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Abstract- The self-adaptation of the mutation distribution
is a distinguishing feature of evolutionary algorithms that
optimize over continuous variables. It is widely recog-
nized that self-adaptation accelerates the search for op-
tima and enhances the ability to locate optima accurately,
but it is generally unclear whether these optima are global
ones or not. Here, it is proven that the probability of con-
vergence to the global optimum is less than one in general,
even if the objective function is continuous.

1 Introduction

The self-adaptation of the mutation distribution in evolution
strategies (ES) was introduced by Rechenberg (1973). Here,
self-adaptation means that the control parameters of the mu-
tation distribution are evolved by the evolutionary algorithm
internally, rather than being predetermined by some exoge-
nously given schedule. A simple version of this mechanism
was the so-called ���-success rule of the �� � ��-ES which
worked as follows: If the relative frequency of successful
(i.e., improving) mutations within some prescribed period of
time is larger than ���, then the step size control parame-
ter (mostly the variance of the mutation distribution) is in-
creased by some factor, whereas it is decreased if the relative
frequency of successful mutations is smaller than ���. This
mechanism was modified by Schwefel (1977) who replaced
the prescribed factor by a lognormally distributed random
variable and added the control parameter to the genome of
each individual. As a consequence, the adjustment of the con-
trol parameter implicitly results from the competition among
the individuals. Similar methods were independently pro-
posed in evolutionary programming by Fogel (1992; 1995).
Needless to say, self-adaptation is not limited to the control
of mutation distributions. Further fields of application may be
found in recent surveys (Hinterding et al. 1997; Bäck 1998).

Although it is widely recognized that self-adaptation of
the mutation distribution accelerates the search for optima
and enhances the ability to locate optima accurately, the the-
oretical underpinnings of this mechanism are essentially un-
explored. For example, it is generally unclear whether the
optima found are global ones or not. In the case of con-
vex objective functions (to be minimized), Rappl (1984) has
given a proof of exponentially fast convergence for a stochas-
tic algorithm resembling a �� � ��-ES with ���-success rule
whereas Beyer (1995) examined also other evolutionary algo-
rithms and self-adaptation rules.

As for non-convex objective functions, Rudolph (1997)

has shown that every self-adaptation method leads to global
convergence for objective functions with bounded lower level
sets of non-zero measure provided that the selection method
uses elitism and that the mutation distributionremains “strictly
covering” under the self-adaptation rule (cf. Theorem 6.14, p.
204). A strictly covering mutation distribution was defined as
follows:

“Let �Z be a random vector with support IRn and S �
diag�s�� � � � � sn� be a diagonal matrix with detS � �
and si � smin � �. A mutation distribution FZ will
be termed strictly covering if Z can be generated via
Z � � T S �Z for arbitrary orthogonal matrices T and
where � is allowed to vary in a fixed compact subset
of the positive real numbers.”

The main idea of the proof is sketched below: Since the range
of the mutation control parameter � is restricted to a fixed
compact subset of the positive real numbers, there exists a
positive lower as well as upper bound for legal values of �.
This implies a positive minimum probability for hitting some
neighborhood of the global solution and therefore the event
of an actual transition to this neighborhood will occur with
probability � within a finite number of mutations. Since this
result holds for arbitrary neighborhoods one immediately ob-
tains global convergence in probability and eventually com-
plete convergence to the global optimum because of the ex-
ponential increase of the probability for this event.

The crucial point of the proof is the assumption of the pos-
itive lower bound for the control parameter �. Many self-
adaptation mechanisms do not obey this condition. This ob-
servation was the starting point of the work to be presented
shortly. Here, it is examined whether global convergence can
still be guaranteed if the assumption of a positive lower bound
of � is dropped. This is done by the construction of a scenario
under which an evolutionary algorithm with self-adaptation
provably fails. The scenario and some auxiliary results are
presented in Section 2 whereas the analysis is given in Sec-
tion 3. The extension of the scenario to related evolutionary
algorithms can be found in Section 4. Section 5 finishes the
paper by a discussion that is intended to clarify the implica-
tions of this negative result in regard to the practical use of
evolutionary algorithms with self-adaptation rules.

2 Description of the Constructed Scenario

2.1 Algorithm

Let g � IRn � IR be the objective function to be minimized
and set X� � x� � IRn, �� � �. Consider the Markovian



process �Xk� �k�k�� generated by the stochastic algorithm

Xk�� �

�
Xk � �k Zk , if g�Xk � �k Zk� � g�Xk�

Xk , otherwise
(1)

�k�� �

�
�� �k , if g�Xk � �k Zk� � g�Xk�
�� �k , otherwise

(2)

where �� � �, �� � ��� ��, and �Zk � k � �� denotes a
sequence of independent and identically distributed random
vectors with spherically symmetric distribution around the
zero vector and support IRn. Thus, whenever there is a suc-
cessful (i.e., improving) mutation, the step length control pa-
rameter �k is increased and decreased otherwise. This algo-
rithm does not exactly match a �� � ��-ES with self-adapting
step size control, but the analysis of this method can be mod-
ified easily to a broader class of evolutionary algorithms (see
Section 4).

2.2 Test Problem

When a stochastic optimization algorithm is said to exhibit
global convergence for a certain class of objective functions,
then it is meant that the stochastic sequence of candidate solu-
tions generated by the algorithm converges (in some stochas-
tic mode) to the global optimum for every member of the
problem class regardless of the initial solution. In order to
falsify the property of global convergence for the entire prob-
lem class it is sufficient to prove a negative result for a single
member of the problem class and a specific starting point.
Here, the problem class is the set of continuous real-valued
functions with search space IR. An instance of this problem
class is the function g � IR � IR described next. Let � � �,
	 � �, z � 	 	 � � and

g�x� �

��
�

�

�
� x��	� � � , if x � 
 	

� � , if 
 	 � x � z � 
 	
� �x� z���	� , if x � z � 
 	 


Figure 1 shows a qualitative plot of the objective function
g���. Its global optimum is located at x� � z with value
g�z� � �. The starting point of the algorithm described in
equations (1) and (2) is X� � � whereas �� � � may be
chosen arbitrarily.

With these initial values the algorithm only accepts a so-
lution different from � if the outcome of the random variable
�k Zk is within the range �z � 	� z � 	�. It is clear that the
occurrence of such an event in the course of an infinite se-
quence of trials with probability � is a necessary condition
for global convergence. If the probability of this event is less
than �, then the algorithm will never enter the set �z�	� z�	�
with positive probability. As a consequence, stochastic con-
vergence to z is precluded in this case. In order to prove when
the necessary condition is violated, sufficient criteria for suc-
cess and failure are developed next.

2.3 Criteria for Success or Failure

Suppose that the cumulative distribution function F Z of the
symmetrical random variable Z with zero median is differen-
tiable. Owing to the mean value theorem the probability of a
transition from point � to the set �z � 	� z � 	� � IR can be
derived via

Pf �� �z � 	� z � 	� g � Pf z � 	 � Z � z � 	 g
� FZ�z � 	�� FZ�z � 	�

� 
 	 fZ�z � 	 � � � 
 	�
where � � � � � and fZ�x� � d

dx FZ�x�. Since z � 	 � �
the transition probability can be bracketed as follows:


 	 fZ�z � 	� � Pf �� �z � 	� z � 	� g
� 
 	 fZ�z � 	� 
 (3)

Inequality (3) is valid for arbitrary distributions of random
variable Z. In the course of the evolution, however, the dis-
tribution of Z will not remain constant in general. This fact
will be taken into account by adding the subscript k (the iter-
ation counter) to Z hereinafter.

2.3.1 Criterion for Successful Crossing

The probability of crossing the hill between the local and
global optimum at step k � � is

pk � Pf �� �z � 	� z � 	� at step k g
� qk � 
 	 fZk�z � 	� (4)

where the lower bound qk results from inequality (3). It fol-
lows that the probability of a transition to �z�	� z�	� within
t � � trials is

��
tY

k��

��� pk� � ��
tY

k��

��� qk� 


Therefore the sufficient criterion for a successful crossing is
simply

tY
k��

��� qk�� � �
tX

k��

log

�
�

�� qk

�
�	 (5)

as t � 	. If criterion (5) is fulfilled, then the evolutionary
algorithm will jump to �z � 	� z � 	� within a finite number
of steps with probability one. This does not imply that the
EA will converge to the global optimum at x� � z, but the
necessary condition for this property would be fulfilled.

2.3.2 Criterion for Unsuccessful Crossing

In contrast to the pessimistic point of view in the preceding
criterion, one has to assume an optimistic point of view now.
Thanks to inequality (3) one obtains

pk � qk � 
 	 fZk�z � 	� 
 (6)



Figure 1: A qualitative plot of the objective function g���.

As a consequence, the upper bound for the probability of a
transition to �z � 	� z � 	� within t � � trials is given by

��
tY

k��

�� � pk� � ��
tY

k��

��� qk� 


If the probability on the right hand side above is smaller than
� in the limit, then the transition to �z�	� z�	� is not guaran-
teed. In other words, it may happen with positive probability
that the EA never enters the set �z � 	� z � 	�. It is clear that
such an event precludes the convergence to the global opti-
mum at x� � z � �z� 	� z� 	�. Thus, the sufficient criterion
of failure is simply

�Y
k��

��� qk� � � �
�X
k��

log

�
�

�� qk

�
�	 
 (7)

3 Analysis

Suppose that the algorithm described in equations (1) and (2)
is used to minimize the objective function g��� of the pre-
ceding section. If the starting point is X� � � then equa-
tions (1) and (2) reduce to Xk � � and �k � �� �

k with
� 
 �� � ��� �� as long as a transition to the set �z� 	� z� 	�
has not occurred. As a consequence, the transition probabil-
ities of the associated Markov process prior to a successful
crossing of the hill can be bounded via inequality (3). Be-
fore explicit mutation distributions, namely Gaussian as well
as Cauchy distributions, are inserted in this inequality, two
simple inequalities are proven for later use.

Lemma 1 If x � ��� �� then

x � log

�
�

�� x

�
�

x

�� x



Proof:
Consider the series expansion

log

�
�

�� x

�
� � log��� x� �

�X
i��

xi

i

which is valid for jxj � �. This leads immediately to the
inequalities

� � x �

�X
i��

xi

i
�

�X
i��

xi �
�X
i��

xi � � �
x

�� x

and the proof is completed. ut

3.1 Gaussian Mutations

Suppose that random variable Z possesses Gaussian distribu-
tion with probability density function

fZ�x� �
�

�
p

�

exp

�
� x�


��

�

where � will play the role of the step length control parameter
�. It will now be shown that a successful crossing of the hill
between the local and global optimum is not guaranteed. For
this purpose, the probability density function f Z��� is inserted
into inequality (6) yielding

pk � qk � 	

r



�

�

�k
exp

�
� �z � 	��


��k

�
� A
k exp��B 
�k� (8)

where A � 	 �
������, B � �z � 	���
, and 
k � ���k.
Lemma 1 leads to
�X
k��

log

�
�

�� qk

�
�

�X
k��

qk
�� qk

� �

�� q�

�X
k��

qk 
 (9)



Let 
k � 
� �
k with � � ��� � �. Insertion of the rightmost

expression of equation (8) into the rightmost expression of
equation (9) yields

�

�� q�

�X
k��

qk �
A

�� q�

�X
k��


k
exp�B 
�k�

�
A
�
�� q�

�X
k��

�k

exp�B 
�� �
� k�

�
A
�
�� q�

�X
k��

ak 


The series above converges to a finite limit if the sequence
jakj��k converges to some limit � � �. Since

jakj��k �
�

exp�B 
�� �
� k�k�

� � � �

as k�	 it was shown that
�X
k��

log

�
�

�� qk

�
� 	 


Owing to criterion (7) one may conclude that the algorithm
with self-adaptation gets stuck at the local optimum with pos-
itive probability precluding the property of global conver-
gence.

Evidently, this failure is caused by too fast a decrease of
the step size control parameter in the case of unsuccessful
mutations. Therefore one may inquire under which step size
control schedule a transition to �z � 	� z � 	� is guaranteed.
According to equation (4) we obtain

pk � qk � 	

r



�

�

�k
exp

�
� �z � 	��


��k

�
� A
k exp��C 
�k� (10)

where A � 	 �
������, C � �z � 	���
, and 
k � ���k.
Choose


k �

s
�

C
log

�
A

C���
k

�

for k � C����A. Insertion into eqn. (10) leads to

qk �

s
log

�
A

C���
k

�
� �
k
� �

k

where the inequality is valid for sufficiently large k, i.e., for
all k � k�, say. Finally, Lemma 1 yields

tX
k�k�

log

�
�

�� qk

�
�

tX
k�k�

qk �
tX

k�k�

�

k
�	

as t�	. This result is equivalent to the statement

��
tY

k�k�

��� qk�� � as t�	

which implies that a transition from � to the set �z� 	� z � 	�
happens in finite time with probability �. This proves the ex-
istence of a schedule to escape from the local optimum under
self-adaptation, but the mean step sizes have to be changed
extremely slowly. Since such a schedule is also in action
after entering the set �z � 	� z � 	� the mean convergence
velocity to the global optimum would be extremely slow as
well (provided that convergence occurs at all). One is there-
fore tempted to inquire for another mutation distribution that
might work with a faster self-adapting schedule than the in-
versely logarithmic one or even with the original one. A
few years ago, some authors have suggested to replace the
Gaussian mutation distribution by a Cauchy mutation (Kap-
pler 1996; Yao and Liu 1996). Since the tails of the Cauchy
distribution decrease much slower than the tails of the Gaus-
sian distribution, it is hoped that such evolutionary algorithms
exhibit an improved ability to escape from local optima. This
hypothesis is examined next.

3.2 Cauchy Mutations

Suppose that the random variable Z possesses a Cauchy dis-
tribution with probability density function

fZ�x� �
�

�

s

s� � x�
(11)

where the scale parameter s plays the role of the step size
control parameter �. At first, consider the original schedule as
given in equation (2). Unless one gets a successful mutation
the scale parameter sk decreases as sk � s� �

k with � � � �
�. According to inequality (6) one obtains

pk � qk � 
 	 fZk�z � 	� �

 	

�

sk
s�k � �z � 	��

� D
sk

s�k � E
(12)

where D � 
 	�� and E � �z � 	��. Inequalities (9) and
(12) lead to

�X
k��

log

�
�

�� qk

�
�

�

�� q�

�X
k��

qk

�
D

�� q�

�X
k��

sk
s�k � E

�
D s�
�� q�

�X
k��

�k

s�� �
� k �E

�
D s�
�� q�

�X
k��

ak 


The series above converges to a finite limit if the sequence
jakj��k converges to a limit � � �. Since

jakj��k �
�

�s�
�
�� k �E���k

� � � �



as k �	 it was shown that Cauchy mutations with the orig-
inal step size control schedule are not a remedy: The hill be-
tween the local and global optimum will not be crossed with
probability 1. Consequently, the property of global conver-
gence is not present.

Again, one might seek for a slightly slower schedule than
the original one that guarantees the crossing of the hill with
probability �. For this purpose choose

sk �
�

k

for k � � and insert this expression into the inequality (4).
This leads to

pk � qk � 
 	 fZk�z � 	� � D
sk

s�k �G
� D

��k

��k� � G

where D � 
 	�� and G � �z� 	��. Owing to Lemma 1 one
obtains

�X
k��

log

�
�

�� qk

�
�

�X
k��

qk � D
�X
k��

��k

��k� � G

� D

� �G

�X
k��

�

k
� 	

which fulfills the criterion for successful crossing of the hill
between local and global optimum. At a first glance, self-
adaptation with Cauchy mutations seems to work with a faster
schedule than in the case of Gaussian mutations. But this
impression is misleading since the choice of a sufficiently
slowly schedule depends on the representation of the step size
control parameter in the definition of the probability density
function fZ���. For example, if parameter s in equation (11)
is replaced by h�s� with h�s� � log���� log�s�s��, then the
original schedule would lead to a crossing of the hill with
probability �. Thus, some caution is appropriate here.

4 Extensions of the Scenario

4.1 Original (1+1)-Strategy with Self-Adaptation

As mentioned in Section 2.1 the stochastic algorithm con-
sidered so far does not match the original �� � ��-strategy
with self-adaptation exactly. It will be shown that the results
obtained by now remain valid for the original �� � ��-EA
which changes the step size control parameter if the relative
frequency of improving mutations is below or above some
threshold within m, say, trials. Unless there is an outcome of
Zk in the set �z � 	� z � 	� the step size control parameter
is decreased by factor � � ��� �� after every mth trial. This
behavior can be squeezed into our original scenario by con-
sidering these m trials as an elementary event of stage k. The
probability of observing a transition to �z � 	� z � 	� within
m trials at stage k is �pk � � � �� � pk�

m where pk is the
probability of successful crossing for a single trial (as known
from the previous section). Notice that pk � qk if and only if

�pk � � � �� � pk�
m � �qk � � � �� � qk�

m and analogous
for the reversed inequality. Therefore the sufficient criterion
for unsuccessful crossing of the hill (eqn. 7) remains valid if
qk is replaced by �qk. Since m is finite and

�Y
k��

��� �qk� �
�Y
k��

��� qk�
m �

�
�Y
k��

��� qk�

�m
� �

�� m �
�X
k��

log

�
�

�� qk

�
� 	

one may conclude from the preceding analysis with m � �
that the �� � ��-EA with usual self-adaptation and Gaussian
or Cauchy mutations does not globally converge for the class
of continuous functions in general.

4.2 Multiple Offspring

Now let the parent produce � � 
 offspring with the same
mutation distribution. The offspring with the least objective
function value replaces the parent if and only if its objec-
tive function value is less than that of the parent. This EA
is known as the �� � ��-EA. Thus, at every stage there are
now � �m in lieu of m trials. Since � is finite the argumen-
tation of Section 4.1 is directly transferable to this scenario:
The �����-EA with self-adaptation and Gaussian or Cauchy
mutations does not globally converge for the class of contin-
uous functions in general.

4.3 Different Starting Point

It might be argued that the entire analysis is irrelevant since
the event of starting the EA at X� � � has zero measure
under random initialization. But this hope is in vain. Suppose
that the EA is started in the set 
�	� 	� which has non-zero
measure under random initialization.

With X� � 
�	� 	� the EA only accepts offspring with ob-
jective function value less than �
�� �X �

��	
���. Suppose for

the moment that the EA does not accept improvements within
the left valley. In the best case the starting point is at X� � 	
because the set of improving solutions on the other side of the
hill as well as the assigned probability mass becomes maxi-
mal. Now one is back at the preceding scenarios—if the EA
is unable to enter the set H� � �z � 	

p
���� z � 	

p
����

with probability � then global convergence is precluded. The
original analysis remains the same for this situation—only the
values of the constants A�B� 
 
 
 in the original analysis are
affected. Since they do not influence the argumentation of the
analysis the main result is also valid under this scenario.

Finally, let the EA also accept better solutions in the left
valley. To preclude the property of global convergence it is
sufficient to show that the EA is unable to enter the set H�

with probability one. This leads to the following model: The
EA minimizes the convex function with domain 
�	� 	� expo-
nentially fast (as proven in Rappl 1984) or the EA enters the
set H� and halts. At each stage the probability of a transition



to H� is less than � � �� � �qk�
m where �qk plays the role of

qk with altered constants. While the EA minimizes the con-
vex function the step size control parameter may temporarily
increase—in the limit, however, the step size control param-
eter decreases exponentially fast. Therefore, the probability
�qk may increase temporarily as well—but in the limit it de-
creases too fast to make the event of entering the set H� a
sure one. Summing up:

Theorem 1 A randomly initialized �� � ��-EA with a self-
adaptation method resembling the ���-success rule does not
converge with probability � to the global optimum of a con-
tinuous objective function in general. ut

5 Discussion

The negative result concerning self-adaptation just presented
should be accompanied by some comments. From a theoreti-
cal point of view, this result is remarkable because many EAs
without self-adaptation do globally converge to the optimum.
But this does not automatically imply that self-adaptation is
an obstructive feature of evolutionary algorithms. Proofs of
global convergence for EAs without self-adaptation ensure
that the global optimum will be found in finite time with prob-
ability 1 regardless of the starting point. Although finite, the
time actually necessary to enter some vicinity of the global
optimum (in which the objective function is locally convex)
may be transcomputationally long. Moreover, even if this
event has occurred, these EAs require much time to locate the
optimum with more accuracy. Evolutionary algorithms with
self-adaptation do not always enter the vicinity of the global
optimum in finite time, but as soon as they have reached this
set the global optimum is approached exponentially fast. If
the union of vicinities with locally convex objective functions
and sufficiently good local optima is large enough, then re-
peated runs of the EA will ensure that at least one run enters
this union of vicinities with high probability (the failure prob-
ability decreases exponentially in the number of runs). After
this has happened a sufficiently good local optimum is ap-
proached exponentially fast. From a practical point of view,
such a behavior is certainly satisfying. Therefore, future re-
search should be engaged in replacing the vague phrase “...
sufficiently good local optima is large enough ...” by rigorous
statements.
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