cannot be proven by numerical
experiments. But as shown next, there is a similar local selection method that is certainly
non-risky.

4.2 Characteristics of Alternating L ocal Binary Tournament Selection

Let the population be arranged on a ring instead of a linear array and let ¢; € {z, y}
denote the type of cell i € {0,1,...,n — 1}. At iteration £ > 0 the population is
grouped into pairs (¢;,¢;+1) such that ¢ € 7, is odd if k£ is even and vice versa.
Each pair performs a binary tournament and the types of the pair are set to that of the
winner. Thus, there are n/2 independent binary tournaments. Let the initial population
be drawn at random and let d > 0 be the number? of pairs with type (z, y) or (y, z)

L 1f d = 0 then the frequencies of type « and y cells is not changed. Notice that this event does
not affect the absorption probabilities. But if this event has been occurred then d > 0 for the
next iteration—or the population is uniform.



of the current population. The probability that such a pair transitions to a pair of type
(y,y)isy = P{X < Y } < 1/2 so that the probability distribution of the number
D of (y, y)-pairs after selection is binomially distributed with parameters (d, v). Since
P{D=i}>P{D=d—i}for0<i<d/2ifandonlyif~y < 1/2 it follows that
a decrease of type y cells is uniformly more likely than an increase, regardless of the
current state of the population. Since the initial population has the same number of type
x and y cells the property above ensures that a,, > ag. As a consequence, this selection
method leads more often into the correct than into the wrong direction.

5 Conclusions

The distinction between risky and non-risky methods for selection under noise leads to
a clear recommendation which selection methods should be avoided in the presence of
additive noise. A guantitative determination of the absorption probabilities, however,
may become a very complex task. Therefore, it should be aimed at developing simpler
yet sufficient conditions permitting a distinction between risky and non-risky methods.

The observation that the local best offspring selection rule is risky only for state-
dependent noise might lead to the conjecture that all selection methods commonly used
in evolutionary algorithms are non-risky under constant additive noise. Its verification
would be a pleasant result.

The interpretation of repeated selection as a sequential statistical test offers the op-
portunity of transferring typical measures known from statistical test theory to selection
methods under noise. This may open the door to more detailed guidelines for the design
of evolutionary algorithms that operate in the presence of noise.
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