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Abstract

The dominated hypervolume (8rmetric) is a commonly accepted quality measure for
comparing approximations of Pareto fronts generated bytivabjective optimizers.
Since optimizers exist, namely evolutionary algorithrhatuse the S-metric internally
several times per iteration, a faster determination of tmee®ic value is of essential
importance. This paper describes how to consider the Saradra special case of a
more general geometrical problem callk€lee’s measure problem (KMP). For KMP an
algorithm exists with run tim@ (n logn + n%/?logn), for n points ofd > 3 dimen-
sions. This complex algorithm is adapted to the special ahsalculating the S-metric.
Conceptual simplifications of the implementation are comee that save on a factor of
O(logn) and establish an upper bound®@fn logn + n/?) for the S-metric calcula-
tion, improving the previously known bound 6f(n?—1).
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1 Introduction

In multi-objective optimizationl objective functionsf = (f1, ..., f4) are given with
fi tobe minimized. Since these objectives typically are cotifig, we do not search for
one optimal solution, but for a set of good compromise sohgi Vectorsa andb are
assumed to bé-dimensional vectors composed of objective valueg ofinimization
problems. These vectors are partially ordered accordingg@omponent-wise order.
A vector a weakly dominates vectorb (a < b) if a; < b; foralli € {1,...,d}. If
(a < b) holds and additionally # b, thena dominatesb, denoteda < b). Distinct
pointsa, b are comparable if either < b orb < a, and incomparable otherwise. A set
M is callednon-dominated if no two elements exist that are comparable to each other
according to the dominance relation. Minimal elements efghrtially ordered domain
of the d objectives are called Pareto optimal. The set of all Pargtomal objective
vectors is calledPareto front. For a comprehensive introduction to Pareto optimization
with evolutionary algorithms see e.g. Deb [1] or Coello doel al. [2].

The purpose of Pareto optimization is to obtain a good appration of the Pareto
front. Approximations are non-dominated sets, whose atésnghall be near to mem-
bers of the Pareto front, be well distributed along the wiRaesto front and shall con-



tain many elements. The quality of the approximation of thee® front can be valued
by various measures (calledetrics). Among these metrics, the S-metric developed by
Zitzler and Thiele [3] is of exceptional interest. It is cadeyed to be a rather fair mea-
sure, because it has nearly optimal properties concerhmgutperformance relations
which transfer the partial order among vectors to sets dbvecConsidering two sets,
the S-metric is the only unary measure that always valuebétier set higher and a
higher value indicates that the set is not worse (cf. Zitzteal. [4]).

The S-metric valuates a set of non-dominated solutionsmkjective space by the
hypervolume that is dominated by the set. The dominated rieghene corresponds
to the size of the region of the objective space (bounded lefeaence point) which
contains solutions being weakly dominated by at least orteeMmembers of the set.
The metric value is to be maximized. Each mempearf a setM weakly dominates a
region in the objective space shaped like an infinite hygeslh*(y) = [y1, oo] X
... X [y4,00] (in case the domain is infinite). These hypercuboids beconit fby
bounding them with a reference pointwhich has to be dominated by each member
of the setM: h(y) = [y1,71] X ... X [y, r4). The S-metric is the hypervolume of the
union of the weakly dominated hypercuboids, whereas skyeravered regions are
counted once. The formal definition is based on the Lebesgasunea:

sarr) =4 ({Uny) Iy e M}). (1)

Two algorithms have been developed for calculating the Biop@amely LebMea-
sure by Fleischer [5] and HSO described independently lafe£if6] and Knowles [7].
These algorithms partition the covered space into manyideditaped regions, whereas
HSO is regarded as the better one. In the worst case of HSGp#ee is partitioned
into ("1%,?) cuboids (cf. While et al. [8]), resulting in a run time 6f(n®'). Re-
cently While et al. [9] developed heuristics for HSO, whielorder the input such that
the worst possible case is avoided. Nevertheless, it isawmkrhow far this improves
the exponential order of the worst case upper bound. Thug ~') has been the best
known upper bound of the S-metric which is significantly iowed by the algorithm

presented here.

The following section illustrates the relationship betwéee dominated hypervol-
ume or S-metric and KMP. In Section 3, the main ideas of thee§a&nown algorithm
for KMP are described and the simplified, adapted algoritepresented. Section 4
explains lower and upper bounds for KMP and the S-metriauation with the men-
tioned algorithms. Finally, the last section summarizesrtain results and gives hints
on the application of the algorithms and topics of futureeesh.

2 Conversion of S-Metric to KMP

Klee's measure problem (KMP) (Klee [10]) has originally been formulated as calculat-
ing the size of the union of a set nfreal-valued intervals. Generalizeddaimensions,
the intervals becomé-dimensional axis-parallel hypercuboids (Bentley [11]).



Beume [12] describes the trivial conversion of the domidétgpervolume to KMP
as the dominated region of each point of a non-dominatedssathiypercuboid.To
transform a non-dominated set to a valid input set of KMPhealgjective vector is
replaced by its weakly dominated cuboid. Speaking in peicef intervals, the ob-
jective vector provides the lower bounds of helimensional intervals and the refer-
ence point the upper ones. Independent of its dimensionperbyboid is completely
defined by providing two corners on a space diagonal. Herajefiae the 'lower left’
(the former objective vector) and the 'upper right’ (therfar reference point) corners.

For KMP, the cuboids may be positioned arbitrarily. For thesidered special case
of calculating the S-metric, some properties of the set bbals can directly be derived
from the definitions above:

— All cuboids have the same upper bounds (upper right cornarely the coordi-
nates of the reference point.

— No cuboid is completely contained within others since tlvegiobounds stem from
non-dominated points. We assume that the input set doesontdin copies of
points.

Next, we transfer the vocabulary of relations of partialfgered points into terms
of geometry. A pointoversa region if it weakly dominates its lower boundary, thus the
region is completely contained in the cuboid induced by thiatpA pointpartially cov-
ersaregion if its induced cuboid intersects the region. Thepoiay weakly dominate
the region’s lower bound, be incomparable to it, or be doteihdy it while dominating
its upper bound. Beware that during the algorithm, pointdifiérent dimension have
to be considered. The non-dominated pointsé&imensional and the regions in the
orthogonal partition tree ar@l — 1)-dimensional as described in the following section.
For the definitions above only the firgt — 1) components of a point are considered.

3 S-Metric Algorithm adopted from KMP Algorithm

3.1 Basic Concept and Decisive Especialness

Overmars and Yap [13] developed a sweep-line algorithmubed a specific data struc-
ture to calculate & — 1)-dimensional volume and performs a sweep along the remain-
ing dimension to get thé-dimensional measure. For the partitioning of the— 1)-
dimensional space into regions, a data structure cafiéntbgonal partitiontreeis used,
that is a binary space partition tree whose splitting lines extensions of the axis-
parallel cuboids. An example of a non-dominated set is péctin Figure 1.

The significant idea of Overmars and Yap's algorithm is to pentition the space
into empty and covered regions, but stopping the partitigiais soon as a region con-
tains atrellis. In a trellis, the cuboids that intersect the region, cov@ompletely in
each of theld — 1) dimensions except one. An example of this structure is shiown
Figure 2. A cuboid that does not cover t#i& dimension completely is called apile.
For each dimension the 1-dimensional KMP of the projection of thigiles on the

! For convenience we will omit the prefix *hyper’ and talk of lume’ and 'cuboid’ in arbitrary
dimension.



Fig. 1. The figure displays a non-dominated set of nine 3-dimenspriats. The dominated vol-
ume is bounded by the reference painflong eachi*" coordinate, thel-dimensional space is
cutinto(d — 1)-dimensional slices that are stored in the orthogonaltfartiree. In the example,
the 2-dimensional slices are shown by the dashed linesd¥timensional volume is calculated
by computing théd — 1)-dimensional volume with the help of the orthogonal pantittree and
sweeping along the slices in dimensidn

it" coordinate axis is solved. Thereby the exact position ofctifeoids is neglected.
Let K; denote the value of the 1-dimensional KMP of thpgiles, andL; denote the
size of the region in dimension respectively. The contained volume of the region is
calculated by the inclusion-exclusion principle (cf. Owars and Yap [13]) in constant
time, assuming is a constant:
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For clarification, we consider a 3-dimensional KMP with 2rénsional volume in the
regions. Then the volume is calculated &sK5 + Lo K1 — K1 K.
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Fig. 2. The left figure shows an example of a trellis for the generaFKWhe structure on the right
arises for the specific problem of calculation the S-metriggnever the condition of a trellis is
fulfilled.



3.2 Progression of the Algorithm

Overmars and Yap [13] describe two variants of their algponit On the one hand the
orthogonal partition tree is build up completely in a preq@ssing step and the sweep is
performed afterwards, inserting beginning cuboids ineodata structure and removing
enclosed ones. On the other hand, the data structure isdmtide fly by splitting the
current node if necessary. By recursing on the left chilteethe right, the partition
tree is traversed in pre-order and the sweep is simulatedevieea leaf node is reached.
This technique refers back to Overmars and Edelsbrunnéafidlis calledstreaming.
The orthogonal partition tree requir€gn?/?) storage, whereas the streaming variant
works with linear space as only one node is considered atioree Thus it is to be
preferred, easier to implement, and even more efficientusscaome special cases can
be handled easier. Here, the algorithm based on the strgamamiiant and adapted to the
S-metric calculation (cf. Algorithm 1) is described in detéth remarks to differences
to the original one by Overmars and Yap [13].

The main procedure of the algorithm has the following patense

doubl e[ ][] regi on The currentregion is represented by a two-dimensionafarra
containing the vectors of the lower bounds and the upperd&un

list points Points whose induced cuboids partially or completely coweyi on
are stored in aligboi nt s.

int split The dimension at whichegi on is cut to generate two child regions is
calledsplit.

doubl e cover The value of thel*" coordinate of the first cuboid that covers the
parent node’s region is storeddrover .

Inputs of the algorithm are a set of non-dominated pointsaneference point, thus
the cuboids are represented implicitly. The referencetpgithe initial sizen of the
input set, and the dimensiahare assumed to be known globally. Before the main
procedurevol uneOY starts, the list of points is sorted ascending accordinpeat
component of the vectors. This sorting will be maintainedbk in all recursive calls of
vol umeOY. The procedure is initially called with the whalé — 1)-dimensional space
asr egi on, the non-dominated input set psi nts, spl i t = 1 andcover as the
d*" coordinate of the reference pointA small example withh = 9 pointsind = 3
dimensions is pictured in Figure 3.

The algorithm recursively splits the region, whereas the tesulting regions cor-
respond to the children nodes within the binary tree. Thigtspg ends when the region
contains a trellis, thus a leaf node is reached and the voktanebe calculated. The
procedurevol uneQY consists of three parts. First it is checked if a cuboid c®ver
r egi on. If the remaining cuboids form a trellis, their hypervolumaealculated. Oth-
erwise the region is further partitioned and the volume iswtated in recursive calls.

Thed" coordinate of the first covering point is savedcas/er Newand the corre-
sponding index ipoi nt s ascover | ndex. The volume is increased by the region’s
complete(d — 1)-dimensional volume multiplied with the distanceadver New to
cover . Since the lispoi nt s is sorted according to th&" coordinate component,
the points behinddover | ndex do not add volume. These and the point itself are
discarded in the remainder of this call of the procedure msmteringpoi nt s only



coverNew = cover; coverlndex=1; allPiles = true; bound = -1

/* is the region completely covered? */
while (coverNew == cover && coverlndex!= points.length) do
if covers(points[coverindex], region) then
coverNew = points[coverlindex][d]
volume += getMeasure(region) * (cover - coverNew)
else coverindex++

if coverlndex==1then return

/* do the cuboids form a trellis? */
for i=1 to coverindex-1do
| if lisPile(pointgi], region) then allPiles = false
if allPiles then
/* calculate volume by sweeping along dimensibri/
i=1; for j=1to d-1do trellis[j] = r[j]
repeat
current = points[i][d]
repeat
pile = getPile(pointsi], region)
if points[i][pile] < trelligpile] then trellis[pile] = points]i][pile]
i++
if i<coverindex-1then next = points[i][d] elsenext = coverNew
until current!= next
volume += measure(trellis, region) * (next - current)
until next == coverNew

else
/* split region in two children regions */
repeat
intersect =; nonlintersect #
for i=1 to coverindex-1do
intersection = intersects(pointsi], region, split)
\; if intersection== 1then add(points]i][split], intersect)
if intersection== 0then add(points]i][split], nonintersect)
if intersect # () then bound = median(intersect)
else ifnonintersect.length > y/n then bound = median(nonintersect)
else split++
until bound != -1

/* recurse on the two children regions */
regionC = region; regionC[1][split] = bound; pointsQ)=
for i to coverindex-1do

| if partCovers(points[i], regionC) then move(points[i], pointsC)
if pointsC # () then volumeQY (regionC, pointsC, split, coverNew)
reinsert(pointsC, points);
regionC = region; regionC[0][split] = bound; pointsQ)=
for i to coverindex-1do

| if partCoverg(points[i], regionC) then move(pointsli], pointsC)
if pointsC # () then volumeQY (regionC, pointsC, split, coverNew)
reinsert(pointsC, points)

Algorithm 1 : volumeQY (region, points, split, cover)




Fig. 3. lllustration of the 2-dimensional orthogonal partitioeerfor a 3-dimensional KMP. The
non-dominated set of Figure 1 is projected on the first twoedigion. The lines show the par-
titioning of the 2-dimensional space, which is upper bouhlole the gray reference pointand
lower bounded by the contained points. The dotted lines &dat® their induced dominated
cuboids. The orthogonal partition tree is depicted, whetha nodes are placed alongside their
associated region. The sweep is performed along the thindmsionfs.

to index €over | ndex—1). The rear points are still required on higher levels of re-
cursion. Ifcover | ndex=1, vol uneQyY is aborted because no points are left. In the
original description, only covering cuboids are remove &dded here, that covered
cuboids are also discarded. This is a valid supplement talegithm for the general
KMP, too.

In the second part ofol uneQY, it is checked if the induced cuboids form a trellis.
If so, the sweeping along th&” dimension is performed to calculate the contained
volume. The points with the first” coordinate (equal values may occur) are considered
and(d—1) 1-dimensional KMP are solved for them. The-1)-dimensional volume is
calculated by the inclusion-exclusion-principle accagiio Eqg. 2 and multiplied with
the distance to the next” coordinate. This is done for all consecutivdoundaries
and the last distance in dimensidiis calculated as difference tmver New.

To solve a 1-dimensional KMP on piles, Overmars and Yap indok segment tree
to calculate the union of the 1-dimensional intervals. Rerdpecial case of the S-metric
calculation, this can be done significantly faster and segitnees are not necessary. In
case the cuboids fulfill the condition of a trellis, they adty form an even simpler
structure. An example is shown in Figure 2 (right). Sincehezuboid extends to the
reference pointin each dimension, no upper bounds of cslayel contained inside of
the current region. A region may only contain lower bouneaand the remainder of
the region is covered from thereon. Thus, only the miniitfatoordinate of thé-piles
has to be identified. The result of the 1-dimensional KMP ésdifference of this value
to the region’s upper bound, respectively in each dimensitbe minimal values are
stored in a(d — 1)-dimensional array calletir el | i s. Cuboids that become active
during the sweep procedure are checked if they undercututrerd values in trellis.
Thentrel |is is updated in constant time by just one comparison. The epaofat



the originally applied segment tree takes tiMdog n). This factor is saved on by this
adapted algorithm.

If the cuboids do not form a trellis, the region is split in twad the algorithm
proceeds on the two emerged regions. The partitioningesglirat no points are con-
tained inside of a region. To this end, the dimension thatuisby the splitting hy-
perplane is to be determined. As the cuboids are axis-partie:*" coordinate of a
point induces a so-calledboundary that is a hyperplane which cuts through
coordinate axis and is parallel to all others. The sub-giocs nt er sect s detects
those points that inducespl i t -boundary inside of the region. Points that addition-
ally induce an-boundary withi <spl it are stored in alistnt er sect , the others
in nonl nt er sect . By recursion, the region will be split along each of 8y@ i t -
boundaries of the points innt er sect . In each call ofvol uneQy, the median of
thesespl i t -boundaries is chosen as the splitting hyperplane. Thigcehakes time
O(coverIndex). If i nt er sect is empty, butnonl nt er sect contains more than
v/n spl i t -boundaries the region is split along the median of tRdée.nt er sect is
empty and there are not more thgin spl i t -boundariesimonl nt er sect ,spl it
is increased and the search for the splitting line is trieal@goeginning with the sub-
proceduré nt er sect s.

In the example of Figure 3, the space is split once along thdianel-boundary.
Afterwards, each region contains not more thédh = 3 1-boundaries andpl i t is
increased. The left region is split along the median 2-bawndf those points that
establish a 1-boundary within the region. Concerning tfectdld region, the pointd
is a 1-pile and no further partitioning is required. The tighild region is split again
because the point is located inside of it.

Knowing the splitting line, the left child region is definedcardingly. Points that
partially cover the child’s region are sent down to recursimgether with the child
region itself, the split value, and the value @dver New of the current region. Af-
terwards, the points are reunited with the jigti nt s and the recursion on the right
child’s region is performed analogously.

Note that points are never copied, but moved fiwomn nt s to other lists if neces-
sary. Thus, recursion does not cause any increase of sf@iage each point is stored
at only one place. Invoking pointers to the elementsan nt s would also be possible
as their amount of storage is marginal. All lists of points sorted, since this is done
in the pre-processing step. Whenever a list is to be reumitédpoi nt s, this can be
done in linear time, whereas the sorting is maintained.

In Overmars and Yap’s algorithm, the listat er sect andnonl nt er sect are
considered as sets, thus without copies. Here, we do nat rejgies for reasons of
efficiency. The median can be chosen in linear time, whelgasdjection of copies
requires timeD(nlogn). The search for copies could be afforded in the original-algo
rithm since a sorting is done anyway which requités logn) and enables the deletion
of copies in linear time.

Details on the implementation of the sub-procedures indak&ingvol umeQY
(Algorithm 1) are described in Appendix A.

2 The listi nt er sect is especially empty fospl i t =1. Thus, the points are partitioned into
subsets of siz&(,/n) during the beginning phase.



4 Runtime Analysis

4.1 Lower Bounds

Klee's measure problem has a lower boundX§f. log n) for d > 1 shown by Fredman
and Weide [15]. The S-metric has a complexity@(fnr) in case ofd = 1 as only the
minimal element has to be determined. As the S-metric is &tguaeasure for results
of a multi-objective optimization process, its definitionly makes sense fat > 2.
Obviously, calculating the S-metric is not harder than s@\KMP as it is a special
case of it, though it is unknown if it is significantly easigremains an open question,
if the S-metric has a lower bound which is smaller than the oinklee’s measure
problem.

4.2 Upper Bounds

In case ofd = 2, the S-metric can be calculated in tifi&n logn). The input set
is sorted according to one objective. Afterwards, the cedaarea can be divided into
rectangles bounded by the neighboring point in one dimenaia by the reference
point in the other dimension. The S-metric value of aldet= {y(V), ...,y can be
calculated as:

n

S(M,x) = (r1 — ") (2 = ) + D (1 — i) =) 3)

1=2

For d > 3, the algorithm of Overmars and Yap is applicable, which fmes an
upper bound 0O (n log n+n??2 log n) for the calculation of the S-metric. This adapted
algorithm (Algorithm 1) for computing the S-metric has a time of O(nlogn +
n%/?). The factorlog n is saved on omitting the segment trees and calculating the on
dimensional KMPs of a trellis in constant time as descrilfedea

The two variants—the classical one and the streaming tqaler(icf. Section 3.2)—
of the algorithm by Overmars and Yap [13] have the same rume.tifctually the
same operations are done, though in different order. Thegrite the analysis for
the variant which completely builds the orthogonal paotitiree before the sweep.
The pre-processive sorting requi@$n logn). It is shown that a cuboid is stored in
O(n'4=2)/2) leaves of the partition tree as the partitioning ensuresttigis an upper
bound for the number of partially covered regidriEhe contained volume within these
leaves has to be updated when the cuboid is inserted or rehiawa the orthogonal
partition tree during the sweep. Thus, over all cuboidsetaeO(n(?-2)/2 . n) =
O(n%?) updates. Updating means computing the measure in thestvefiich takes
time O(log n) with the help of the segment trees. The adapted algorithrgarthm
1) computes an update in constant time. Thus, the origigakghm has a run time of
O(nlogn + n%?logn) and the adapted one ondy(n logn + n?/?).

3 Details of the proof are described in Appendix B.



5 Summary and Outlook

Klee's measure problem (KMP) is characterized as the hypheme of intersecting
axis-parallel hypercuboids. It is similar to the S-metihattis defined as the domi-
nated space of a non-dominated set. Since the dominatesheegi points actually are
axis-parallel hypercuboids, algorithms for KMP can be &abhlmost directly. The
hypercuboids form a certain structure that makes the Sieredisier to calculate than
the general KMP. The fastest known algorithm for KMP from @wars and Yap has
been adapted to that special case resulting in an upper iungh log n + n®/?) for
the S-metric calculation. The algorithm performs a paiing of the space and the
calculation of the hypervolume within the cells allows fasfer computation due to
the special configuration of the hypercuboids. The desorigif the original algorithm
is rather complex, the deduced algorithm is completelyges] in pseudo code and
requires only fundamental data structures.

In the scope of multi-objective optimization, the S-metigcnot only used as a
quality measure but also as a component of evolutionaryitahbjective optimization
algorithms (EMOA). The S-Metric Selection EMOA (SMS-EMOAY Emmerich et
al. [16,17] integrates the maximization of the populat®o8-metric value into the
EMOA to guide it during the optimization process. The rundiof this algorithm is
O(plog p 4+ p'¥/?+1) based orp S-metric calculations per generation to determine
the following population, with: denoting the population size. Other EMOA invoke an
approximation of the S-metric such as Zitzler and Kun2B&A (Indicator-based evo-
lutionary algorithm) [18] and the ESP (Evolution StrategyhAProbabilistic mutation)
developed by Huband et al. [19]. A topic of future researcthes question whether
the run time of the SMS-EMOA can be further reduced by an efiicupdate of the
information of the hypervolume in consecutive iterations.

Studies on test data of differently structured non-dongidatets are to be accom-
plished providing numerical comparison of the CPU time gbénywolume algorithms.
Additionally, it is planned to design an approximation aitfan for the S-metric based
on the algorithm of Overmars and Yap and the adapted onerpiegskere.

A Details on Sub-procedures of the Adapted Algorithm

Details of the sub-procedures invokedyxyl uneQY are described in the following. A
mathematical description of the used variables are givehtnea possible solution of
implementation, which is maybe not optimally efficient basg to understand. Beware
the sequence of the sub-procedures withoh urre OY. Conditions that are assured by
previous sub-procedures can be assumed without repeagekisch

The procedureart Cover s determines the points that partially cover the con-
sidered child region. It is called byar t Cover s(poi nts[i], regi onC), with
i = 1tocover | ndex- 1 and the currently considered child region. The resultinig se
poi nt sCis defined as:

pointsC = {points[i] | V7 : points[i|[j] < region[1][j]} 4)



for j=1to d-1do
| if pointd[i][j] >= region[1][j] then return false
return true
Algorithm 2 : partCovers(points[i], region)

The variablessover New andcover | ndex are calculated with the information
provided by the procedureover s which decides whether a point covers the region.
Itis called bycover s(points[i], region),withi=1to| poi nts| and the

current region.
cover New = {points[i][d] | ¥j : points]i][j] < region[0][j]; cover}

(5)

min
i€{1,...,|points|}

The index of the minimizing argument is namedver | ndex.

for j=1to d-1do
| if pointd[i][j] > region[O][j] then return false
return true

Algorithm 3 : covers(pointsJi], region)

The sub-procedurent er sect s detects whether a poinspl i t -boundary is a
candidate for the splitting line that partitions the regiotwo child regions. It is called
for all points in the data structug@oi nt s with indexi = 1...cover | ndex-1. At
the beginning of the procedure, it is checked whether thatjgapl i t -boundary is
contained inside the region. It is sufficient to test whetter splitting boundary is
greater than the region’s lower bound. The algorithm ayessbsured that the cuboid
partially covers the region, thus it is not necessary to kliethe boundary is higher
than the region’s boundary. Tisel i t -boundaries of points that induce aboundary
with ¢ <spl it are stored in the listnt er sect and the othersinonl nt er sect .

intersect = { points[i|[split] | region[0][split] < points|i][split] A
35 € {1, .., split — 1} : points[i][j] > region|0][j] } (6)

nonIntersect = { point[i][split] | region|0][split] < points[i][split] A
Vi e {1,.., split — 1} : points[i][j] <= region[0][j] }  (7)

if region[O][split] > pointg[i][split] then return -1
for j=1to split-1do

| if pointd[i][j] > region[O][j] then return 1
return O

Algorithm 4 : intersects(points[i], region, split)

Recalls that a cuboid is a pile w.ritegi on if is covers the region completely
in each dimension but one. The procedateeckPi | e returns the sole dimension
that is not completely covered if the cuboid induced by thimpig a pile. Otherwise
checkPi | e returns -1 as an indicator for failure.

L 7, if 3j e {1,...,d— 1} : points|i][j] > region[0][]]
pile = { —1, otherwise ®)



pile =-1
for j=1to d-1do
\; if pointg[i][j] > region[Q][j] then
| if pilel=-1then return -1
pile =
return pile

Algorithm 5 : checkPile(points]i], region)

The (d — 1)-dimensional volume formed by a trellis, is calculated bg Bub-
proceduremeasur e, called with the current region and the arriayel | i s which
stores at index the minimali*" coordinate of thé-piles. The volume is calculated by
the inclusion-exclusion principle according to Eq. 2. Eadmmand is composed of
(d — 1) factors corresponding to thi@ — 1) dimensions. The&'" factor is either the
size of the region in dimensiaror the value of a 1-dimensional KMP of the contained
i-piles. The sign of a summand depends on the number of KMBriacthe formula
(Eqg. 2) containg = ZZ;} (dgl) summands, whereasaccords to the variations &f
KMP values out of d — 1) factors. A possible implementation applies an index vetctor
determine whether a factor is to be a 1-dimensional KMP of-fhiées or the size of the
region in dimension. In the arrayi ndi cat or of length(d—1),i ndi cator[i] =1
corresponds to thé” KMP andi ndi cat or [ i ] =0 to the size of the region in di-
mensioni. This way, all possible variations can be processed by misgjghe indicator
vector the binary presentation of the numbers from ¢.to

for i=1to d-1do indicator[i]=1
numberSummands = integerValue(indicator)
for i=1 to number Summands do
indicator = binaryValue(i)
oneCounter=0
for j=1to d-1do
if indicator[i] == 1then
summand += region[1][j] - trellis[j]
oneCounter++
else summand += region[1][j] - region[O][j]
if oneCounter mod 2 == Qthen
| volume -= summand
else volume += summand

Algorithm 6 : measure(trellis, region)

B Details on the Proof of the Run Time’s Upper Bound

The proof of the upper bound of the run time (cf. Section 42)ased on the number
of partially covered regions per cuboid. Here, the explamathat this number does
not exceec()(\/ﬁd”) is given. Recall that a cuboid partially covers a region ifian
boundary cuts through the region. This characteristidustitated in Figure 4. A region
that is generated by a splitting through dimensiastermed an-partition. There are



O(\/ﬁifl) (i—1)-partitions. The-boundary of a cuboid intersects @r-1)-partition at
most once and thereby cuts through one of-pgirtition. Thus ari-boundary intersects
O(\/ﬁifl) i-partitions. When the partitioning is done concerning #raaining {—1—

1) dimensions, eachpartition is subdivided int@(\/ﬁdflﬂ') (d — 1)-partitions. The
cuboid'si-boundary cut©(y/n' ') - O(\/ﬁdflﬂ') = O(\/ﬁd”) (d — 1)-partitions,
which corresponds to the number of leafs that contain theidub

T T 11}

i-partition
(i-1)-partition

i-boundary

Fig. 4. lllustration of the number of intersected regions. The eddmes adumbrate the induced
dominated hypercuboid. The columns shaw-(1)-partitions with their containeépartitions.
The bold:-partitions are intersected by tidddoundary of the hypercuboid.
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