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Abstract

This work is our first attempt in establishing the connections between evolutionary
computation algorithms and stochastic approximation procedures. By treating evo-
lutionary algorithms as recursive stochastic procedures, we study both constant gain
and decreasing step size algorithms. We formulate the problem in a rather general
form, supply the sufficient conditions for convergence (both with probability one, and
in the weak sense). Among other things, our approach reveals the natural connection
of the discrete iterations and the continuous dynamics (ordinary differential equations,
and/or stochastic differential equations). We hope that this attempt will open up a
new domain for further research and lead to in depth understanding of the underlying
algorithms.
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1 Introduction

The main objective of this work is to make effort to establish the connections between
evolutionary algorithms (EA) and recursive algorithms of stochastic approximation type.
One of our hopes is that with the help of the existing results in stochastic approximation
and the bridge between evolutionary algorithms and stochastic approximation procedures,
we will eventually be able to treat many interesting theoretical questions on asymptotic
properties of evolutionary computation.

Evolutionary algorithms represent a class of stochastic optimization algorithms in which
organic evolution is regarded as a set of rules for optimization. These algorithms have
been applied to many problems in parameter optimization and related fields with great
success. With simplification of biological reality, based on the collective learning process
within a population of individuals, each of which is a search point of potential solutions for a
given problem, the evolutionary algorithms carry out the designed computational task using
randomized process of selection, mutation and recombination. The study of the evolutionary
algorithms has witnessed rapid progress for nearly thirty years. For some of the important
contributions, we mention the work of Rechenberg [21], Schwefel [25], [26], [27], Holland
[11], De Jong [6], Fogel [8], Fogel [9] among others. For an extensive review of the recent
advances, the readers are referred to Back and Schwefel [1], Back, Rudolph and Schwefel [2],
[29] and the references therein.

The method of stochastic approximation was initiated in the early 50’s to find the root of
a function f(-) and/or to locate the maxima or minima of f(-), provided only noisy measure-
ments or observations are available. Owing to its wide range of applicability, such algorithms
have been studied extensively for years. We now have good understanding on the asymp-
totic behavior of the algorithms (see [19], [18], [14], [12] and [4] and the references therein).
Early development via martingale approach is contained in Nevelson and Khasminskii [19];
the celebrated ODE (ordinary differential equation methods) are discussed in Ljung [18]
and Kushner and Clark [14]; the method of weak convergence is due to Kushner and his
associates and documented in [12]; a most recent book on stochastic approximation is the
one by Benveniste, Métivier and Priouret [4]. It provides a comprehensive overview on the
recent development of the subject and interesting applications in control and adaptive signal
processing.

Both evolutionary algorithms (EA) and stochastic approximation are aiming at the
objective—stochastic optimization. Nevertheless, surprisingly enough, until now, there has
not been any attempt to connect these closely related fields, to the best of our knowledge.

Taking this into account, our main effort in this paper is to apply some of the techniques in



stochastic approximation to analyze the asymptotic properties of some recursive algorithms
that have potential applications in evolutionary computation. We will make effort to estab-
lish the connection of these methods. We believe that the ideas to be presented below will
be of interest to the EA community as well as to people working in the systems theory and
related fields. By and large, the current work is served as a survey on convergence and rate
of convergence issues.

The rest of the paper is arranged as follows. The precise formulation of the problem to-
gether with examples from evolutionary computation are given next. Both constant step size
algorithms and decreasing step size schemes are given. Although not all the mathematical
details are provided, appropriate references are given. Section 3 presents the convergence
results and Section 4 focuses on the rate of convergence issues. In these sections, we will
also state some of the mathematical background. Finally we close this paper with some

concluding remarks in Section 5.

2 Problem formulation

We present the problem formulation in a rather general form so as to accommodate many
potential applications in evolutionary computation.

Let , £ € R", G(+,-) : R™" — R", where G(z,&) denotes the noisy gradient estimate
of a real-valued function f(z). Our effort is to develop recursive algorithms to carry out the
optimization task. Suppose the initial estimate xq is selected. We then generate a sequence

of estimates {x,} by means of the following recursion:

Tpt1 = Tn — anG(xmfn)v (1)

or

Tptl = Tp — aG(xnvfn)v (2)

where a, and a are known as step size or gain sequences. In (1), we assume that

a, >0, a,—0 and i , = 00,
n=1
whereas in (2), a is a constant step size. In the asymptotic analysis, however, we assume that
a — 0. To see the connection of the above algorithms with the evolutionary computation,
we consider the following example.
Example 2.1. Suppose that we are employing a (1, ) strategy to solve an optimization
problem. Select random vectors ij), 1 <7 < X, We then use the current estimate z,, to

evaluate f(z, +2\), for 1 <7 < A. After the evaluation, compare the corresponding values
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and select the vector z,, + ij) such that f(x, + 2‘7(3)) = min f(x, + ij)), for1 <¢ <A In
short,
rosr = argmin{ (e, + =0), -, f(rg + =)}, 3

Clearly, the algorithm can be thought of as a recursive procedure.

Comparing (3) with that of (1) or (2), a first glance may lead to the conclusion that they
do not have much in common. At least (3) does not involve step sizes. However, a closer
examination reveals that there is a hidden step size in the algorithm. Suppose that {z{9} is
a sequence of independent and normally distributed random variables such that the mean of
2 is zero and the covariance matrix is 021, where 02 > 0 (2 can be either varying with n
or equal to a constant o). We note that o2 here is simply the scale factor of the distribution.
Then we can rewrite 27(5) as 27(5) = Unéfj). Now Z() has a normal distribution with mean 0

and covariance [, the identity matrix. Thus (3) can further be written as:

Tptl = Ty, + 0p Z Zn l’n-I-ZEL))_minueAn Fu)}?
=1

where A, = {z, 4+ 2): i =1,..., A}, and I, denotes the indicator function of the set A. In
evolution strategy, one often chooses o, that is proportional to ~ LH(V f(x,)), where r is the
dimension of the problem and H(-) : R" — R is an appropriate real-valued function such that
H(0) = 0 and the only root of H(-) is 0. For example, one may choose H(V f(x)) = |V f()].
With either a or a,, denoting the proportional constant (multiplied by 1/r), the recursive
formula can be written as

A
Tpy1 = T + aH(V f(2,)) ZZ : ot )mminen, F(0)}
=1

or

Loyl = Ty + an Z 27(;

(z -|—Zn )_minueAn Flw)}’

In the next section, we argue that for fixed x, the average of the random part in the iteration
is not equal to zero. Algorithm (3) now becomes a constant step size or a decreasing step
size recursive algorithm of stochastic approximation type. The constant a or a, is the step
size of the corresponding stochastic approximation algorithm.

To proceed, a word about the notation is in order. In the sequel, K denotes a generic
positive constant. Its value may be different for different appearances. Thus, K + K = K,
KK = K are understood in an appropriate sense. z' denotes the transpose of z and f,
denotes the first partial derivatives of the function with respect to x. Similar notation is

used for the second order derivatives.



3 Convergence of the algorithms

In this section, we study the convergence of the algorithms (1) and (2). We include the with
probability one convergence and that of weak convergence in two subsections. In the third

subsection, we discuss related problems in EA computation.

3.1 W.p.1 convergence

In general, dealing with discrete iterations is very hard and requires much more restrictive
conditions. In the late 70’s, an approach known as ODE (ordinary differential equation)
methods was invented by Ljung [18] and further developed by Kushner and his colleagues
[14]. The essence is that in lieu of examining the discrete iterations directly, one takes the
continuous time interpolation of the estimate. Then combining the theory of analysis and
probability, one shows that a suitably scaled sequence of functions is uniformly bounded and
equicontinuous. Thus one may extract convergent subsequence in accordance with the Ascoli-
Arzela’s lemma, and identify the limit of the sequence as a solution of an ordinary differential
equation. To give some heuristic argument, consider a special case, G(x,¢) = Vf(z) + ¢,
the additive noise setting. For large n, we expect the noise term to be averaged out owing

to the law of large numbers type of conditions. Thus,

n+k—1
Tptk R Tk — Z Givf(l'k)a
i=k
or equivalently,
Ttk — Tk
o~ V(@)
ngk ba; 7

which leads to the connection to the ODE & = —V f(x).
n—1

To proceed, we work with the decreasing step size algorithm, and define ¢, = >°"7; a;

and m(¢) = max{n;t, < t}. Define the piecewise linear (denoted by z°(¢)) and piecewise

constant (denoted by (?)) interpolations of the iterates as:

t?’L - t t - tn .
l’o(t) = t Ty + Tp41 11 (tnvtn-l-l)v (4)

an an

z(t) = a, for t € [ty tos1)-

We also define a shifted sequence z"(-) by a™(t) = 2°(¢ + t,,).
Now, we are in a position to give a set of conditions that yields the w.p.1 convergence of

the algorithms.



(A3.1) 3, a2 < o0, 3, an = 00, {any1/a,} is bounded. G(z,£&,) = Gi(z, a,) + Ga(x) 5,
such that Gy(x, ) is bounded on bounded x-set and is continuous. G3(+) is a continuous and
bounded function. {a,} is a sequence of uniformly bounded random variables and {3,} is a
sequence of independent random variables with 0 mean and finite second moment.

(A.3.2) There is a twice continuously differentiable Liapunov function 0 < V() such
that V,.(-) is bounded, V(x) — oo as |¢| — oo. Let E, denote the conditional expectation

on the o-algebra F, generated by {z¢,&; ¢ <n}. W.p.1,

< Kay(1+ [V(2)V f(2)]),

i a;Vy(2) En(G(x, &) — V [(2))

o0

‘Z%MWWM&@m%WU@h

i=n

< Kan(1+ [V (2)V f(2)]V?).

The bounds above also hold with V(+) replaced by a twice continuously differentiable function
with a compact support. For some 5 > 0, some A\g > 0 and compact set Qo = {z; V() <
Aoty VI(@)Vf(x) > n for all @ & Q.

(A33) BoJGle,&) < K(L+ [VA()V (@) € K(1+ V(a)). For 0 < s < 1, B V(o +
sa, G2, 6))V fx + sa,G(x, &) < K(1+ |[V'(2)V f(x)]).
Theorem 3.1. Suppose the conditions (A.3.1)-(A.3.3) are satisfied. Then {x,} is bounded
w.p.l. If =V!(2)V f(x) <0 for all x, then x, — {x; V/(x)V f(x) =0} w.p.1. In general {z,}
converges to the largest bounded invariant set of

&= —=Vf(x), x(0)= . (5)

If 2° is an asymptotically stable solution of (5) with domain of attraction DA(2°) and if
v € A C DA(2°) infinitely often, where A is a compact set, then x,—~2° w.p.1.

The proof of this theorem uses the idea of perturbed Liapunov function methods (see
[12]). The argument is analogues to [13]. Rather than going through all the technical details,
we consider a simpler problem-the approximation scheme with additive structure.

3.1.1 Discussion on a simpler problem.
Consider the following simplified problem:

Tp41 = Ty — Cln(Vf(an) + fn)
Define the interpolations as before, and define also

B(1) = Y aié

bopr — 1

t—1,
B°(t,) +

an an

B(t) = B°(tyg1) in (Lo, bosa)-



Assume that:

e Vf(-)is a continuous function.

i a;

i=n

e limP (sup

m>n

> 5) = 0 for each ¢ > 0 or simply > ; a;&; converges w.p.1.

o {x,} is bounded w.p.1.

e There is a twice continuously differentiable Liapunov function V (-) such that

Vi)V f(z)>0foral z ¢S ={x; Vf(z)=0}.

Then @, — S w.p.1,i.e.,lim, p(z,,S) = 0 w.p.1, where p denotes the usual distance function.
In particular, if S = {2*} a singleton set, then z,——z* w.p.1.

The proof of the assertion goes as follows. By means of the boundedness of {x,}, it can
be verified that the sequence {z"(-)} is uniformly bounded and equicontinuous. By virtue
of Ascoli-Arzela’s lemma, we can extract convergent subsequences. Select such a sequence

but still denote the index by n. Using the recursive formulae, it is not difficult to see that
t
2" = 2(0) = [V (@"())ds — B(t) + € (1),
0

where ¢"(1)—=0 uniformly on finite time intervals. In addition, by virtue of the averaging
condition on the noise sequence, B"(t) also goes to 0. As n — oo, the limit of the equation
above gives us
v =2(0) = [V fCe(s))ds,

which is the desired equation. Finally the assertion follows from the LaSalle’s invariance
principal and some detailed probabilistic argument (see e.g., [14] Chapter 2).
Remark: The boundedness of {x,} above can be obtained via the use of perturbed Liapunov
function methods. We assumed it for simplicity. The average condition of the noise or
the summability of 3, a;&; is a rather general condition. It is verified by a large class of
random processes. For example, i.i.d. noise, martingale difference sequences, some ARMA
models, mixing processes etc. can be shown to possess such properties (see Kushner and
Clark [14], Yin [32] and the references therein). The conditions used here (even in the setting
of Theorem 3.1) are not the most general one. Weaker conditions are possible. For ease of
discussion, we selected the simple forms.

The significance of the limiting ODE (5) is that the stationary points of it corresponds
to the stationary points we are searching for. The ODE method gives us an analytic way to

convert the problem into one that can be relatively easily handled.



3.2 Weak convergence

First we recall the definition of weak convergence. A sequence of random variables {w,} is
said to converge to w weakly, if for any bounded and continuous function ¢(-), Eg(w,) —
FEg(w) as n — oo. Weak convergence is a substantial generalization of the concept of
convergence in distribution. It can be used not only for random variables living in a Euclidean
space, but also for random processes taking values in function spaces as well. In the process
of getting weak convergence result, one often needs to verify that the sequence involved
is tight. A sequence {w,} is tight, if for any ¢ > 0, there is a compact set S, such that
P(w, € 5.) <eforall n. A well-known theorem due to Prokhorov states that, in a complete
separable metric space, the tightness is equivalent to sequential compactness. In other words,
once the tightness is verified, one may proceed to extract convergent subsequences.

There are reasons that weak convergence analysis is more preferable in many applications.
First, it requires much less restrictive conditions than its with probability one convergence
counter part. Secondly, dealing with the problem of rates of convergence, we often need to
obtain results similar to that of the central limit theorem. In this regard, one is forced to
treat convergence in the sense of convergence in distribution or convergence in the weak sense
any way. Third, to analyze a constant step size algorithm, we need to use weak convergence
tools since if a constant step size is used, almost sure (w.p.1) convergence results cannot
generally be expected.

For technical purposes, it is easier to deal with paths than with measures. A device
known as Skorokhod representation allows one to ‘change’ the weak convergence to w.p.1
convergence on a larger space. For the detailed account on the concept of weak convergence
as well as many related materials, we refer the reader to the book of Ethier and Kurtz [7]
and the references therein.

In our weak convergence analysis to follow, we often work with D"[0, o), the space of
functions, that are right continuous, have left-hand limit endowed with some weak topology
(Skorokhod topology). Our analysis requires that first the tightness is verified and then the
limit process is characterized.

In what follows we provide some sufficient conditions that ensure the convergence in the
sense of weak convergence. We work with the algorithm with constant step size a. The

argument for that of the decreasing step size algorithms are virtually the same.

(B.3.1) The function G(x,£) is bounded on bounded x-set,

lim E|G(x, &) — Gy, §)] =0,

lz—y|—0
and for each x belongs to a bounded set and each T' < oo, {|G(x,&,)]; na < T} is uniformly

integrable.



(B.3.2) The following averaging condition holds: For each «,

m—+n
1 > EnG(z,£&)—5V f(z) in probability. (6)

n

Remark: As can be seen that the conditions for the weak convergence are much weaker than
that of the corresponding one for convergence in the sense of w.p.1. We do not even require
that the function G(-) to be continuous. Only continuity in the weak sense is assumed. As
far as the averaging condition is concerned, it is a law of large number type of condition.
We only require the averaging take place in the sense of convergence in probability. Note
that the condition is weaker with the conditional expectation added. In case of independent
identically distributed and/or martingale difference type of noise ¢,, it is averaged out even
before taking the limit. We emphasize that the noise is averaged out in (6) while x is kept
fixed. In fact, this is one of the main ingredients of the direct averaging procedures (see
[12]). Keep in mind that we only average out the noise. The uniform integrability condition
is verifiable for many applications. See for example Rudolph [22] on verification of the
condition for problems in evolutionary computation. To analyze the algorithm, we take the
piecewise constant interpolation defined by x%(t) = x,, for ¢ € [na,na + a).

Clearly 2%(+) is in the D"[0,00). Now, we proceed to state the weak convergence theorem

for the interpolated process.

Theorem 3.2. Under the conditions of (B.3.1) and (B.3.2). Assume that there is a unique
solution of (5) for each initial condition xo, and ©3 = xo. Then the sequence {x*(-)} is tight
in D"[0,00) such that any weakly convergent subsequence has a limit x(-) that is a solution
of the differential equation (5).

Remark: Very often z§ = xg, i.e., it does not depend on the small parameter a. Here we are
using a condition that is more general and can accommodate more complex situations.

Idea of proof: We divide the proof into several steps. First we need to show that the sequence
{z*(-)} is tight. We add a condition that the iterates x,, are bounded initially, and discuss

how we can discard it afterward. It is easily seen that in this case
Alim lim sup P {sup |z (t)] > A} = 0 for each T' < c0. (7)
— 00 a tST

Now by virtue of (B.3.2), {G(x,,&,)} is uniformly integrable. Then Lemma 3.7 in Chapter
3 of [12] implies that {z*(-)} is tight, and all limits have continuous paths with probability
one.

Without the boundedness condition on the iterates {z,}, we proceed by employing a

technical device known as N-truncation (see [12] Page 43). For each N < oo, define Sy =



{x;]z| < N}. 2%N(t) is said to be an N-truncation of z%(¢) if 2™ (t) = z%(¢) up until first

exit from Sy, and

jim lim sup P {sup |z N ()] > A} = 0 for each T' < oc. (8)
—00 a T

<
In addition, the truncation for the discrete algorithm is defined as

oy =2y — aGlay Gav (),

where ¢y (-) is known as a truncation function taking the form

1, x € Sn;
gn(x) = {0, x € R"— Sy;
smooth, otherwise.

We then proceed to obtain the tightness of the truncated process {z*"(-)}, obtain its limit,
and get the desired result by taking limit as N — oo at the end. The details are omitted.
We remark that without the boundedness, the verification of (7) is normally difficult, but
the verification of (8) for the truncated process is relatively simpler.

In the second step, we characterize the limit process. In the traditional approach of weak
convergence analysis, after proving the tightness, one needs to identify the limit process and
also show that the finite dimensional distributions of the interpolated process converge. Such
an approach is simplified by the direct averaging methods developed by Kushner (see [12]
and the references therein). The direct averaging requires to characterize the limit process
only by use of the martingale problem formulation of Stroock and Varadhan (see [7]). A
process x(-) is said to be a solution of a martingale problem if for any function ¢(-), that is

twice continuously differentiable with compact support,

t
g(x(t) = g(a(0)) = [ Lgla(s))ds
is a martingale, where £ is an elliptic operator of the form
L= b(2)0/dz" + (1/2) " a” (2)0/ 9" D’
i i

corresponding to the stochastic differential equation dx = b(a)dt + o(a)dw(t) such that
o(x)o'(x) = alz).

For ease of presentation, in what follows, we will not use the function ¢(-) in our analysis.
Carrying it in the discussion makes no essential changes.

We extract a convergent subsequence and without change of notation still denote the

sequence by {2%(-)}, and denote the limit by x(-). By virtue of the Skorokhod representation,
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(without changing notations), it may be assumed that x*(-) converges to x(-) w.p.1 and the
convergence is uniform on any bounded time interval.

We claim that x(-) is a solution of (5) or what is equivalent that x(-) is a solution of
the martingale problem with an degenerate operator (that is the part corresponding to the

Brownian motion term disappears or equivalently, a(x) = 0). Define

M(t) = (1) = 2(0) ~ [ (= f(a(u))du.

To prove this assertion, we need only show that M(-) is a continuous martingale. Since it
can be verified that M(-) is Lipschitz continuous, it then follows from [12], M (#) =constant.
However, M(0) = 0. Therefore, M(t) = 0. As a result, x(-) is a solution of the equation (5)
as claimed.

To verify the martingale property, we need only prove that for any bounded and contin-

uous function A(-), any integer k, j < kand t; <t <t+s,
t+s
Bh(e(t;),§ < W)t +9) — 2(0) = ~Bh(e(t).§ < b) [ T (e(u))du.

t

To this end, we work with the pre-limit process x%(-). Choose a sequence of real numbers

{n,} such that n, — 0o as a« — 0, but 6, = an, — 0. Detailed computation leads to

Eh(2"(t;),j < k)(@"(t + 5) — 2°(t))

. (t+s)/a
= —FEh(2(t;),] < k) Z aG(x;, &)
t/a
(t+s)/a
= —Eh( ] < k Z 5 { ZElna xlv }
Ing=t/a @ ela

where L* = {i;In, <@ <In,+n, —1}. Notice that the conditioning is inserted since t; <,
h(x(t;)) is Fin, measurable.

Loosely, the outer summation in the above formula is replaced by [/**

whereas the term
inside the curly bracket gives us the integrand in the limit (in the sense of in probability).
To obtain the desired result, it now suffices to consider the term inside the curly bracket.

Sending [6, — u, we need only show that

— Z B, G(2;, &)V f(2(u)) in probability.

aiele

Now by using condition (B.3.1), the limit of

- Z Elna xza

aiele
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is the same as that of

— Z Ey, Gz, &).

aiela

In fact, we can prove that

_ZElna l’“ = _ZElna )752)+0(1)7
aielLa aielLa
where o(1)—==0 in probability. Since 18, — u, by the weak convergence of z%(-) and the

Skorokhod representation,

_ZElna = _ZElna f) +0(1)

aiele ase]a

where o(1)—=0 in probability.
Suppose for the moment that x(u) takes finitely many values, e.g., &1,32,...,3,. We

then have

_ZElna Z ZElna xl/vf ]{xu—xl,}

aiele = aiele

- Z V(2,)[(vay=s,y = V[(x(u)) in probability.

v=1

as desired. In general, what we need to do is to approximate x(u) by a function that takes
only finitely many values, i.e., for any ¢ > 0, choose x.(u) that takes only finitely many

values such that

lim  B[G(w(u), &) — Glea(u), &) = 0,

a—0,ia—u
and then work out the convergence for the approximation function G(x.(u),&;). Notice that
owing to the choice of n,, when [6, — u, ta — u for all 2 € L*. The details are omitted.
The theorem above gives us a result on arbitrarily large but still bounded time intervals.
It is of particular interest to us to see what happens when ¢ — 0 and n — oco. A result

concerning such a problem is recorded in the following theorem.

Theorem 3.3. Suppose that 0 is a stationary point of the equation (5), i.e., Vf(8) = 0,
and suppose that 0 is globally attracting (in the sense of Liapunov stability). Assume the
conditions of Theorem 3.2 are satisfied and {x,,n < co,a > 0} is tight in IR". Let {t,} be
such that t, — oo as a — 0. Then x*(- +t,) converges weakly to 6.

The proof of the theorem is very similar to that of Theorem 3.2. Consider the joint pair
(x%(- +to),2%(- =T + t,)) for each T' < oo. Extract a convergent subsequence and denote
the limit by (z(-),z7(:)). We realize that (T') = x7(0). By virtue of the assumption 27(0)
belongs to a set which is tight. We then proceed to use the stability argument to finish up the

12



proof. For more details on this matter, one may wish to see a corresponding theorem in [15].
We point out that the tightness of {x,} can be proved. Since the proof uses the techniques
of perturbed Liapunov function methods and is similar to the error bound estimate to be

derived in the sequel, we simply assumed this condition holds at this point.

3.3 Discussion on EA related algorithms

Similar limit theorems can be obtained for the example given in the previous section. The
convergence theorems hold if Vf(+) is replaced by a function of Vf(-). For the example

discussed in the previous section, the limiting ODE reads as:
b= —H(Y f())ole),

where v(xz) # 0 is a vector (depending on the function form of f(-)) resulting from the
average of the sequence
3(1) :
S ITRNG
Note that setting the right-hand side to be 0 leads to the equation H(V f(x))v(x) = 0 or
equivalently, H(V f(x)) = 0. This in turn implies that V f(x) = 0 as desired. The solutions

of this gives us the stationary points of the function f(-).

J=minuen,, f(u)}’

Next we illustrate why v(x) # 0 should hold in many cases. First, let us consider a
very simple example. Suppose f(-), the function to be minimized is linear and suppose and
{20} is a sequence of i.i.d. normal random vectors. Suppose also that the components of
the random vector are independent, i.e., the covariance matrix is a diagonal matrix. Then
essentially, we are dealing with a scalar problem. Let us consider one component of the
vector, but suppress the dependence (index) of the vector. Thus, we treat x,, z{!) as scalars.

Using elementary statistics, the algorithm is of the form

xn-l—l = Ty —I_ Zn,{1}7

where z, {1 denotes the (minimum) order statistics.

Using the decomposition outlined in Example 2.1, with A > 2,
Tpt1 = Ty + Ugn,{l}-

The density function of Z, (1) is given by

A A

Foiny (2) = A (2)(1 = F(2))" ez,

where f(z) and F(Z) are the density and distribution functions of a standard normal random

variable, respectively.
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By virtue of an integration by parts, we have that

Ez, = )\<_O; \/1%_7‘_2 exp(—2°/2)(1 — F(Z))A_ldz
= _%/—m exp(—22)(1 — (2))""2dz # 0.

For, suppose not, i.e., the integral above is 0. Since the integrand is non-negative, the
integrand must be equal to 0 identically, which is a contradiction. In fact, the discussion
above shows that 'z, ¢, <0.

This example may seem to be over simplified, but it illustrates the reason that the limit
vector v is non-zero. In general, the situation becomes more complex, we are effectively
dealing with functions of order statistics, but the main idea remains the same.

If the function f(-) is smooth enough, say C'?, then we may wish to take a Taylor expan-

sion. This leads to
Flan+20) = flaa) + o ful@) 20 + O™ (|20,

provided if f,.(-) is bounded. When we compare the values of f(x, + z() in the (1,))
strategy, we are basically comparing the term f’(z,)2% 4+ O(o?)(|29)]?). Now for fixed z, we
can treat the corresponding order statistics for 1 < ¢ < A (by using the weak convergence
theory). As in the linear case, it can be shown that the expectation is non-zero for many
practically interesting functions.

Finally, we point out that for the i.i.d. sequence {z()}, the average conditions in Section
3.1 and 3.2 hold. The verification can be done readily. This paper deals with a somewhat
more general setup. The specific problem related to the convergence of the (1, ) strategy

will be studied elsewhere.

4 Rate of convergence

This section is divided into two subsections. The first of them gives an order of magnitude
estimate on the estimation error (or an error bound), and the second one derives a local
limit result similar in spirit to the well-known central limit theorem or rather functional
central limit theorem. We shall concentrate on the constant step size algorithms. As for the
decreasing step size procedures, using essentially the same techniques, we get similar results.

We mention these results at the end.

4.1 An error bound on z, — ¢

The analysis to follow uses the perturbed Liapunov function methods (see [12] and the

references therein). For notational simplicity, we assume 6 = 0 henceforth. This is no loss
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of generality at all since we can always translate the origin as needed.
To proceed, we list the conditions to be used in the sequel.
(A.4.1) There is a Liapunov function V(:) : R” +— R such that the function together

|l’|—>OO

with its first and second partial derivatives are continuous. V() > 0 for all 2, V(2) — oo,
Vi () is bounded, and V/(x)V f(x) > nV(x) for all & # 0 and for some 1 > 0.

(A4.2) G(x,&,) = Gh(x,an) + Go(x) B, such that G1(-) is bounded on bounded x-sets,
and G1(+, ) is continuous. G5(+) is a continuous and bounded function. {a,} is a stationary
sequence of uniformly bounded random variables satisfying FG4(x, o) = V f(x) for each z,
and {f,} is a sequence of independent random variables with zero mean and finite second
moment. E,|G(z,&,)]* < K(1+ V(z)).

(A.4.3) The following inequalities hold:

< K(1+V(x)),

> V@) Bl G, &) ~ V()

o0

\ZM(@En(Gm 0) = Vf(a)la

i=n

< Ka, (1 + VY%(z)).

Theorem 4.1. Under the conditions of (A.4.1)-(A.4.3), for sufficiently large n, (i.e., there
is an N, such that for alln > N,),

EV(x,) = O(a) for sufficiently small a > 0. 9)
Since x, is F, measurable, and /3, has mean 0,

By direct computation, we get

EV(2ni1) = Vizn) =—aV(z,)V f(z)
— V() Bn[Gr(@n, an) — V f ()]
+0(a®)(1 + V()
< —anV ()
—aV(2n) B[Gr(@n, an) — V f ()]
+0(a®)(1 + V(z,)).

(10)

The second term on the right side of the inequality sign is an extraneous term. To obtain
the desired result, it needs to be eliminated. To overcome the difficulties, we introduce a

perturbation term as

Vi) = = 2 VAR BG e, a) = V()]
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By virtue of (A.4.3), Vi(-) is well defined and |Vi(z,n)| < Ka(l 4+ V(z)). In addition,
EVi(@pi1,n+1) — Vi(a,,n)
= aV(2,) En]Gi(20, &) = V f(20)] + O(a®) (1 + V(2n)).
Now define the perturbed Liapunov function V(-) by
Via,n) =V(z)+ Vi(z,n).
As a result,
EV(2pi1,n+1) = Vian,n) < —anV(e,) + Ka*(1 + V(x,)).

Using the bound on Vi(-), we can show that the above inequality holds with V(x,) replaced
by V*(x,,n). For sufficiently small a, Ka —n < —no for some 0 < g < n with noa < 1, and
hence

E VY 2py1,n+1) < (1 —noa)V(xn,n) + Ka*.

[terating on the above inequality and taking expectation yields

n

EV*(tpp1,n+1) < (1 —noa)"EV*(20,0) + K Z(l — noa)iaz

=0

< (1 —noa)"EV°(z0,0) + Ka.
Using the bound on V;(-) again, we also have
EV(z,1) < (1 —noa)?EV(zo) + Ka.

Select N, such that for all n > N, (1 —noa)” < Ka. The desired result then follows.
Remark: In fact, even more general conditions can be used. In the assumption on the

function G/(-), we could put it as
G(x, &) = Gh(z, o) + Ga(x) B, + Ga(x) + -

In this way, we deal with both additive noise and non-additive noise. Some more details
can be found in [34] for instance.

If the Liapunov function is locally quadratic, i.e.,
V(z) = 2'Qu + o|z[*),
where () is a symmetric positive definite matrix, then we obtain
{z,/V/a, for n > N,} is tight.. (11)

If we are dealing with decreasing step size, and if @, = 1/n7, for 0 < v < 1, then under
similar conditions, with slight modification of the proof, we obtain that EV(x,) = O(n™")

for sufficiently large n. Corresponding to the remark just made above, we have the tightness
of {n%z,}.
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4.2 Asymptotic normality

Theorem 4.1 above exploits the dependence of the iterates on @ by giving an upper bound
on the estimation error. In this subsection, we shall derive another local limit theorem that
is similar to the functional central limit theorem.

The idea is that we linearize the function G(-) around its stable point, and obtain a
suitably scaled sequence. Owing to (11), the appropriate scaling here is \/a. For simplicity,
we will treat G(x,¢) as one term without separating it as G1(+), G2(+) ete. Starting with (2),
and assuming that G.(+, &) and G.(-, &) exist and are continuous, and Gy, (+, £) is bounded,

we arrive at
Up4+1 = Up — an(van)un - \/EG(van) + O(a3/2|un|2)‘ (12)

To obtain the asymptotic normality, again, we take a continuous time interpolation as
follows. For n > N,, define u?(:) by u*(t) = u, for t € [a(n — N,),a(n — N, + 1)). As
in Section 3.2, u®(-) lives in D"[0,00). Notice that the last term in (12) is asymptotically
negligible, so we discard it henceforth. Suppose that

t/e

> VaG(0,&) = w(t) a Brownian motion with covariance Xt

i:lNa (13)

— > Ei, Go(0, &)= f2:(0) in probability.

na Z'eLa
Using the weak convergence methods as described in the previous sections, we can shown
that u®(-) converges weakly to u(-) such that u(-) is a solution of the stochastic differential
equation

du = — [ (0)udt + dw. (14)

Remark: Eq. (14) has a unique solution for each initial condition since it is linear. The
assumption of the convergence to a Brownian motion can be verified in a wide variety of cases.
Suppose the noise is a sequence of i.i.d. random variables with 0 mean and finite variance.
Then this condition is verified by the well-known result of Donsker’s invariance principle (see
[7]). Tt also holds for more general noise structure such as ¢-mixing type of random processes
which allow correlated noise with the correlation diminishing asymptotically. Many forms of
sufficient conditions guarantee the existence of the limit can be found in [7] and the references
therein. For stochastic approximation related problems see Kushner [12], Yin [32], Yin and

Yin [34] among others.
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5 Concluding remarks

In this work, we exploited the connection of evolutionary computation and stochastic approx-
imation. As it is explained that both of them have the objective of carrying out stochastic
optimization tasks. By studying some appropriate stochastic recursive algorithms, we re-
viewed some of the recent developments in stochastic approximation. We also investigated
the possible applications to evolutionary algorithms. Limit theorems are obtained by taking
suitable scaling and continuous time interpolations.

For the problems studied in this paper, we assumed that the noisy gradient estimate
is available. If one has to use, for example a finite difference method to get the gradient
estimates, then the convergence rate will be slower as is the case for the classical KW
procedures. Nevertheless, there are some recent advances to speed up the convergence for
the gradient estimates. We refer the readers to Ho and Cao [10] for further details. A survey
on the recent progress in this direction in conjunction with stochastic approximation can be
found in Kushner and Vazquez-Abad [17].

It should be mentioned that the evolutionary algorithms can deal with non-smooth objec-
tive functions. For stochastic approximation, the corresponding part is the use of non-smooth
analysis via differential inclusion.

Recently, there are renewed interests in improving the rate of convergence of stochastic
approximation type algorithms by utilizing post-averages of the iterates or by taking averages
of the iterates as well as the observations (see Bather [3], Kushner and Yang [16], Polyak
[20], Ruppert [23], Schwabe [24], Yin [32], Yin and Gupta [33], Yin and Yin [34] and the
references therein). It is conceivable that such an attempt will be beneficial for the EA
related procedures. In addition to the algorithms considered in this paper, various variants
of the recursive algorithms such as projection and other modifications (see Chen and Zhu
[5], Kushner and Clark [14], Kusner [12], Kushner and Yin [15], Yin and Zhu [30], Yin [31]
and the references therein) can also be studied.

This paper deals with a somewhat more general setup. As was mentioned, our main
objective is to see the connection of the EA’s and SA’s. Although they have many simi-
larities, they also have very distinguished features. In the SA setting, the function under
consideration is normally either not known explicitly or the form is very complex. For the
EA algorithms, however, the function f(-) under consideration is known, i.e., the computed
output of a simulation model. In a subsequent work, we shall treat the (1,)) strategy in
detail and obtain the desired asymptotic properties by using the stochastic approximation
approach.

At this point, the study is only preliminary in nature with respect to the applications to
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evolutionary algorithms. Our current effort lies in carrying out in depth study further, and

gain a basic understanding of the asymptotic properties of evolutionary algorithms.
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