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Abstract. The mutation distribution of evolutionary algorithms usu-
ally is oriented at the type of the search space. Typical examples are
binomial distributions for binary strings in genetic algorithms or normal
distributions for real valued vectors in evolution strategies and evolu-
tionary programming. This paper is devoted to the construction of a
mutation distribution for unbounded integer search spaces. The prin-
ciple of maximum entropy is used to select a specific distribution from
numerous potential candidates. The resulting evolutionary algorithm is
tested for five nonlinear integer problems.

1 Introduction

Evolutionary algorithms (EAs) represent a class of stochastic optimization al-
gorithms in which principles of organic evolution are regarded as rules in opti-
mization. They are often applied to real parameter optimization problems [2]
when specialized techniques are not available or standard methods fail to give
satisfactory answers due to multimodality, nondifferentiability or discontinuities
of the problem under consideration. Here, we focus on using EAs in integer
programming problems of the type

max{f(z) : € M C7Z"} (1)

where Z denotes the set of integers. Note that the feasible region M is not
required to be bounded. Consequently, the encoding of the integer search space
with fixed length binary strings as used in standard genetic algorithms (GA)
[7, 6] is not feasible. The approach to use an evolution strategy (ES) [13, 14] by
embedding the search space Z" into IR" and truncating real values to integers
has, however, also its deficiency: As evolution strategies usually operate on
real valued spaces they include features to locate optimal points with arbitrary
accuracy. In integer spaces these features are not necessary because the smallest
distance in £;-norm between two different points is 1. Therefore, as soon as
the step sizes drop below 1 the search will stagnate. Thus, EAs for integer
programming should operate directly on integer spaces.

Early approaches in this direction can be found in [4] and [10]. They proposed
random search methods on integer spaces in the spirit of a (1 + 1)-ES:
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Choose z(°) € M and set ¢t = 0
repeat
Yt = g 4 ()
if Y € M and f(yU+D) > f(&®) then 2D = y(+1)
else (1t = ()
increment t
until stopping criterion fulfilled

Here, z(*) denotes the random vector used at step t. Gall [4] and Kelahan/Gaddy
[10] used a (continuous) bilateral power distribution with density

1
P@) = s [ (@) k€N,

to generate random vector z via z; = a-(1—2u)* with u ~ U[0, 1] for each vector
component and by truncating these values to integers. The factor a is used to
shrink the support of the distribution during the search by a geometrical sched-
ule. Since the support is bounded and its range tends to zero as time increases,
the above algorithm is at best locally convergent. Moreover, the truncation of
random variables values drawn from continuous mutation distributions to inte-
ger values might complicate theoretical investigations. Therefore, the usage of
mutation distributions with support ZZ" seems most natural for integer problems
(1).

The remainder of the paper is devoted to the construction and test of an appro-
priate mutation distribution. As there are several candidates for such a mutation
distribution we pose some requirements for the desired distribution before using
the concept of maximum entropy to guide our final choice. The resulting evo-
lutionary algorithm, which is oriented at a (p, A)-ES, is tested for five nonlinear
integer problems.

2 Construction of Mutation Distribution

Assume that the current position of the algorithm in the search space is the
point @ € Z"™. Since the algorithm does not have prior knowledge of the re-
sponse surface there is absolute uncertainty about the next step to be taken. In
each coordinate direction one might ask the questions: Should we go left or right
7 How many steps should be taken in the chosen direction 7 The first question
has a simple solution: Since we do not have prior knowledge which direction will
offer improvement, we should move to the left or right with the same probability.
The second question is more difficult to answer: Since we do not know which
step size will be successful, we could draw a step size s € INy at random. But
which distribution should be used for random variable s 7 There are several
candidates, for example Poisson, Logseries and geometrical distributions [9]. To
select a specific distribution with given mean, say # > 0, we may use the concept
of marimum entropy: A distribution with maximum entropy is the one which
is spread out as uniformly as possible without contradicting the given informa-
tion. It agrees with what is known, but expresses maximum uncertainty with



respect to all other matters [8]. The usage of this concept to select a distribution
usually leads to the task to solve a nonlinear, constrained optimization problem
analytically. This will be done in subsection 2.1. The symmetrization of the
chosen distribution and its extension to the multivariate case will be considered
in subsection 2.2. Finally, we discuss possibilities to control the average step size
during the search in subsection 2.3.

2.1 Maximum Entropy
DerINITION 1
Let p, with & € INy denote the density of a discrete random variable. Then

oQ

H(p) == v logps (2)

k=0

is called the entropy of the distribution, provided that series (2) converges!. O

PropPOSITION 1

Let X be a discrete random variable with support INg and mean E[X] =6 > 0.
If the distribution of X is requested to possess maximum entropy, then X must
have geometrical distribution with density

1 1\
P{X_k}_ngl(l—ngl)  keNg . (3)

Proor : The optimal values for p; can be obtained after partial differentation
of the Lagrangian

L(p,a,b):—Zpk log pr, + a (Zpk—l) +b (Zk~pk—9) .
k=0 k=0 k=0

The details are omitted due to lack of space. a

2.2 Symmetrization and Extension to the Multivariate Case

A discrete distribution is symmetric with respect to 0, if pp = p_p for all k being
elements of the support. How this can be achieved 7

ProposIiTION 2 ([12, p. 436-437])
Let X be a discrete random variable with support INg and Y a random variable

with support Z\IN and V 2 _ X X and Y are stochastically independent,
then 7 £ X 4 Y possesses a symmetric distribution with respect to 0. a

Here, X possesses geometrical distribution with P{X =k} = p-(1—p)*, so that
for Y holds P{Y = k} = p- (1 — p)~*. The convolution of both distributions
leads to the distribution of Z. We distinguish two cases:

tConvention: 0 -log0 = 0.



I Let k> 0. Then P{Z =k} = P{X +Y =k} =

YO P{X =j+k} P{Y =—j}

j=0

ip~(1—p)j+k~p~(1—p)j

Pa-p S [a-p7 = L-a-pt.
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Il Let k< 0. Then P{Z =k} = P{X +Y =k} =

PPN =gb P =ikl = D op(l-pY p(1=p) T =

j=0
p’(1—p)7* i [(1-p)) = %(1 -p)7F
j=0
Thus, the probability function of 7 1s
P{Z:k}:%(l—p)'“ L kEZ (4)

with E[Z] = 0 and Var[Z] = 2(1 — p) / p?. Next, we consider the multivariate
case. Two questions are of special interest: Does the extension to the multivari-
ate case remain symmetric 7 What is the expectation and variance of the step
size in n-dimensional space 7

DeFINITION 2 ([3])
A discrete multivariate distribution with support Z" is called ¢;-symmetric if
the probability to generate a specific point k € Z" is of the form

P{X1 =k, Xo=ko, ..., Xpn=kn}=g(|k||1),

where k = (k1,..., kn) with k; € Z and ||k||s = >_;_, |ki| denotes the ¢;-norm.
Od

We shall generate the mutation vector Z by n independent random variables Z;
with probability function (4). Let k € ZZ" be any point of length [|k||; = s, s
fixed. Then P{Zl = k’l,Zz = k’z, . .,Zn = k’n} =

() fro-wr-

=1

That means that each point with length s is sampled with the same probabil-
ity. Therefore, the multivariate distribution i1s £;-symmetric. To determine the

ﬁ P{Z, = k;}



expectation and variance of the step size in n-dimensional space, we require the
expectation of random variable |7;|. Since P{|Z1| = j} = P{Z1 = j} + P{71 =
—jt for j € N and P{|7;| =0} = P{Z, = 0} we obtain

— if 7=0
2—p ot
P{Zi| =4} = 2p
L (1—py if j €¢IN
9 p( P) , 1 g€

Straightforward calculations lead to

E[Ile]:H and V[|Zl|]:¥[l_H]

As the random variables | Z;] are stochastically independent we obtain for vector

zZ
E[IZll) = n-E[|Z:]] and  V[[|Z]i]=n-V[]Z]] . (5)

It should be noted that (4) could have been derived from the ansatz

k] k] L— ). il
q q q) -4
Yo 1423 g !
j=—00 j=1

with ¢ = 1 — p. Another approach with

I I I

q q q
P{Z=k}=— = =i i (6)
Z q]2 1+2 Z q]2 S(Qa )
j=—0c0 ji=1

where ¥3(q, x) denotes the third Theta function [1, entry 16.27.3], gives exactly
the distribution with maximum entropy under the constraints P{Z = k} =
P{Z = —k} for all k € Z and V[Z] = o (see Appendix). There are, however,
three problems:

1. The multivariate version of (6) is symmetric with respect to ¢z-norm.

2. The control of (6) with parameter ¢ would require the approximate de-
termination of the zeros of a highly nonlinear equation (see Appendix), as
soon as parameter o is altered.

3. There exists neither a closed form of J3(¢,0) nor of its partial sums, so
that the generation of the associated random numbers must be expensive
and inaccurate.

While the first point is a matter of taste, the last two points are prohibitive
for the usage of distribution (6) in an optimization algorithm. The last two
problems do not occur with distribution (4). Firstly, the random variable 7



can be generated by the difference of two geometricly distributed independent
random variables (both with parameter p) and a geometric random variable G
is obtained as follows: Let U be uniformly distributed over [0,1) C IR. Then

is geometricly distributed with parameter p. Secondly, the distribution could be
controlled by the mean step size (5), so that one obtains

2(1-p) L S/n

s=n 0+ (/41
where S = E[||Z]]1]-

2.3 Parameter Control

As soon as an probabilistic optimization algorithm approaches the optimum, the
step size of the algorithm must decrease to balance the probability to generate
a new successful point. There are several ways to control the parameters of the
mutation distribution. A simple idea is to decrease the step size s by a determin-
istic schedule, say s; = s/t or s; = 3' - so with 3 € (0,1). This is sufficient for
problems with only one local (= global) optimum. But for problems with more
than one local optimum such a schedule would force the algorithm to approach
the closest local optimum. Therefore, it might be useful to offer the chance to
increase the step size, too. Evolution strategies employ the following technique
[2]: An individual consists of a vector € ZZ™ and a mutation control parameter
s € IRy. Both z and s are regarded as genes changeable by genetic operators.
First, the mean step size s is mutated by multiplication with a lognormally dis-
tributed random variable: s’ = s -exp(N), where N is a normally distributed
random variable with zero mean and variance 72 = 1/n. Thus, the mean step
size 1s decreased or increased by a factor with the same probability and it is
likely that a better step size will also produce a better point. Since a mean step
size below 1 is not useful for integer problems, the mutated mean step size is set
to 1 if the value is less than 1.

Finally, vector  is mutated by adding the difference of two independent geo-
metricly distributed random numbers to each vector component. Both geometric
random variables have parameter p depending on the new step size s’ via (7).

3 Computational Results

3.1 Sketch of the Algorithm

The evolutionary algorithm to be developed here is basically a (i, A)-ES [2] (out-
lined below). Initially, vector x of each individual is drawn uniformly from the
starting area M € 7ZZ", which need not contain the global optimum. The initial
value of s is chosen proportional to the nth root of the volume of M. Recom-
bination of two individuals is performed as follows: The step size parameters



of the parents are averaged and the new vector x is generated by choosing the
vector component of the first or second individual with the same probability.
Infeasible individuals are sampled anew.

initialize g individuals
calculate the fitness of the individuals
repeat
do A times:
select two individuals at random
perform recombination to obtain an offspring
mutate the offspring
calculate the fitness of the offspring
od
select p best offspring
until termination criterion fulfilled

3.2 Test problems

Problem 2.20 (unconstrained) of [14] with = € Z°%: f,(x) = —||2||; with known
solution: x; = 0 with f(x) = 0. Starting area M = [—1000, 1000>° C Z*".
Initial mean step size so = 1000/3.

Problem 1.1 of [14] with # € Z*°: fy(x) = —&’ 2 with known solution: z; = 0
with f(z) = 0. Starting area M = [—1000,1000]>° C Z*°. TInitial mean step
size sp = 1000/3.

Problem 8 of [5] with = € Z°:

35 —20 —10 32 —10
—20 40 -6 —31 32

f(x) = (152736 18 12)x —x' | —10 -6 11 —6 —10 |x
32 —31 —6 38 —20
-10 32 —10 -20 31

Best solutions known: z = (0 11 22 16 6)’ and « = (0 12 23 17 6)" with f3(x) =
737. Starting area M = [0,100]° C Z°. Initial mean step size s; = 50/3.
Derived from problem 9 of [5] with #; > 0.

10 .
fix)== x-|lo Xiﬂ) —di] —6-(A2+ B+ 0%,
== [ (e ( )
with d = (6.089,17.164, 34.054,5.914,24.721,14.986, 24.1, 10.708, 26.662, 22.179),
A=uwx1+2x+203+ 26+ 210—2, B=x4+2x5+256+27—1and C =
3+ 7+ s + x9 + #1090 — 1. Best solution known: = (3003000 3 00)
with f(x) ~ 150.533. Starting area M = [50,150]'° ¢ Z'°. Initial mean step
size sg = 50/3.
Problem 2 of [11] with #; > 0: fs(x) = Hllil [I — (1 —r;)"] with constraints
¢z <400 and w’ & <414 (see [11] for details).
Best solution known: # = (346432454234545) with fs(x) =~ 0.945613.
Starting area M = [0,6]'® C Z"°. Initial step size sq = 2.



3.3 Results

The evolutionary algorithm was tested with g = 30 and A = 100. The test
statistics over 1000 runs for each problem are summarized in tables 1 and 2
below.

min max mean std.dev. skew
fi| 106 1519  147.0 96.4  6.68
fa | 115 159 135.6 6.7 0.25
f3 30 198  107.7 30.5  -0.17
fa 38 769 94.3 85.9 3.48
fs 16 49434 582.6 2842.5  9.90

Table 1: Statistics of the first hitting time distribution.

Table 1 shows the minimum, maximum, mean, standard deviation and skewness
of the sample of first hitting times (of the global maximum) obtained from 1000
independent runs. Problems f; and fa only have one local (= global) maximum.
Surprisingly, the distribution of the first hitting times is skewed to the right
significantly for problem f;, while the tails of the distribution for problem f;
are balanced. But as can be seen from table 2 containing the percentiles of the
ordered sample, at least 90% of all runs solved problem f; in not more than 140
generations. The reasons for these different characteristics are unknown at the
moment.

| .10 .20 .30 40 50 .60 .70 .80 .90 .95 .97 .99

fi | 118 120 123 125 126 128 131 134 140 276 416 624
fo | 128 130 132 133 135 137 139 141 144 147 149 152
fa 65 81 94 102 110 118 125 133 145 155 161 173
fa 46 49 53 57 62 70 82 108 194 260 331 455
fs 24 26 28 31 34 38 44 84 487 2245 5655 13038

Table 2: Percentiles of the first hitting time distribution

Problems f3, fa and f5 possess more than one local maxima. Seemingly, prob-
lems f3 and f; do not cause difficulties, maybe due to the low dimensionality
of the problems. The results for problem f5 reveal that this problem is solvable
for 80% of the runs in less than 100 generations, but there must be local max-
ima on isolated peaks preventing the population to generate better solutions by
recombination, so that mutation is the only chance to move from the top of a
locally optimal peak to the global one.

4 Conclusions

The principle of maximum entropy is a useful guide to construct a mutation
distribution for evolutionary algorithms to be applied to integer problems. This
concept can and should be used to construct mutation distributions for arbi-
trary search spaces, because special a prior: knowledge of the problem type



may be formulated as constraints of the maximum entropy problem, so that this
knowledge (and only this) will be incorporated into the search distribution.

The evolutionary algorithm developed here demonstrated the usefulness of this
approach. It was able to locate the global optima of five nonlinear integer prob-

lems relatively fast for at least 80 percent of 1000 independent runs per problem.

Clearly, a test bed of only five problems may not be regarded as a basis to judge
the power of the algorithm, but these first results and the ‘simplicity’ of the
mutation distribution are encouraging for further theoretical research.
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Appendix: A Family of Maximum Entropy Distributions

The question addressed here 1s: Which discrete distribution with support 7 is
symmetric with respect to 0, has a variance ¢? > 0 or a mean deviation s and
possesses maximum entropy 7 The answer requires the solution of the following
nonlinear optimization problem: — > 77 p; log pr — max subject to

pe = p-r VKEZL, (8)
o =1, (9)
k=—o0
S W = o (10)
k=—o0
p > 0 VEETZ. (11)

We may neglect condition (11), if the solution of the surrogate problem fulfills
these inequalities. We may therefore differentiate the Lagrangian

L(p,a,b) = Z pr log pr +a- (Z Pk_1)+b'(z |k|mpk—02)

k=—c0 k=—c0 k=—c0

to obtain the necessary condition (9) and (10) and —1 —log pr +a+b]k|™ =0
or alternatively

pr=e"t (T vkez . (12)
Exploitation of the symmetry condition (8) and substitution of (12) in (9) leads
to
Z pe=po+2: Zpk—e (1-1-2 Z lklm) (13)
k=—c0
Let ¢ = ¢® < 1 so that S(q) := Z "1™ < 0o and ¢ - S'(q) = Z k| g™
k=1 k=1
Then condition (13) becomes
l—a _ . _ [ A+q/(1-q) ,ifm=1

where ¥3(q, z) denotes the third Theta function [1]. Substitution of (12) in (10)
yields

S k=2 Zwer”pk—zea : ZW " =2t q S (q) = 0"

k=—o0

so that with substitution of (14) for m = 2 one obtains
2q S/(Q) 2
—= =" 15
ﬁS(Qa 0) ( )

while m = 1 gives (7) with ¢ = 1 — p and s/n = ¢. The value of ¢ in (15) for

given o can be determined numerically only. Substltutlon of (14) in (12) gives

(6) for m = 2 and (4) for m = 1.



