
CANADA

The Manual

Udo Feldkamp
Universität Dortmund

Chemistry Dept. / BCMT
44221 Dortmund

Germany

April 16, 2009

Contents

1 Introduction 3
1.1 CANADA and this Manual . 3
1.2 Tools in CANADA . 4
1.3 Files installed with CANADA . 4
1.4 Installation . 5
1.5 Acknowledgements . 5
1.6 Bugreports, Questions, etc. 6

2 Sequence Design Tools 7
2.1 DeLaNA — The Description Language for Nucleic Acids 7

2.1.1 Comments . 9
2.1.2 Data types . 9
2.1.3 The SEQUENCE object type . 11
2.1.4 The SEQUENCETYPE object type . 13
2.1.5 The POOL object type . 14
2.1.6 The DESIGNTOOL object type . 18
2.1.7 The CONCAT statement . 19
2.1.8 The 3WJ and 4WJ statements . 20

2.2 dsg — The DNA Sequence Generator (version 2.01) 20
2.3 dsc — The DNA Sequence Compiler (version 3.09) 24

3 Other Tools 30
3.1 Tools for Handling Nucleic Acid Sequences . 30

3.1.1 align (version 1.0) . 30
3.1.2 clean out (version 1.0) . 34
3.1.3 complement (version 1.0) . 36
3.1.4 duplex2hairpin (version 1.0) . 37
3.1.5 eval pool (version 1.0) . 39
3.1.6 gc (version 1.0) . 43
3.1.7 nb unique (version 1.03) . 44
3.1.8 rand seqs (version 1.01) . 47
3.1.9 reverse (version 1.0) . 49
3.1.10 seq dist (version 1.01) . 51
3.1.11 seq dist2 (version 1.01) . 55
3.1.12 thermo (version 1.01) . 57

3.2 Miscellaneous Tools . 62
3.2.1 corr coeff (version 1.0) . 62

1

3.2.2 rank corr (version 1.0) . 64

A Tables 66
A.1 IUPAC-IUB Recommendation for Degenerate Base Symbols 66

B Example Input Files 67
B.1 DeLaNA Files . 67

B.1.1 all features.dln . 67
B.1.2 dsg small pool.dln . 69
B.1.3 dsg big pool.dln . 69
B.1.4 dsc RNG.dln . 70
B.1.5 dsc 4WJ.dln . 71
B.1.6 dsc DX.dln . 73

B.2 Configuration Files . 75
B.2.1 dsc config.cfg . 75

B.3 Sequence Pools . 75
B.3.1 example seqs.txt . 75
B.3.2 example seqs w IDs.txt . 75

B.4 Tables with Numbers . 76
B.4.1 corr example.txt . 76
B.4.2 corr example data only.txt . 76

2

Chapter 1

Introduction

1.1 CANADA and this Manual

CANADA stands for Computer-Aided Nucleic Acid Design pAckage. It is a collection
of tools not only for designing nucleic acid sequences with certain properties, but also for
analyzing and handling them.

The design of nucleic acid sequences is necessary for a wide range of applications, most of which
belong to the fields of DNA-Computing or DNA-based nanotechnology [Feldkamp et al., 2003,
Feldkamp and Niemeyer, 2006]. The most important requirement for nucleic acid molecules is
specific hybridization, i.e. avoidance of any unintended and thus undesired binding between
strands. Furthermore, a high and homogeneous hybridization efficiency of all oligonucleotides
and their intended binding partner is desirable. And, depending on the application, additional
restrictions, e.g. on the molecules’ melting temperature, or the specification of fixed subse-
quences etc., may be necessary. This multitude of different requirements is joined by the huge
search space of nucleic acid sequences, containing 4n different sequences of length n, and if you
regard sets of sequences, combinatorics makes things even worse. Thus, the aid of computer
programs is indispensable. The design tools in CANADA have been developed to enable the
user to find sequences that meet all desired requirements and restrictions. The other tools,
DNA handling ones and others, were developed when necessary during the research on DNA
sequence design, and may be useful to people working with DNA.

This manual only describes how to use the tools, i.e. it mainly specifies input and out-
put of the tools. It does not describe algorithmic details. Please refer to [Feldkamp, 2000,
Feldkamp et al., 2003] for more information on how the design tools work.

CANADA is written in C++. For the time being, all binaries are for the Windows command
line. Future plans include compiling Linux binaries, publishing the source code of at least some
of the tools and the DeLaNA parser with the object classes, polishing and extending the tools,
adding some more small tools, and maybe even a GUI or two.

3

1.2 Tools in CANADA

This manual describes the tools in CANADA, version 2.0. This version of the package contains
the following tools:
Tool Version Short description

design tools
dsg 2.01 DNA sequence generator
dsc 3.09 DNA sequence compiler

DNA tools
align 1.0 global alignment & duplex stability
clean out 1.0 removes non-base characters
complement 1.0 puts out Watson-Crick complements
duplex2hairpin 1.0 links two sequences of a duplex to a hairpin loop
eval pool 1.0 evaluates the hybridization specificity of a sequence pool
gc 1.0 calculates GC content
nb unique 1.03 searches for non-unique subsequences
rand seqs 1.01 generates random sequences
reverse 1.0 puts out reverse sequences
seq dist 1.01 calculates distance between sequence pairs
seq dist2 1.01 as seq dist, but for all possible pairs
thermo 1.01 calculates thermodynamic properties such as

melting temperature or free energy
other tools

corr coeff 1.0 calculates linear correlation coefficients
rank corr 1.0 calculates Spearman rank correlation coefficients

1.3 Files installed with CANADA

bin/
align.exe
clean out.exe
complement.exe
corr coeff.exe
dsc.exe
dsg.exe
duplex2hairpin.exe
eval pool.exe
gc.exe
nb unique.exe
rand seqs.exe
rank corr.exe
reverse.exe
seq dist.exe
seq dist2.exe
thermo.exe

doc/

4

Manual.pdf
dsc changelog.txt
dsg changelog.txt

samples/
DeLaNa/

all features.dln
dsc 4WJ.dln
dsc DX.dln
dsc RNG.dln
dsg big pool.dln
dsg small pool.dln

config/
dsc config.cfg

seq pools/
example seqs.txt
example seqs w IDs.txt

numbers/
corr example.txt
corr example data only.txt

README.txt

1.4 Installation

It is rather easy to install CANADA on your computer: Simply unpack the zip file in any
directory that is convenient for you. In order to use the tools independend on what directory
you are currently working in, you might want to add the path to CANADA’s bin directory
to your system’s path variable. Just click on the Start button, open the Control Panel (in
Settings), open the System dialog, choose the Advanced tab, click on the Environment Variables
button, select PATH, click on the Edit button, add a semicolon and the full path of the bin
directory, click OK, click OK again. Already opened command-line windows may not recognize
this change (check with the path command), but freshly opened command shells should know
the new path.

1.5 Acknowledgements

I’d like to thank Prof. Wolfgang Banzhaf for giving me the opportunity to do research on DNA
Computing and nanotechnology and to develop this software. Funnily enough, during this
research Prof. Banzhaf moved to Canada, shortly after I decided to call the software CANADA.

Big thanks to Hilmar Rauhe for introducing me to DNA Computing. Some of the stuff in
CANADA is influenced by his ideas.

I gratefully acknowledge the support of Prof. Christof M. Niemeyer, including giving me the
opportunity to examine the quality of my tools’ output in vitro, and showing me (a computer
scientist) a complete new point-of-view (that of a chemist) on messing around with DNA.

Finally, thanks to my colleagues in the computer science and the chemistry department of the

5

Universität Dortmund for nice collaboration, helpful discussions, and a great atmosphere.

1.6 Bugreports, Questions, etc.

If you discover a bug, have a question, want to suggest additional features, or have any praise
or complaints, please send an email to udo.feldkamp@uni-dortmund.de.

6

Chapter 2

Sequence Design Tools

Since the main reason for the development of CANADA was DNA sequence design, the tools
described in this chapter are the ’core tools’. For the time being, CANADA comprises two
design tools, dsg, the DNA sequence generator, and dsc, the DNA sequence compiler. The
first tool generates a pool of ’good’ sequences (see below for details on what ’good’ means),
whereas the second tool also pays respect to concatenations of sequences and their influence
on ’goodness’.

In all applications – DNA computing, DNA-based nanotechnology, microarray probe design
– one major need is specific hybridization, i.e. the DNA molecules only hybridize with their
intended partners, and not with any other molecule. Thus, this is also the main property
enforced by the design tools. In particular, the tools generate nb-unique sequence pools. This
means that for any subsequence of length nb that a sequence (or, in the case of the sequence
compiler, also a concatenation of sequences) contains, the following holds:

� This subsequence does not occur anywhere else in the sequence pool.

� The Watson-Crick-complement of the subsequence does not occur anywhere in the pool.

� The subsequence is not self-complementary.

For more details on nb-uniqueness and how the tools enforce this property please refer to
[Feldkamp et al., 2003].

Other chemical or physical properties of the DNA molecules can also be restricted or predeter-
mined by the user, like melting temperature, GC-ratio, free energy of hybridization, or fixed
or forbidden subsequences.

Both tools take input files describing the DNA sequences and their properties. A description
language for nucleic acids (DeLaNA) was developed for this task.

2.1 DeLaNA — The Description Language for Nucleic Acids

DeLaNA stands for Description Language for Nucleic Acids. It serves as a standardized
format for input as well as output files read or written by CANADA’s design tools. Nucleic acid
sequences and sequence pools are described as objects by listing their properties. In input files,
specification of an object’s properties sets constraints and defines parameters for the design

7

tools, in output files, the actual physical and chemical properties of the generated sequences
are listed.

A typical object definition reads like OBJECTTYPE objectname { listofproperties }, where
OBJECTTYPE specifies the type of object defined, objectname is an identifier for this object
instance, and listofproperties is a list of entries of the form property = value; specifying
the object’s properties. For example, the DeLaNA code block

SEQUENCE oligo1 {
length = 20;
GC_ratio = 0.5; }

describes a 20mer sequence called oligo1 with a GC-ratio of 50 %.

There are currently four different object types: SEQUENCE, SEQUENCETYPE, POOL, and DESIGNTOOL.
Their properties are described in the following sections.

The DeLaNA parser is case insensitive1 concerning all keywords for objects and properties. For
example,

SEQUENCE oligo1 {
length = 20; }

is the same as

sequence oligo1 {
LENGTH = 20; }

or

SeQuEnCe oligo1 {
lEnGtH = 20; }

This case insensitivity does not include object identifiers. For example,

SEQUENCE my_oligo {length = 10;}
SEQUENCE My_Oligo {length = 10;}
SEQUENCE MY_OLIGO {length = 10;}

defines three different SEQUENCE objects.

DeLaNA was developed as an input (and output) language for a broad range of nucleic acid
sequence design tools, a lot of which are not yet developed. Thus, not every design tool uses
every feature DeLaNA offers. In the following description of DeLaNA, all its elements will be
explained, while in the sections about the different design tools all DeLaNA features ignored
by the respective tool will be listed.

Some example files are presented in appendix B.1.
1In this manual and the example files, I will choose the case such that DeLaNA is easy to read, at least in

my eyes.

8

2.1.1 Comments

Comments are text blocks that are ignored by the DeLaNA parser. Their purpose is to add
information to the molecule description in order to make it easier to read and comprehend,
or to remember the reason for certain specifications. Comment blocks begin with /* and end
with */. If you want to insert short comments, // causes the parser to ignore everything from
these symbols up to the end of the line. The DeLaNA code block

/* ====================================
Now follows the definition of my oligo!
==================================== */
SEQUENCE my_oligo { // well chosen identifier
length = 20; // 10 is too short, 30 too long
/*
very important comment
*/
Tm = [40;50]; // good temperature
}
/* This was the
definition of
my oligo! */

is read by the parser as

SEQUENCE my_oligo {
length = 20;
Tm = [40;50];
}

2.1.2 Data types

DeLaNA uses several data types for the specification of sequences’ properties. These are integer
and real numbers, ranges of both number types, Booleans, sequence masks, and identifiers.

Integer: Simply an integer number, positive or negative.

Real number: Real numbers can be written in the usual fixed point format (e.g. 1.234) or
in scientific format (e.g. 1e− 5).

Range: A range of integers or reals is written in square brackets, and the bounds are seper-
ated by a semicolon. For example, the description

SEQUENCE my_oligo {
Tm = [40;50]; }

limits the melting temperature to 40− 50 �. Wherever a range is to be specified, the DeLaNA
parser also accepts a single value. For example,

9

SEQUENCE my_oligo {
Tm = 45; }

is read by the parser as

SEQUENCE my_oligo {
Tm = [45;45]; }

and limits the melting temperature to exactly 45 �.

Boolean: A property of this simple type can take the values ’true’ and ’false’, and usually
serves to switch on or off some yes-no-switches of the design tool. For example, the code block

DESIGNTOOL {
ID_in_table = true; }

tells the design tools to add sequence identifiers to the output tables. Concerning the ’true’
and ’false’ keywords, the DeLaNA parser is case-insensitive, i.e. they may be written true,
True, TRUE, or TrUe.

Sequence mask: A sequence mask is a string of characters delimited by quotation marks,
and composed of base encoding characters, including those for degenerate bases as recom-
mended by the IUPAC [Cornish-Bowden, 1985] (see appendix A.1). For example, the code
block

SEQUENCE my_oligo {
seq_mask = "ACGTGGA"; }

defines the sequence object my oligo to be exaclty the oligomer ACGTGGA. The code block

SEQUENCE my_oligo {
seq_mask = "WWWWWWW"; }

limits my oligo to be composed of A and T only. The characters’ case does not matter, e.g.
RRR specifies the same sequence as rrr or RrR.

Identifier: This is also a string, but without any delimiting characters. An identifier starts
with a letter, and continues with any number of letters, numbers, or underscores. For example,
legal identifiers would be my oligo, seq1, seq 1, x, or HELLO WORLD. Identifiers
are used as names for sequence or pool objects, or for user defined sequence types (see below).
None of the keywords for objects or properties may be used as identifiers. For example,

SEQUENCE pool {
length = 12; }

would be illegal since pool is the keyword for the POOL object type. The DeLaNA parser is
case sensitive with respect to identifiers, so seq1 and SEQ1 are different identifiers.

10

2.1.3 The SEQUENCE object type

This object type describes nucleic acid sequences. Objects of this type are specified by a code
block starting with the SEQUENCE keyword, followed by a list of identifiers, and finally and
optionally the list of property specifications enclosed by curly brackets. The list of identifiers
can be, in the most simple case, a single identifier:

SEQUENCE x { length = 10; }

defines a single sequence object x. A list can also be composed of several comma-seperated
identifiers:

SEQUENCE x, y, z { length = 10; }

defines three sequence objects, all of which are 10 bases long. In order to define larger numbers
of sequences, a row of identifiers with a common prefix and an individual suffix running through
a given range of numbers can be specified using square brackets:

SEQUENCE x[3] { length = 10; }

defines three sequence objects with the identifiers x1, x2 and x3. The range does not have to
start with 1:

SEQUENCE x[3;5] { length = 10; }

defines the sequence objects x3, x4 and x5. All identifiers have the same length, suffixes contain
leading zeros if necessary:

SEQUENCE x[8;11] { length = 10; }

defines the sequence objects x08, x09, x10, and x11.

The property specification part is optional:

SEQUENCE my_oligo;

defines a sequence object named my oligo whose properties are all set to their respective
default value.

Another possibility to define a sequence object is to specify it as an instance of a SEQUENCE-
TYPE object (see the next section for details).

The SEQUENCE object type has the following properties:

Property keyword Data type Default Short description

NA type {DNA, RNA, PNA} DNA nucleic acid type
length integer range [0;0] sequence length in bases
GC ratio real range [0.0;1.0] ratio of G and C in the sequence
Tm real range [0.0;100.0] melting temperature
DG or DeltaG real range [-1e10;1e10] Gibbs free energy
seq mask string "" base sequence or mask
forbidden special (see below) "" list of forbidden subsequences

11

The following paragraphs give a more detailled description of these properties.

NA type: This property specifies the backbone molecules. DeLaNA knows DNA, RNA, and
PNA, some of the sequence handling tools (see section 3.1) can deal with DNA and RNA, but
the design tools only generate DNA sequences (at least for the time being). Thus, the default
value is DNA.

length: The number of nucleotides the sequence is composed of. In input files, it possibly
makes sense to restrict the length to a range, giving an appropriate design tool some liberty.
Since the default value is set to 0, this property should be specified in an input file.

GC ratio: The number of guanines and cytosines in the sequence, divided by sequence
length. This can be used as a (very) rough estimation of duplex stability, since molecules with
a higher GC-ratio tend to form more stable duplexes with their complements. The default
range is [0.0; 1.0], which allows anything from ’no G or C at all’ to ’only G and C’.

Tm: The melting temperature of a duplex composed of the sequence and its Watson-Crick-
complement, in �. Tm can be calculated with different methods and parameters, which can
be specified within a POOL object (see section 2.1.5 below). Surprisingly, the default range
of Tm, [0.0; 100.0], which actually reads like ’any possible temperature in aqueous solution’, or
’no restriction’, can be too restrictive under circumstances. A bad combination of nucleic acid
sequence, Tm calculation method, and parameters, may result in an estimated temperature Tm

with Tm < 0 � or Tm > 100 �. If your design tool does not detect and handle such senseless
results, it may not find sequences matching the default Tm range.

DG or DeltaG: Both keywords identify the same property: The Gibbs free energy difference
∆G of the hybridization reaction between the sequence and its Watson-Crick-complement, in
kcal/mol·K. For most of the available parameter sets (see section 3.1.12), this is ∆G37, which
means that the reaction takes place at 37 �, for some parameter sets it is ∆G25. Duplexes are
considered stable if the duplex state is energetically more favourable than the single stranded
state, i.e. if ∆G < 0. The default range [-1e10;1e10] means ’somewhere between very low and
very high’.

seq mask: The base sequence of the nucleic acid molecule represented by this object, delim-
ited by quotation marks. If the sequence mask contains degenerate bases (see appendix A.1),
it can be used to restrict the choice of bases for particular positions. For example, the sequence
mask "NNNYYY" tells the design tools that the second half of the sequence must contain only
pyrimidine bases (indicated by the Ys). The bases can be written with both upper and lower
case letters. Specifying the sequence mask automatically sets the length property to the mask’s
length.

forbidden: The value of this property is a list of sequences that must not occur as subse-
quences within the sequence. Each forbidden subsequence in the list is identified by

� a sequence mask (see the description of the seq mask property),

12

� an identifier of a SEQUENCE object,

� such an identifier Z followed by a range of integers [x,y], specifying the subsequence of Z
running from the (x+1)th to the (y+1)th base (computer scientists like to start counting
with 0).

� the keyword complement (or Complement) followed by one of the three foregoing sequence
specifications enclosed in round brackets, specifying the Watson-Crick-complement of the
sequence in brackets (e.g. complement("AACTGG") specifies the sequence "CCAGTT").

This property also offers an additional kind of specification. If the user wants to extend the
list of forbidden sequences specified e.g. in the definition of a prototypical SEQUENCETYPE
object (see next section), this can be done by using += instead of =. For example, the line
forbidden += "AACTGG"; adds "AACTGG" to the list.

2.1.4 The SEQUENCETYPE object type

The SEQUENCETYPE object definition does not describe a concrete sequence object, but
a prototype for sequences. It can be used when some property settings are the same for a
lot of sequences, so that you can specify this shared setting only once, instead of repeat-
ing the same line for each sequence object. The user can then create instances (i.e. proper
sequence objects) of a defined type by using the prototype’s identifier instead of the SE-
QUENCE keyword. The prototype definition must precede the instantiation, i.e. when you
write my_prototype my_oligo {... there must already have been a definition beginning with
SEQUENCETYPE my_prototype {... before.

The syntax of the definition of SEQUENCETYPE objects is the same as for SEQUENCE
objects, including all the property specifications; only the object type keywords are different.
Thus, I won’t repeat the whole description of properties etc. Please refer to the preceding
section for that stuff.

Here’s an example:

SEQUENCETYPE tenmer {
length = 10; }

tenmer x;

tenmer y {
GC_ratio = 0.5; }

This code block defines two sequences: a simple 10-mer x, and a 10-mer y with additionally
restricted GC-ratio. An identical definition without SEQUENCETYPE would be

SEQUENCE x {
length = 10; }

SEQUENCE y {
length = 10;
GC_ration = 0.5; }

13

The user can also overwrite property specifications to define sequences that slightly differ from
the prototype:

SEQUENCETYPE balanced_tenmer {
length = 10;
GC_ratio = 0.5; }

balanced_tenmer z {
GC_ratio = [0.0;1.0];
Tm = [30;35]; }

Here, the definition of z replaces the GC-ratio restriction of the prototype with a melting
temperature restriction. It is the same as

SEQUENCE z {
length = 10;
GC_ratio = [0.0;1.0];
Tm = [30;35]; }

or, since the GC-ratio specification uses the default values for this property,

SEQUENCE z {
length = 10;
Tm = [30;35]; }

Of course, using SEQUENCETYPE makes more sense when you have to define more sequences
with identical or similar properties than shown in these micro-examples.

2.1.5 The POOL object type

This object type defines a sequence pool, i.e. a set of sequences and their common properties,
like restrictions concerning sequence similarity or details on the Tm calculation method. Pool
objects are specified by a code block starting with the POOL keyword, followed by an identifier,
and finally the list of property specification enclosed by curly brackets.

The POOL object type has the following properties:

Property keyword Data type Default Short description

sequences identifier list "" sequences in this pool
n uniqueness or n b integer range [1;1] length nb of unique subse-

quences
Hamming integer range [0;0] Hamming distance
H distance integer range [0;0] H-distance
homology real range [0.0;1.0] Homology
sample conc real 0.0 molar DNA strand concentra-

tion
Na conc real 0.0 molar Na+ ion concentration
Mg conc real 0.0 molar Mg2+ ion concentration

14

formamide conc real 0.0 volume percent formamide
concentration

Tm method method ID (see below) NNUnified Tm calculation method
salt method method ID (see below) Unified Salt correction method for Tm

calculation
violation tolerance integer 0 number of positions with al-

lowed nb-uniqueness violation
forbidden special (see below) "" forbidden subsequences
no shorties boolean false regard sequences shorter than

nb

no GGG boolean false no more than two consecutive
G’s allowed

no AUG boolean false start codon AUG not allowed
no GUG boolean false start codon GUG not allowed
no UUG boolean false start codon UUG not allowed
no fraying boolean false no terminal A or T allowed
base strand GC real range [0.0;1.0] GC-ratio of base strands

The following paragraphs give a more detailled description of these properties.

sequences: The value of this property is a comma-seperated list of sequence identifiers,
specifying which previously defined SEQUENCE objects, including instances of prototypes
defined with SEQUENCETYPE, are collected in the pool.

n uniqueness or n b: A sequence pool is said to be nb-unique, when each subsequence of
length nb that occurs in the pool, occurs only once, and its Watson-Crick complement does
not occur at all [Feldkamp et al., 2003]. As a consequence, self-complementary subsequences
of length nb may not occur. This property specifies the (minimum) unique subsequence length
nb. The smaller this value is chosen, the more specific will be hybridization of sequences of this
pool with their complement. Unfortunately, smaller nb also means fewer and shorter sequences.
The default value of 1 means that each base occurs only once, thus it is strongly recommended
to set this property in an input file.

Hamming: Specifying this property restricts the pairwise Hamming-distance between any
two sequences in the pool. Since the default value of 0 does not make much sense, this property
should be specified in input files for tools that use this distance measure. See the description
of the seq dist tool in section 3.1.10 for details on Hamming-distance.

H distance: Specifying this property restricts the pairwise H-distance [Garzon et al., 1997]
between any two sequences in the pool. Since the default value of 0 does not make much sense,
this property should be specified in input files for tools that use this distance measure. See
the description of the seq dist tool in section 3.1.10 for details on H-distance.

homology: Specifying this property restricts the pairwise homology between any two se-
quences in the pool. A value of 1 stands for identical sequences, while sequences with a

15

homology of 0 have no base in common. Thus, the default value of [0.0;1.0] means no restric-
tions for this similarity measure. See the description of the seq dist tool in section 3.1.10 for
details on homology.

sample conc: This property is used for melting temperature calculation. It specifies the
molar concentration of nucleic acid strands in solution. See the description of the thermo tool
in section 3.1.12 for details on the influence of sample concentration on Tm.

Na conc: This property is used for melting temperature calculation. It specifies the molar
concentration of Na+ ions in solution. See the description of the thermo tool in section 3.1.12
for details on the influence of salt ion concentration on Tm.

Mg conc: This property is used for melting temperature calculation. It specifies the molar
concentration of Mg2+ ions in solution. See the description of the thermo tool in section 3.1.12
for details on the influence of salt ion concentration on Tm.

formamide conc: This property is used for melting temperature calculation. It specifies
the volume percent concentration of formamide in solution. See the description of the thermo
tool in section 3.1.12 for details on the influence of formamide on Tm.

Tm method: This property is used for melting temperature calculation. It specifies the
method and parameter set used for calculating melting temperature Tm and Gibbs free energy
∆G of the hybridization of a sequence with its Watson-Crick-complement. Valid method
identifiers are:

Wallace The Wallace method [Suggs et al., 1981].
PercentGC The percent GC method [Wetmur, 1997].
NNBreslauer The nearest-neighbor method using the parameter set from Bres-

lauer et al. [Breslauer et al., 1986].
NNSugimoto The nearest-neighbor method using the parameter set from Sugi-

moto et al. [Sugimoto et al., 1996].
NNSantaLucia The nearest-neighbor method using the parameter set of SantaLu-

cia et al. [SantaLucia et al., 1996].
NNUnified The nearest-neighbor method using the unified parameter set of

the SantaLucia group [SantaLucia, 1998].
NNTanaka The nearest-neighbor method using the parameter set of Tanaka

et al. [Tanaka et al., 2004].

Please note that with Wallace and PercentGC only Tm can be calculated, but not ∆G. For
more details on methods and parameter sets see the description of the thermo tool in section
3.1.12. All nearest-neighbor methods can also be identified without the NN at the beginning,
e.g. Breslauer is also a valid identifier and means the same as NNBreslauer.

salt method: This property is used for melting temperature calculation. It specifies the
method used for adapting the calculated Tm to different salt concentrations. Valid method
identifiers are:

16

Wetmur The Wetmur method [Wetmur, 1997].
SantaLucia The SantaLucia method [SantaLucia et al., 1996].
CantorSchimmel The Cantor/Schimmel method [Cantor and Schimmel, 1980].
Unified The method from the unified parameter set [SantaLucia, 1998].

For more details on these methods see the description of the thermo tool in section 3.1.12.

violation tolerance: In some cases, e.g. when a sequence is concatenated to more than four
different adjacent sequences, nb-uniqueness must be violated in order to find sequences at all
[Feldkamp, 2000]. This property controls the amount of violation the user wants to tolerate,
measured in the number of base positions ’left’ and ’right’ from the concatenation site at which
subsequences of length n b may occur more than once. Such multiple occurrences are limited
to the same position within the concatenation.

For example, if there are 10-mer sequences x = x1x2 . . . x10, y = y1y2 . . . y10, and z = z1z2 . . . z10,
which shall be concatenated to x1 . . . x7x8x9x10y1y2y3y4 . . . y10 and x1 . . . x7x8x9x10z1z2z3z4 . . . z10,
and let nb = 4 and violation tolerance = 1. Then the 4-mer x7x8x9x10 still has to be unique,
as do all other 4-mer subsequences that lie completely within one of the sequences. But the
4-mer x8x9x10y1 may be identical to x8x9x10z1. On the other hand, x8x9x10y1 still has to be
different from all other 4-mers at other positions. Since uniqueness-violation is only allowed
to be tolerated at one position from the concatenation site, x9x10y1y2 again has to be unique.
The number of tolerant positions is counted in both directions, i.e. x10y1y2y3 would be allowed
to occur more than once if another sequence was concatenated at y’s 5’-end.

forbidden: This property specifies sequences that must not occur as subsequences in any
sequence of the pool, nor in any specified concatenation of sequences. The syntax is identical
to that of the forbidden property of SEQUENCE objects (see above), only without the +=
notation.

no shorties: Normally, tools using nb-uniqueness take predefined nucleic acid sequences,
dissect them into nb-tuples, and mark these as used, so that the design algorithm does not use
them again. If such a predefined sequence is shorter than nb, it is ignored, since it cannot be
dissected into nb-tuples, and multiple occurance of a sequence shorter than nb does not violate
nb-uniqueness. If the user wants to be stricter, he can activate this flag (i.e. set this property to
true), whereby all nb-tuples containing the short predefined sequence are also marked as used.
The same effect can be achieved by listing the short sequence under the forbidden property;
the no shorties property is in DeLaNA for compatibility with old programs only.

no GGG: If this flag is set to true, no occurrence of three or more consecutive guanine bases
is allowed in any sequence and in any specified concatenation of sequences. The same effect
can be achieved by adding "GGG" to the list of forbidden sequences; this property is in DeLaNA
for compatibility with old programs only.

no AUG: If this flag is set to true, no occurrence of the start codon AUG is allowed in
any sequence and in any specified concatenation of sequences. For DNA sequences, ATG is
forbidden instead. The same effect can be achieved by adding "AUG" (or "ATG") to the list of
forbidden sequences; this property is in DeLaNA for compatibility with old programs only.

17

no GUG: If this flag is set to true, no occurrence of the start codon GUG is allowed in
any sequence and in any specified concatenation of sequences. For DNA sequences, GTG is
forbidden instead. The same effect can be achieved by adding "GUG" (or "GTG") to the list of
forbidden sequences; this property is in DeLaNA for compatibility with old programs only.

no UUG: If this flag is set to true, no occurrence of the start codon UUG is allowed in
any sequence and in any specified concatenation of sequences. For DNA sequences, TTG is
forbidden instead. The same effect can be achieved by adding "UUG" (or "TTG") to the list of
forbidden sequences; this property is in DeLaNA for compatibility with old programs only.

no fraying: If this flag is set to true, the terminal bases are restricted to be G or C, since G-
C base pairs are more stable than A-T base pairs, and thus fraying (or breathing) of duplexes
can be decreased.

base strand GC: If the user not only wants to restrict the GC-ratio of the whole sequence,
but also likes to have a homogeneous distribution of G and C over the sequence, the GC-ratio
of nb-tuples used by the design tool to construct nb-unique sequences can be restricted by
specifying this property. The default range is [0.0; 1.0], which allows anything from ’no G or
C at all’ to ’only G and C’.

2.1.6 The DESIGNTOOL object type

This object collects some design tool specific parameters. There should be no more than one
object of this type specified in an input file; a second one would overwrite the settings of the
first one. Specification starts with the DESIGNTOOL keyword, followed by a list of parameter
specifications enclosed in curly brackets.

Please not that from version 3.04 on, dsc can also read tool specific parameters from a config-
uration file (where such stuff actually belongs), which offers more parameters and, if provided,
overrides the settings in the DeLaNA file.

The DESIGNTOOL object type contains the following parameters:

Property keyword Data type Default Short description

random seed integer 0 starting point for the pseudo random number
generator

ID in table boolean false add sequence identifiers to output table
analyze uniqueness boolean false analyze nb-uniqueness after sequence genera-

tion

random seed: This parameter is the starting value for the pseudo random number generator
used in dsg and dsc (ran4 from [Press et al., 1992]). Setting it to 0 (or omitting its specification
in the input file) causes the tools to take the system time (number of seconds elapsed since
midnight, January 1, 1970) for random seed. Therefore, two runs of dsg or dsc within the same
second and with random seed 0 will result in the same sequences.

18

ID in table: The tools dsg and dsc both produce (among other output files) plain text files
containing all generated nucleic acid sequences, one sequence per line (see sections 2.2 and 2.3
below). If this flag is set to true, an additional column in front of the sequences contains the
identifiers of the according SEQUENCE objects. Both columns are tabulator-seperated.

analyze uniqueness: Since dsc may tolerate nb-uniqueness violations if the POOL property
violation tolerance is set to a value > 0, it might be interesting to check the amount of such
violations after a run. If this flag is set to true, an additional output file is written, containing
all nb-tuples that occur more than once or together with their complement. The format of
this output file is similar to that produced by the analysis tool nb unique (see sections 2.3 and
3.1.7).

2.1.7 The CONCAT statement

This is no object type, but a simple statement informing dsc that two sequences are intended
to be concatenated (e.g. during self-assembly), and that the tool must also regard nb-tuples
overlapping both sequences [Feldkamp, 2000, Feldkamp et al., 2003]. This statement begins
with the keyword CONCAT followed by identifiers of the sequence objects. For example,

CONCAT oligo1, oligo2;

specifies the concatenation of the sequences previously defined in the SEQUENCE objects
oligo1 and oligo2. More precisely, the 3’-end of oligo1 will be linked with the 5’-end of
oligo2. Not all sequences have to appear on the same strand of a duplex or of a more complex
structure. Thus, the user can use the complement keyword to handle such cases:

CONCAT oligo1, complement(oligo2);

desribes the concatentation of oligo1 and the Watson-Crick-complement of oligo2. Of course,
the keyword complement can also be used together with the first sequence object identifier, or
with both identifiers.

One weakness of this kind of concatenation description is its limitation to two sequence objects.
For example, if there are sequence objects a, b, c, d, and e, and in the in vitro application,
concatenations a-b-c and d-b-e will occur. Then this would be described by the following
DeLaNA block:

CONCAT a, b;
CONCAT b, c;
CONCAT d, b;
CONCAT b, e;

The tool reading this input has no means to know that there will be no concatenation a-b-e or
d-b-c. Thus, it might regard too many possible concatenations of three or more sequences and
be more restrictive than necessary for the intended application. It is planned to offer a more
precise concatenation description method in future versions of DeLaNA and CANADA.

19

2.1.8 The 3WJ and 4WJ statements

These two statements are similar to CONCAT. They inform design tools like dsc that sequences
are joined to a junction, so that base symmetry can be avoided around branching points in
order to prevent branch migration. These statements begin with the keyword 3WJ or 4WJ
followed by the identifiers of the sequences forming the junction’s arms. For example,

3WJ a, b, c;

states that the three sequences a, b and c form a three-way junction. Please note that they
join with their 5’-ends at the branching point. If a sequence is supposed to lie with its 3’-end
at the branching point, use the complement keyword, like in

4WJ a, complement(b), c, d;

Since the strands forming the function are each part of two different arms, concatenations are
automatically included in these statements. For example, when reading 3WJ a, b, c; the
parser pretends to have also read CONCAT complement(a), b;, CONCAT complement(b),c;
and CONCAT complement(c), a;, so you don’t have to add these three statements in the
DeLaNA file.

2.2 dsg — The DNA Sequence Generator (version 2.01)

This tool generates pools of nb-unique sequences. A sequence pool is said to be nb-unique,
when each subsequence of length nb that occurs in the pool occurs only once, and its Watson-
Crick complement does not occur at all [Feldkamp et al., 2003]. As a consequence, self-
complementary subsequences of length nb may not occur.

The user can add a lot of other restrictions on the sequences’ physical or chemical properties,
like melting temperature, Gibbs free energy, or GC-ratio. It is also possible to restrict the
choice of bases at certain positions or fix complete subsequences, or to forbid the use of user-
specified subsequences. See the description of the DeLaNA input language for an enumeration
of all sequence properties that can be specified by the user. DeLaNA features not used by dsg
are listed further below.

dsg maps the search for a set of nb-unique sequences on the search for a set of vertex-disjoint
paths through a graph [Feldkamp et al., 2003]. This search is, to some extend, random-driven,
i.e. different seeds for the random number generator lead to different sequences. Furthermore,
different random seeds may determine whether dsg is successful in finding proper sequences
at all. So, if dsg should fail to generate a sequence pool for your input file, e.g. because of
property specifications that are too restrictive (see below), try a few more runs with different
random seeds. If you set the random seed to 0 in your input file, and you make sure that
each run is started at least one second later than the previous run, dsg automatically chooses
different random seeds for each run.

Since the major requirement for the molecules is hybridization specificity, a correct setting of nb

is of essential importance. The smaller nb is chosen, the less similar are the sequences, and the
lower is the danger of undesired hybridizations. But smaller nb also means a smaller number of
’building blocks’ available for sequence construction, and maybe even not enough to generate
sequences of the desired length. Thus, dsg might fail to generate the desired sequence pool.

20

See [Feldkamp et al., 2003] for details on the relationship between nb, number of sequences,
and their length.

Adding further requirements, e.g. restriction of melting temperature or limited choice of bases,
certainly decrease the chances for dsg to find a sequence set satisfying all these requirements. If
dsg is not successful for a certain combination of restriction, try to generate the desired number
of sequences without any further resctrictions, so that you can see whether your choice of nb

is already too strict. Furthermore, if dsg is successful without the additional restrictions, e.g.
concerning melting temperature, you can have a look at the output file and see what are
typical melting temperatures for DNA sequences with the given length, calculation method,
and parameters. Maybe the temperature range you chose in your input file was completely
unrealistic?

Please note that dsg is frozen in version 2.01 and is no longer maintained or further developed.
If you want to generate a pool of sequences without concatenations, you can use dsc with
the -g c argument. You will get a higher yield/success probabilty, and because of some code
optimization, dsc with -g c is no longer slower than dsg (which was the case in former versions
because dsc has some more conditions to check, flags to set, and variables to manage).

Usage

dsg [-p <number>] [-t] [-e <error file>] [-{h|?}] <input file>

Arguments overview

Argument Description Parameters

-h Print help text
-? Print help text
-p Protocol level (default 1) integer ∈ {0, 1, 2, 3, 4}
-t Time measuring mode
-e Error file file name

Arguments explained

-h and -?: dsg writes a short description of what it does and an overview of its arguments to
standard output.

-p: This argument must be followed by an integer which must lie in {0, 1, 2, 3, 4}. This value
is the protocol level, which determines how much information is written to standard output
during a run. Valid protocol levels and their meaning are:

0 Silent mode. No output is written to standard output.

1 Normal mode (default). Messages on success or failure of the generation process are
printed as well as start and end time.

2 Chatty mode. In addition to the information printed with protocol level 1, the chosen
random seed and the sequence mask that is currently processed are reported.

3 Debug level 1. Information concerning pre-/post-conditions of functions etc. are printed.

4 Debug level 2. A lot of debug information is printed, including a complete dump of the
data structures containing the objects specified in the DeLaNA input file, and information

21

on which nb-tuples are examined in which step of the generation algorithm, and whether
they can be added to the currently constructed sequence.

Normally, users should only use protocol levels between 0 and 2. Level 4 might be helpful if one
wants to know exactly where/why dsg fails to generate sequences. This argument is ignored
in time measuring mode (-t switch).

-t: This switch activates the time measuring mode. This means that all output is suppressed,
except one line containing a flag (0 or 1) indicating the program’s success (i.e. whether it
managed to generate all sequences), the number of sequences generated, the number of steps
through the base strand graph needed, and the time needed, measured in milliseconds. These
values are tab-delimited. The measured time does not include reading the input file or writing
output files. Since all other output is suppressed, any protocol level set with the -p argument
is ignored.

-e: This argument must be followed by a valid file name. If this switch is set all error messages
are redirected from the console into this file.

Input

dsg takes a DeLaNA file as input, which describes the sequences to be generated and restrictions
concerning their properties. Not all features of DeLaNA are used by dsg. The differences are
as follows.

In SEQUENCE and SEQUENCETYPE objects:

NA type So far, only DNA sequences are generated.
length dsg only generates sequences with an exactly specified length. If a

range of lengths is specified in the DeLaNA file dsg chooses the upper
bound as sequence length.

Tm If the estimated melting temperature of a sequence lies below 0 �

(above 100 �) dsg sets this result to 0 � (100 �). Thus, a range of
[0;100] in the input file really means ’any temperature’.

seq mask Any subsequence of the sequence mask of length nb that does not con-
tain degenerate base symbols is marked as forbidden, as is the Watson-
Crick-complement of such a subsequence, so that dsg does not use them
in another sequence. If a sequence listed under the forbidden property
of the sequence pool object occurs as a subsequence in a predefined
sequence mask dsg ignores this. If the sequence mask is completely un-
ambiguous (i.e. it does not contain any degenerate base symbols), dsg
does not check this sequence for violation of constraints on Tm, ∆G,
GC-ratio, or homology.

forbidden This property is ignored, only the POOL object’s forbidden property
is read.

In POOL objects:

POOL For dsg, all sequences within a DeLaNA file are in one pool. Thus,
only one POOL object has to be defined. If the input file contains
more than one POOL objects only the properties of the first one
will be used by dsg.

22

sequences Since all sequences in the input file belong to one pool it is not
necessary to specify which sequence belongs to which pool. Thus,
dsg ignores this property.

n uniqueness dsg only uses an exactly specified length of unique subsequences
nb. If a range of lengths is specified in the DeLaNA file dsg chooses
the upper bound as nb. Furthermore, the choice is limited to
nb ∈ {1, . . . , 15}.

Hamming Since dsg does not use Hamming distance this property is ignored.
H distance Since dsg does not use H-distance this property is ignored.
homology dsg only uses maximum homology. If a range of lengths is specified

in the DeLaNA file dsg ignores the lower bound.
violation tolerance Since dsg ignores concatenations it also ignores this property.

In DESIGNTOOL objects:

analyze uniqueness Since dsg does not allow uniqueness violations, an uniqueness anal-
ysis of the output pool is usually not necessary. If a user likes to
do such an analysis the tool nb unique can be used.

In CONCAT, 3WJ and 4WJ statements:
Since dsg does not regard concatenations of sequences or structural motifs, it ignores CONCAT,
3WJ and 4WJ statements.

See appendix B.1 for example input files.

Output

Besides the messages printed to standard output described above under the protocol level
argument, dsg produces three output files, a DeLaNA file, a pool file, and a file containing only
the sequences. All three files are produced only if the search for all sequences was successful.

The DeLaNA output file has the same name as the input file, but with an additional out at-
tached, and the extension is always .dln. For example, if the input file was named ten 20mers.dln
then the output file is called ten 20mers out.dln. This file contains the same objects as the
input file, but the sequence masks of the SEQUENCE objects no longer contain degenerate
bases. Instead, they contain the DNA sequences found by dsg. The sequence object properties
Tm, DG, and GC ratio are set to the values calculated for the according sequence. If the
random seed of the DESIGNTOOL object was set to 0 in the input file, it here shows the
random seed actually chosen by dsg.

The pool file is called dsg.pool and contains the generated sequences in the pool file format for
dsg version 1.01a (the old one with the GUI).

The third file is called sequences.txt and contains only the base sequences, one sequence per
line. If the ID in table flag of the DESIGNTOOL object is set to true an additional column
with the SEQUENCE object identifiers is printed in front of the sequences. Both columns are
tabulator seperated.

23

2.3 dsc — The DNA Sequence Compiler (version 3.09)

This tool is not limited to generating a pool of unrelated sequences. It also pays respect
to the concatenation of sequences, i.e. it also considers nb-tuples overlapping two (or maybe
more, if sequences are shorter than nb) concatenated sequences, when enforcing nb-uniqueness
(see section 2.2 for details on nb-uniqueness). It also allows for a controlled violation of nb-
uniqueness if this should be necessary for a successful sequence generation (see section 2.1.5
and [Feldkamp, 2000]).

See the description of dsg above for some tips on restrictions and sequence generation. Please
refer to [Feldkamp, 2000, Feldkamp et al., 2003] for more details on how dsc works.

Usage

dsc [-p <number>] [-t] [-g {1|n|b|c}] [-c <config file>] [-e <error file>] [-{h|?}]
<input file>

Arguments overview

Argument Description Parameters

-h Print help text
-? Print help text
-p Protocol level (default 1) integer ∈ {0, 1, 2, 3, 4}
-t Time measuring mode
-g Group size (default c) character ∈ {1,n,b,c}
-c Configuration file file name
-e Error file file name

Arguments explained

-h and -?: dsc writes a short description of what it does and an overview of its arguments to
standard output.

-p: This argument must be followed by an integer which must lie in {0, 1, 2, 3, 4}. This value
is the protocol level, which determines how much information is written to standard output
during a run. Valid protocol levels and their meaning are:

0 Silent mode. No output is written to standard output.

1 Normal mode (default). Messages on success or failure of the generation process are
printed as well as start and end time.

2 Chatty mode. In addition to the information printed with protocol level 1, the chosen
random seed and the sequences that are currently processed are reported.

3 Debug level 1. Information concerning pre-/post-conditions of functions etc. are printed.

4 Debug level 2. A lot of debug information is printed, including a complete dump of the
data structures containing the objects specified in the DeLaNA input file, and information
on which nb-tuples are examined in which step of the generation algorithm, and whether
they can be added to the currently constructed sequence.

24

Normally, users should only use protocol levels between 0 and 2. Level 4 might be helpful if one
wants to know exactly where/why dsc fails to generate sequences. This argument is ignored
in time measuring mode (-t switch).

-t: This switch activates the time measuring mode. This means that all output is suppressed,
except one line containing a flag (0 or 1) indicating the program’s success (i.e. whether it
managed to generate all sequences), the number of sequences generated, the number of steps
through the base strand graph needed, the time needed, measured in milliseconds, and the
ratio of actually used to theoretically needed base strands. These values are tab-delimited.
The measured time does not include reading the input file or writing output files. Since all
other output is suppressed, any protocol level set with the -p argument is ignored. If the
argument -g is set to c, the number of colors used is also printed as last-but-second value (see
below).

-g: This argument was actually only implemented for some experiments concerning design
strategies. Probably, only two settings are really interesting. Using this argument overrides
settings of the group size parameter in a configuration file (see description of -c below). The
argument must be followed by one of the characters 1, n, b, or c. It defines the sequence group
size. The sequences to be generated are divided into groups, and the sequences of one group
are generated in parallel (see [Feldkamp, 2000, Feldkamp et al., 2003] for details on what that
means). If this argument is set to 1, each sequence it generated seperately. If it is set to n, all
sequences are generated in parallel.2 If this switch is set to b, dsc assumes that the sequences
can be arranged in a bipartite graph with sequences as vertices and concatenations as edges.
The sequence identifiers in the input DeLaNA file must begin with X or Y, and CONCAT
statements must contain exactly one X-sequence with one Y-sequence. All X-sequences are
then generated in parallel, as well as all Y-sequences.3 If this argument is set to c or is
omitted, all sequences are arranged in a graph as described above, and a minimal coloring is
approximated with the Welsh-Powell-algorithm [Welsh and Powell, 1967]. All sequences of the
same color are then generated in parallel.

Generating sequences in a parallel fashion is supposed to grant the algorithm more flexibility in
correcting paths that run into a dead end, while in sequential generation, all sequences found
before the one currently under construction are fixed and can no longer be corrected. Thus,
the probability for successfully finding sequences is supposed to be higher the more sequences
are generated in parallel. Experiments have shown that this is in fact the case for several
scenarios that each focus on a single structural aspect (no concatenation at all, concatenation
with different partner sequences, concatenation with more than four partner sequences etc.).
But they also showed that setting the -g switch to 1 can be more successful when designing
real-world structural motifs like double-crossover tiles [Fu and Seeman, 1993]. The reasons
behind this are not yet understood. It is recommended to try both settings, -g 1 and -g c, in
order to maximize chances for successful sequence generation.

-c: This argument must be followed by a valid file name. If this switch is set, tool specific
parameters are read from this file, and all settings within a DESIGNTOOL object in a DeLaNA
input file are ignored. See the description of the configuration file format below. Using the -g
argument overrides the setting of the group size parameter in the configuration file.

-e: This argument must be followed by a valid file name. If this switch is set all error messages
2Caveat emptor: This does not strictly enforce nb-uniqueness, so that there may be nbmers overlapping two

concatenated sequences that occur more than once.
3This is not very realistic and thus only interesting for my experiments.

25

are redirected from the console into this file.

Input

dsc takes a DeLaNA file as input, which describes the sequences to be generated and restrictions
concerning their properties. Not all features of DeLaNA are used by dsc. The differences are
as follows.

In SEQUENCE and SEQUENCETYPE objects:

NA type So far, only DNA sequences are generated.
length dsc only generates sequences with an exactly specified length. If a range

of lengths is specified in the DeLaNA file dsc chooses the upper bound
as sequence length.

Tm If the estimated melting temperature of a sequence lies below 0 �

(above 100 �) dsc sets this result to 0 � (100 �). Thus, a range of
[0;100] in the input file really means ’any temperature’.

seq mask Any subsequence of length nb of the sequence mask that does not con-
tain degenerate base symbols is marked as forbidden, as is the Watson-
Crick-complement of such a subsequence, so that dsc does not use them
in another sequence. If a sequence listed under the forbidden property
of the sequence pool object occurs as a subsequence in a predefined
sequence mask dsc ignores this. If the sequence mask is completely un-
ambiguous (i.e. it does not contain any degenerate base symbols), dsc
does not check this sequence for violation of constraints on Tm, ∆G,
GC-ratio, or homology.

forbidden This property is ignored, only the POOL object’s forbidden property
is read.

In POOL objects:

POOL For dsc, all sequences within a DeLaNA file are in one pool. Thus, only
one POOL object has to be defined. If the input file contains more
than one POOL objects only the properties of the first one will be used
by dsc.

sequences Since all sequences in the input file belong to one pool it is not necessary
to specify which sequence belongs to which pool. Thus, dsc ignores this
property.

n uniqueness dsc only uses an exactly specified length of unique subsequences nb. If
a range of lengths is specified in the DeLaNA file dsc chooses the upper
bound as nb. Furthermore, the choice is limited to nb ∈ {1, . . . , 15}.

Hamming Since dsc does not use Hamming distance this property is ignored.
H distance Since dsc does not use H-distance this property is ignored.
homology dsc only uses maximum homology. If a range of lengths is specified in

the DeLaNA file dsc ignores the lower bound.

See appendix B.1 for example input files.

Configuration

Each line in a configuration file has the format parameter = value; setting the according tool

26

parameter. Comment and data type specifications are the same as for DeLaNA. The following
parameter can be configured:

Parameter name Data type Default Short description

random seed integer 0 starting point for the pseudo random number
generator

ID in table boolean false add sequence identifiers to output table
analyze uniqueness boolean false analyze nb-uniqueness after sequence genera-

tion
RTF boolean false output of uniqueness analysis in rich text for-

mat
group size character ∈

{1, c, n, b}
c how many sequences are generated in paral-

lel?
group shuffling boolean false random order for sequence groups?
successor choice character ∈

{s, e, f}
s how is nb-uniqueness enforced when choosing

successors?
SC parameter real 0.0 parameter for the selected successor choice

method

random seed: This parameter is the starting value for the pseudo random number generator
(ran4 from [Press et al., 1992]). Setting it to 0 (or omitting its specification) causes the tool to
take the system time (number of seconds elapsed since midnight, January 1, 1970) for random
seed. Therefore, two runs of dsc within the same second and with random seed 0 will result in
the same sequences.

ID in table: dsc produces (among other output files) plain text files containing all generated
nucleic acid sequences, one sequence per line. If this flag is set to true, an additional column
in front of the sequences contains the identifiers of the according SEQUENCE objects. Both
columns are tabulator-seperated.

analyze uniqueness: Since dsc may tolerate nb-uniqueness violations if the POOL property
violation tolerance is set to a value > 0, it might be interesting to check the amount of such
violations after a run. If this flag is set to true, an additional output file is written, containing
all nb-tuples that occur more than once or together with their complement. The format of this
output file is similar to that produced by the analysis tool nb unique (see section 3.1.7). If the
RTF flag is set, this file is in rich text format, otherwise it is plain ASCII.

RTF: If this flag is set, the output file of the nb-uniqueness analysis is in rich text format, with
the uniqueness-violating base strands written in red within the complete sequences. Otherwise,
the file is plain ASCII. If the analyze uniqueness flag is not set, the RTF flag has no effect.

Seperate Entries: In the output file of the nb-uniqueness analysis, each base strand has as
many lines as occurences in the sequences. If this flag is set, groups of lines for different base
strands are seperated by an empty line in the output file.

27

group size: This parameter can be set to any of the characters 1, c, n, or b. They encode
the same group sizes that can be selected by the -g argument. See the description of this
argument above for details. Using the -g argument in the command line overrides the setting
in the configuration file. In order to make your configuration file more readable, you can write
coloring for c and bipartite for b.

group shuffling: If this flag is set to true and group size is set to 1 or c, the order in which
the sequences or sequence groups are generated is chosen randomly. If this flag is not set
(which is the default) the order is determined by BFS for group size 1 and vertex degree for
c. If group size is set to n or b this flag has no effect.

successor choice: This parameter can be set to any of the characters s, e, or f. You can
also use the complete choice method keywords strict, error probability and fixed bias.
They describe different ways (and levels of strictness) to enforce nb-uniqueness when choosing a
successor node for a path representing a sequence. Some methods need a numerical parameter
which must be provided as SC parameter in the configuration file.

� strict: nb-uniqueness is strictly enforced, i.e. each subsequence of length nb may appear
only once.

� error probability: When a potential successor node is already used, it is nevertheless
taken into account as a successor candidate with a certain probability (SC parameter).
Please note that usually the actual probability of incorrect multiple use of the node is
smaller than the given parameter, since there are also other (unused) successor candi-
dates.

� fixed bias: Used and unused nodes are both taken into account as successor candidates.
The probability for any used node to be chosen equals SC parameter times the probability
for an unused node.

SC parameter: This parameter is used by the probabilistic successor choice methods
error probability and fixed bias, and is ignored in the strict case. Setting this pa-
rameter to 0.0 make both methods strict again, since mistakes are then made with probability
zero. For error probability, values should be between 0 and 1. A parameter of 1 means
that used nodes are always treated as if they were unused. For fixed bias, values can also be
greater than 1, but that does not make much sense, since a parameter of 1 here already means
that used and unused nodes are chosen with equal probability. A higher value would cause dsc
to prefer already used nodes over unused ones.

See appendix B.1 for an example configuration file.

Output

Besides the messages printed to standard output described above under the protocol level
argument, dsc produces two output files, a DeLaNA file and a file containing only the sequences.
Both files are produced only if the search for all sequences was successful.

The DeLaNA output file has the same name as the input file, but with an additional out
attached, and the extension is always .dln. For example, if the input file was named DX tiles.dln
then the output file is called DX tiles out.dln. This file contains the same objects as the

28

input file, but the sequence masks of the SEQUENCE objects no longer contain degenerate
bases. Instead, they contain the DNA sequences found by dsc. The sequence object properties
Tm, DG, and GC ratio are set to the values calculated for the according sequence. If the
random seed of the DESIGNTOOL object was set to 0 in the input file, it here shows the
random seed actually taken by dsc.

The second file is called sequences.txt and contains only the base sequences, one sequence per
line. If the ID in table flag of the DESIGNTOOL object is set to true an additional column
with the SEQUENCE object identifiers is printed in front of the sequences. Both columns are
tabulator seperated.

If the Analyze Uniqueness property of the DESIGNTOOL object in the input file or the ac-
cording parameter in the configuration file is set to true, another file named ReappearingBaseS-
trands.txt (or ReappearingBaseStrands.rtf, if the RTF flag is set) is written. This contains all
base strands of the length specified in the input file that violate nb-uniqueness by occuring
more than once, occuring together with their complement, or being self-complementary. The
output format is similar to that of the nb unique tool (see section 3.1.7).

29

Chapter 3

Other Tools

3.1 Tools for Handling Nucleic Acid Sequences

3.1.1 align (version 1.0)

This program has two related functions: It can calculate pairwise global alignments of a pool
of sequences, or search for the most stable duplex for each pair and calculate the Gibbs free
energy.

In global alignment mode, each possible pair of sequences taken from the input pool is formed,
and also each possible pair of an input sequence and the complement of another or the same
sequence. For each pair global alignment is calculated using the Needleman-Wunsch algorithm
[Needleman and Wunsch, 1970]. The scores for base matches, mismatches, and opening or
extending gaps can be set with -s, -q, -o, and -e command line arguments (see below). The
optimal alignment for each pair is written to the file alignment.txt, a table of the according
scores is written to Scores.txt (see paragraph on output below).

In duplex mode, the same sequence pairs as described above are formed, and for each such
pair the hybridization conformation with the lowest Gibbs free energy (and thus the highest
stability) is calculated. To this end, a dynamic programming algorithm is used, similar to
the Needleman-Wunsch algorithm for global alignments, but with thermodynamic scoring for
base pairing and base stacking. This scoring uses the nearest-neighbor model with parameters
taken from the unified parameter set of the SantaLucia group [SantaLucia, 1998], single-base-
mismatch parameters from [Peyret et al., 1999, Allawi et al., 1997, Allawi and SantaLucia, 1998b,
Allawi and SantaLucia, 1998c, Allawi and SantaLucia, 1998a], and single-base-bulge parame-
ters from [Tanaka et al., 2004]. The base pairing with minimal free energy for each pair is
written to the file alignment.txt, a table of the free energies is written to DeltaG.txt (see para-
graph on output below). In duplex mode the -rna switch is ignored, since align does not (yet)
contain thermodynamic parameters for RNA.

Usage

align [-{h|?}] [-i] [-{G|D}] [-{dna|rna}] [-s x] [-q x] [-o x] [-e x]
<input file>

30

Arguments overview

Argument Description Parameters

-h Print help text
-? Print help text
-i Input file contains sequence IDs
-G Global alignment mode (default mode)
-D Duplex mode
-dna Sequences are DNA (default)
-rna Sequences are RNA (ignored in duplex mode)
-s Score for matching bases (default 1.0) real number
-q Score for mismatches (default -3.0) real number
-o Score for gap opening (default -11.0) real number
-e Score for gap extension (default -1.0) real number

Arguments explained

-h and -?: align writes a short description of what it does and an overview of its arguments
to standard output.

-i: This switch tells align that the first column of the input file contains sequence identifiers
(names or numbers). The sequences are then expected in the second column. The identifiers
are also used in the output. See also the paragraphs on input and output below.

-G and -D: Only one of these two switches should be used since they state whether align
works in global alignment mode (-G) or in duplex mode (-D). If both switches are used, the
second one in the command line overrules the first one. If none of these switches is used, align
runs in global alignment mode.

-dna and -rna: Only one of these two switches should be used since they state whether the
sequences in the input file are DNA or RNA sequences. This is only relevant for cleaning up
the sequences, i.e. removing everything that is not a proper base. See the input paragraph for
more details. If both switches are used, the second one in the command line overrules the first
one. If none of these switches is used, the input sequences are supposed to be DNA. Any of
these switches are ignored in duplex mode (-D), in this mode the input sequences are treated
as DNA.

-s, -q, -o, -e: Each of these arguments must be followed by a real number which defines
the according score for the global alignment. For a more detailed description of these scores,
please refer to [Gibas and Jambeck, 2001] or any other good book on bioinformatics. If some
or all of these switches are not used, they are set to 1.0 (-s), -3.0 (-q), -11.0 (-o), and -1.0 (-e),
respectively. These default values are taken from blastn [Gibas and Jambeck, 2001]. In duplex
mode (-D) these four switches are ignored.

Input

The input file is supposed to be a normal text file, with one nucleic acid sequence in each line.
Empty lines are ignored. Whitespaces and other characters not representing bases are also
ignored. If the -dna switch is used (or neither -dna nor -rna) this includes u and U; if the -rna
switch is used t and T are ignored. The case of the characters does not matter.

If the -i switch is used, everything from the beginning of each line up to the first space or
tabulator is treated as a sequence identifier. The rest of the line is then read as the nucleic

31

acid sequence. The identifiers read in are also used in the output files (see below).

See appendix B.3 for examples of input files.

Output

In both modes align writes two output files. In global alignment mode these are alignment.txt
and Scores.txt, in duplex mode these are alignment.txt and DeltaG.txt.

In global alignment mode, alignment.txt contains the optimal alignment for each sequence
pair. Each alignment starts with a header identifying the two sequences of the pair. If -i is
used, the according identifiers read from the input file are used here, otherwise align gives the
sequences numbers starting with 1 for the first sequence. If the second sequence of the pair is
the complement of an input sequence, this is also indicated. The next line contains the first
base sequence, delimited by 5’- and -3’ markers. Internal gaps are marked by -, terminal
gaps by spaces. The third line indicates base matches with | and mismatches with spaces.
The last line shows the second sequence of the pair, also with delimiters. Two alignments are
seperated by an empty line. Two example alignments are shown here:

3 vs. 2:
5’-ggatc---gcaggatctcagtca-3’

||| ||||||| ||
5’-agataacagcaggatttctt -3’

8 vs. complement of 8:
5’-gtccttcccgcggtttctac-3’

|| |||||| ||
5’-gtagaaaccgcgggaaggac-3’

Scores.txt contains two tables, one for the pairs consisting of two input sequences, and one for
the pairs consisting of one input sequence and the complement of an input sequence. Each
table is preceeded by an according header followed by an empty line. The tables are seperated
by two empty lines.

Each table has a header line containing the sequence identifiers of the pairs’ second sequences.
Each following line of the table starts with the according sequence identifier of the pairs’ first
sequence. Then follow the scores. Only half of the table is filled (lower triangle), since the
alignment of sequence X versus sequence Y has the same score as the alignment of Y versus
X. Columns are seperated by tabulators. Such a file could look like this:

Global alignment scores:

1 2 3 4 5 6 7 8
1 20
2 -48 20
3 -32 -29 20
4 -16 -44 -36 20
5 -40 -32 -32 -32 20
6 -43 -40 -40 -43 -44 20
7 -36 -32 -51 -44 -48 -52 20
8 -40 -40 -40 -44 -32 -36 -40 20

32

Global alignment scores vs. complement:

1 2 3 4 5 6 7 8
1 -39
2 -42 -36
3 -46 -43 -36
4 -50 -42 -47 -36
5 -32 -42 -48 -48 -46
6 -44 -36 -24 -44 -47 -36
7 -44 -44 -40 -44 -36 -56 -36
8 -44 -40 -40 -43 -48 -40 -44 -20

The alignment of sequence 3 vs. sequence 2 shown above has a score of -29, the alignment of
sequence 8 vs. its own complement has a score of -20. The tables usually do not look nice in
a text editor, but can be easily imported into MS-Excel or another spreadsheet program.

In duplex mode, alignment.txt looks like described above for the alignment mode, but the
’|’ in the third line of an alignment now indicates a Watson-Crick base pair. Here are some
examples:

6 vs. 3:
5’-agaccgg-gctcc-gcacctgt-3’

||| | | ||| ||
3’-actga-ctctaggacgctagg -5’

7 vs. complement of 7:
5’-cttcacatacaaa-attaatc-3’

||||||||||| | |||||||
3’-gaagtgtatgt-tttaattag-5’

If the gaps in the second alignment irritate you: some single base bulges are (at least in theory)
more stable than a perfect helix [Tanaka et al., 2004].

DeltaG.txt looks like Scores.txt, for example:

DeltaG:

1 2 3 4 5 6 7 8
1 -2.17
2 -2.05 -3.49
3 -4.25 -5.56 -5.45
4 -2.89 -1.45 -5.24 -4.77
5 -2.3 -11.13 -6.35 -2.3 -5.48
6 -5.2 -2.58 -6.28 -8.46 -1.45 -11.11
7 -1 -2 -1.28 -1.28 -2.3 -3 -4.34
8 -2.17 -4.42 -4.42 -4.01 -1.3 -3.86 -1.44 -1.44

DeltaG vs. complement:

33

1 2 3 4 5 6 7 8
1 -28.02
2 -2.3 -26.29
3 -5.71 -4.02 -27.28
4 -3.31 -1.72 -2.14 -30.1
5 -2.3 -3.33 -5.44 -5.23 -23.96
6 -8.32 -2.58 -9.13 -4.95 -1.3 -32.56
7 -2.3 -2.74 -1.28 -6.75 -6.75 -1.28 -23.44
8 -3.63 -6.33 -7.67 -8.56 -8.17 -5.47 -3.58 -28.3

Examples

align example_seqs.txt
align -G example_seqs.txt
both calculate global alignments for the sequences in example seqs.txt.

align -i example_seqs_w_IDs.txt
calculates global alignments for the sequences in example seqs w IDs.txt which contains se-
quence identifiers in the first column.

align -q -1.0 -o -5.0 example_seqs.txt
calculates global alignments with less restricting penalties for mismatches and gap openings.

align -i -rna -G -s 1.5 -q -1.5 -o -3.1415 -e -0.5 example_RNA_seqs.txt
reads RNA sequences from a file with sequence identifiers and calculates global alignments
using these interesting scores.

align -D example_seqs.txt
calculates the most stable base pairing for each duplex.

3.1.2 clean out (version 1.0)

This program reads nucleic acid sequences, removes all whitespaces and other characters not
encoding bases, and writes the clean sequences to standard output. The sequences are usually
read from an input file. If no filename is given, clean out works in interactive mode. In this
mode the user is prompted to type in a sequence, and the clean sequence is put out immediately.
You can leave the interactive mode (and exit the program) by entering @.

Usage

clean out [-{h|?}] [-i] [-{dna|rna|iupac}] [<input file>]

Arguments overview

Argument Description

-h Print help text
-? Print help text
-i Input file contains sequence IDs
-dna Sequences are DNA (default)
-rna Sequences are RNA
-iupac Sequences contain degenerate bases

34

Arguments explained

-h and -?: clean out writes a short description of what it does and an overview of its arguments
to standard output.

-i: This switch tells clean out that the first column of the input file contains sequence identifiers
(names or numbers). The sequences are then expected in the second column. The identifiers
are also used in the output. See also the paragraphs on input and output below. In interactive
mode, this switch is ignored.

-dna, -rna, and -iupac: Only one of these three switches should be used since they state
whether the sequences in the input file are DNA or RNA sequences, or whether they contain
degenerate bases. If the -dna switch is used (or none of the three switches) u and U are treated
like non-base characters and thus are removed; if the -rna switch is used t and T are removed.
The case of the characters does not matter. If -iupac is used, the input sequences may contain
degenerate bases, e.g. S for the strong binding bases C and G. Degenerate bases are encoded
according to the IUPAC-IUB recommendations [Cornish-Bowden, 1985] (see appendix A.1). If
two or all switches are used, the last one in the command line overrules the preceding ones. If
none of these switches is used, the input sequences are supposed to be DNA.

Input

The input file is supposed to be a normal text file, with one nucleic acid sequence in each line.
Empty lines are ignored.

If the -i switch is used, everything from the beginning of each line up to the first space or
tabulator is treated as a sequence identifier. The rest of the line is then read as the nucleic
acid sequence.

See appendix B.3 for examples of input files.

Output

No files are written, the clean sequences are written to standard output, one per line.

Examples

clean_out example_seqs.txt
removes all character except a, A, c, C, g, G, t, and T from the sequences in the file exam-
ple seqs.txt and writes the clean sequences to standard output.

clean_out -i -rna example_RNA_seqs_w_IDs.txt
removes all character except a, A, c, C, g, G, u, and U from the sequences in the file exam-
ple RNA seqs w IDs.txt which contains sequence identifiers and writes the clean sequences to
standard output.

An interactive sequence cleaning tolerating degenerate bases could look like this:

>clean_out -iupac
Enter sequence (@ to exit):
acgatcgac
acgatcgac

Enter sequence (@ to exit):
abcdefghijklmnopqrstuvwxyz
abcdghkmrstuvwy

35

Enter sequence (@ to exit):
@

>

3.1.3 complement (version 1.0)

This program reads nucleic acid sequences and writes their Watson-Crick complements to
standard output. The sequences are usually read from an input file. If no filename is given,
complement works in interactive mode. In this mode the user is prompted to type in a sequence,
and the complement is put out immediately. You can leave the interactive mode (and exit the
program) by entering @.

Usage

complement [-{h|?}] [-i] [-{dna|rna|iupac}] [<input file>]

Arguments overview

Argument Description

-h Print help text
-? Print help text
-i Input file contains sequence IDs
-dna Sequences are DNA (default)
-rna Sequences are RNA
-iupac Sequences contain degenerate bases

Arguments explained

-h and -?: complement writes a short description of what it does and an overview of its
arguments to standard output.

-i: This switch tells complement that the first column of the input file contains sequence
identifiers (names or numbers). The sequences are then expected in the second column. The
identifiers are also used in the output. See also the paragraphs on input and output below. In
interactive mode, this switch is ignored.

-dna, -rna, and -iupac: Only one of these three switches should be used since they state
whether the sequences in the input file are DNA or RNA sequences, or whether they contain
degenerate bases. These switches determine which characters in the input sequences are treated
as non-base encoding characters and are removed in a preprocessing step. They also determine
whether the complementary base of adenine is thymine or uracil. If the -dna switch is used (or
none of the three switches) u and U are treated like non-base characters and thus are removed;
if the -rna switch is used t and T are removed. The case of the characters does not matter. If
-iupac is used, the input sequences may contain degenerate bases, e.g. S for the strong binding
bases C and G. Degenerate bases are encoded according to the IUPAC-IUP recommendations
[Cornish-Bowden, 1985] (see appendix A.1). The complementary base in the output is also
encoded in this way, e.g. the complement of r (purine) is y (pyrimidine). If two or all switches
are used, the last one in the command line overrules the preceding ones. If none of these
switches is used, the input sequences are supposed to be DNA.

36

Input

The input file is supposed to be a normal text file, with one nucleic acid sequence in each line.
Empty lines are ignored. Whitespaces and other characters not representing bases are also
ignored. This ignorance is directed by the use of -dna, -rna, and -iupac, as described above.

If the -i switch is used, everything from the beginning of each line up to the first space or
tabulator is treated as a sequence identifier. The rest of the line is then read as the nucleic
acid sequence.

See appendix B.3 for examples of input files.

Output

No files are written, the complementary sequences are written to standard output.

Examples

complement example_seqs.txt
reads sequences from the file example seqs.txt and writes their Watson-Crick complements to
standard output.

complement -i -rna example_RNA_seqs_w_IDs.txt
reads RNA sequences from the file example RNA seqs w IDs.txt which contains sequence iden-
tifiers and writes the complementary sequences to standard output.

An interactive session tolerating degenerate bases can look like this:

>complement -iupac
Enter sequence (@ to exit):
aaggtccc
gggacctt

Enter sequence (@ to exit):
acctttyyrsswww
wwwssyrraaaggt

Enter sequence (@ to exit):
@

>

3.1.4 duplex2hairpin (version 1.0)

This program reads pairs of nucleic acid sequences from an input file, connects them via
a linker sequence and writes the resulting sequences to standard output. This is useful
when you want to use a single stranded secondary structure prediction program like RNAfold
[Hofacker et al., 1994] for predicting duplex formation of a pair of sequences. To this end, one
connects the two sequences of interest with a linker sequence of non-pairing bases which will
form a hairpin loop with the two sequences forming the stem [Ackermann and Gast, 2003].
You can also add constraints for RNAfold to the output, forcing that program to allow only
base pairs between the two sequences, but not between bases of one and the same sequence.

37

Usage

duplex2hairpin [-{h|?}] [-n <number>] [-i] [-c] <input file>

Arguments overview

Argument Description Parameters

-h Print help text
-? Print help text
-i Input file contains sequence IDs
-n Linker sequence length (default 16) integer > 0
-c Add constraint lines

Arguments explained

-h and -?: duplex2hairpin writes a short description of what it does and an overview of its
arguments to standard output.

-i: This switch tells duplex2hairpin that the first column of the input file contains sequence
identifiers (names or numbers). The sequences are then expected in the second column. See
also the paragraphs on input below.

-n: This argument must be followed by a positive integer number. This is the number of
non-hybridizing bases (here: n) that will link the two sequences of each pair. If this argument
is omitted, the linker is 16 characters long. This is supposed to be long enough to suppress
the effects of loop length changes due to changing numbers of unhybridized (proper) bases
adjacent to the linker [Ackermann and Gast, 2003].

-c: If this switch is used, each connected sequence in the output is followed by a constrain line,
telling RNAfold to allow only intermolecular base pairs, but no intramolecular ones. These con-
straint lines begin with a sequence of < as long as the first DNA sequence, continue with a series
of x as long as the linker, and end with a sequence of > as long as the second DNA sequence.
See the man page of RNAfold (available on the WWW) for more details on constraints.

Input

The input file is supposed to be a normal text file, with one nucleic acid sequence in each
line. Empty lines are ignored. Whitespaces and other characters not representing bases are
also ignored. duplex2hairpin regards two consecutively read sequences as one pair that shall be
connected.

If the -i switch is used, everything from the beginning of each line up to the first space or
tabulator is treated as a sequence identifier. The rest of the line is then read as the nucleic
acid sequence.

See appendix B.3 for examples of input files.

Output

No files are written, the connected sequences are written to standard output. Each line consists
of the first sequence of the connected pair, a number of linker bases (n) determined by the
-n argument, and the second sequence. If the -c switch is used, each connected sequence is
followed by a constraint line. See the description of this switch for details. See below for some
output examples.

38

Examples

duplex2hairpin example_seqs.txt
reads the eight sequences from example seqs.txt, builds four pairs, and writes these pairs con-
nected through a linker sequence to standard output. The output looks like this (see appendix
B.3 for input sequences):

ttcgccctgctactaacacgnnnnnnnnnnnnnnnnagataacagcaggatttctt
ggatcgcaggatctcagtcannnnnnnnnnnnnnnngtgaccctccttccagtccg
gaattccatatcccttccaannnnnnnnnnnnnnnnagaccgggctccgcacctgt
cttcacatacaaaattaatcnnnnnnnnnnnnnnnngtccttcccgcggtttctac

duplex2hairpin -i -n 5 example_seqs_w_IDs.txt
reads the eight sequences from the file example seqs w IDs.txt which contains sequence iden-
tifiers, build four pairs, and write these pairs connected through a linker sequence of length 5
to standard output. The output looks like this:

ttcgccctgctactaacacgnnnnnagataacagcaggatttctt
ggatcgcaggatctcagtcannnnngtgaccctccttccagtccg
gaattccatatcccttccaannnnnagaccgggctccgcacctgt
cttcacatacaaaattaatcnnnnngtccttcccgcggtttctac

duplex2hairpin -c example_seqs.txt
does the same as the first example but adds a constraint line for RNAfold after each connected
sequence, resulting in the following output:

ttcgccctgctactaacacgnnnnnnnnnnnnnnnnagataacagcaggatttctt
<<<<<<<<<<<<<<<<<<<<xxxxxxxxxxxxxxxx>>>>>>>>>>>>>>>>>>>>
ggatcgcaggatctcagtcannnnnnnnnnnnnnnngtgaccctccttccagtccg
<<<<<<<<<<<<<<<<<<<<xxxxxxxxxxxxxxxx>>>>>>>>>>>>>>>>>>>>
gaattccatatcccttccaannnnnnnnnnnnnnnnagaccgggctccgcacctgt
<<<<<<<<<<<<<<<<<<<<xxxxxxxxxxxxxxxx>>>>>>>>>>>>>>>>>>>>
cttcacatacaaaattaatcnnnnnnnnnnnnnnnngtccttcccgcggtttctac
<<<<<<<<<<<<<<<<<<<<xxxxxxxxxxxxxxxx>>>>>>>>>>>>>>>>>>>>

3.1.5 eval pool (version 1.0)

This program reads DNA sequences from an input file (which contains one sequence in each
line) and evaluates the hybridization specificity of the pool, using various different measures.
Some are pairwise distance measure; the measured distances for all pairs are then aggregated
using one of several differnet functions. Other measures are pool properties that simply deliver
one number for the whole pool. The results of the evaluations are written to standard output
in one tabulator-seperated line, with a column for each measure.

Usage

seq dist [-{h|?}] [-i] [-t] [-m <string> [-a <string>]] [-p <string>] <input file>

39

Arguments overview

Argument Description Parameters

-h Print help text
-? Print help text
-i Input file contains sequence IDs
-t Write headline for table
-m Distance measure selection string

(default Ham;Hme;Hdi;Hom;Edi)
-a Aggregation function selection string

(default KD)
-p Pool property selection string

(default empty)

Arguments explained

-h and -?: eval pool writes a short description of what it does and an overview of its arguments
to standard output.

-i: This switch tells eval pool that the first column of the input file contains sequence identifiers
(names or numbers). The sequences are then expected in the second column. See also the
paragraph on input below.

-t: This switch tells eval pool to print a header line identifying the distance measures, aggre-
gation functions and pool properties. See the paragraph on output below for details.

-m: This argument must be followed by a string that determines which distance measures
are calculated, and with which parameters. Each measure is identified by a three-letter ab-
breviation, different measures are seperated by ;, numerical parameters are seperated by ,.
The measures and their abbreviations are the same as for seq dist, please see section 3.1.10 for
details. Differing from seq dist, here all measures except Hme and Hdi are measured between
the first sequence and the complement of the second one, because the distances model the
probability of hybridization. Adding a c to the abbriviation or omitting the c (like for the
seq dist tool) has no effect here. Abbriviations can be used more than once so that the same
distance measure can be computed with different parameters. See the Examples paragraph
below for some example strings. The default string is Ham;Hme;Hdi;Hom;Edi.

-a: This argument must be followed by a string that determines which function is used to
aggregate all pairwise distances to one numeric value. Each function is identified by a two-letter
abbreviation, different functions are seperated by ;. Normally, the distances are aggregated by
comparing the intended pairings (i.e. each sequence vs. its complement) to undesired pairings
(usually each sequence vs. each other sequence). An additional c behind an abbreviation
indicates that undesired hybridizations means those between any sequence of the pool and the
complement of any other sequence. An additional b behind an abbreviation indicates that
undesired hybridizations means both types of pairings. See the Examples paragraph below for
some example strings. The default string is KD.

The aggregation functions and their abbreviations are:

KD tells eval pool to aggregate the distances with the function KD, which delivers the dif-
ference between the distance measurement for the most probable undesired pairing and
the distance measurement for the least probable desired pairing.

40

KA tells eval pool to aggregate the distances with the function KA, which delivers the differ-
ence between the mean of all measurements for undesired pairings and the mean of all
measurements for desired pairings.

-p: This argument must be followed by a string that determines which pool properties are
calculated, and with which parameters. Each property is identified by a three-letter abbrevia-
tion, different measures are seperated by ;, numerical parameters are seperated by ,. Adding
a c or b to an abbreviation has the same effect as described for -a above. See the Examples
paragraph below for some example strings. The default string is the empty string, stating that
no pool property shall be calculated.

The pool properties, their abbreviations and the parameters are:

Unq measures the uniqueness of tuples of a fixed length L. The number of unique L-tuples
appearing in the pool is counted and compared to the maximum number that can appear.
The result is 1−unique/maximum. Normally, a L-tuple is unique when it only appears
once in the whole pool. If it appears twice (or more times) in the pool only one appearance
is counted. When using Unqc, a L-tuple is unique when its complement does not appear
in the pool. Otherwise, the tuple and its complement are counted only as one appearance.
When using Unqb, a L-tuple is unique if neither itself nor its complement appear anywhere
else in the pool.

LZ5 measures the Lempel-Ziv-complexity of the pool. This is similar to the LZ-complexity
of a sequence [Lempel and Ziv, 1976], expanded to a set of sequences. It is actually the
sum of the LZ-complexities of the sequences in the set, but with some minor changes.
If the algorithm reaches the end of one sequence and starts calculating the complex-
ity of the next sequence in the set, it keeps the vocabulary of subwords found so far.
Furthermore, since the exact value of the LZ-complexity depends on the order in which
the sequences are processed, they are sorted lexicographically beforehand in order to get
only one value for a sequence set, independent of the sequence order in the input file.
And finally, the LZ-algorithm always counts the last subword of a sequence, even if it
is already in the vocabulary (such a subword is called a non-exhaustive component in
[Lempel and Ziv, 1976]). While this is okay for a single sequence, it can lead to counting
more non-exhaustive than exhaustive components when calculating the complexity of a
pool. Therefore, non-exhaustive components are never counted here.

LZ6 measures the Lempel-Ziv-complexity of the pool as described above for LZ5, but only
subwords with a minimum length (which is given as a numerical parameter) are added to
the vocabulary. This may model hybridization better than simple LZ-complexity, since
in duplex nucleation, three or more consecutive base pairs are needed to form a stable
duplex [Cantor and Schimmel, 1980].

Input

The input file is supposed to be a normal text file, with one nucleic acid sequence in each line.
Empty lines are ignored. Whitespaces and other characters not representing bases are also
ignored. If the -i switch is used, everything from the beginning of each line up to the first
space or tabulator is treated as a sequence identifier. The rest of the line is then read as the
nucleic acid sequence.

See appendix B.3 for examples of input files.

41

Output

No files are written, the results are written to standard output. If the -t switch is used, the
first line of the table contains the column headers, indicating the distance measures calculated
and aggregation function, or the pool property. The second line (or the only one if -t is not
used) contains the aggregated measures and pool properties. The columns are seperated by
tabulators. If one evaluates several pools, one can use -t to generate a table header as the first
line of an output file (redirecting the output from standard output into that file) when calling
eval pool for the first pool, and then append the results for the following pools omitting -t.
See below for some example outputs.

Examples
eval_pool example_seqs.txt
reads the eight sequences contained in the file example seqs.txt, and calculates for each pair
(X,Y) the Hamming distance between X and Y , H-measure between X and Y , H-distance
between the poligos containing X and Y , Homology between X and Y , and Edit-distance
between X and Y . Then, the measures are aggregated using KD. The output looks like this:

10 10 0 0.5 10

eval_pool -i -t example_seqs_w_IDs.txt
does the same, but reads also sequence identifiers from the input file, and adds a header line
to the output:

K_D^n(Ham_c) K_D^n(Hme) K_D^n(Hdi) K_D^n(Hom_c) K_D^n(Edi_c)
10 10 0 0.5 10

eval_pool -t -m Ham -a KD;KA example_seqs.txt
calculates the Hamming distances between X and Y for all sequence pairs (X,Y), aggregates
them with both functions KD and KA, and outputs both results:

K_D^n(Ham_c) K_A^n(Ham_c)
10 15.9063

eval_pool -t -m Ham -a KDc;KAc example_seqs.txt
does the same, but treats hybridizations between pool sequences and the complements of other
pool sequences as undesired:

K_D^c(Ham_c) K_A^c(Ham_c)
9 14.8571

eval_pool -p Unq;LZ6,3 example_seqs.txt
calculates the uniqueness pool property and the LZ-complexity of the pool, adding only sub-
words of minimum length 3 to the vocabulary.

eval_pool -p LZ6,3;LZ6,4 example_seqs.txt
calculates two LZ-complexities of the pool, adding only subwords of minimum length 3 or 4 to
the vocabulary, respectively.

42

3.1.6 gc (version 1.0)

This program reads DNA or RNA sequences and writes their length (in bases), absolute GC
content, and GC ratio (i.e. GC content devided by sequence length) to standard output.

The sequences are usually read from an input file. If no filename is given, gc works in interactive
mode. In this mode the user is prompted to type in a sequence, and the calculated data are
put out immediately. You can leave the interactive mode (and exit the program) by entering
@.

Usage

gc [-{h|?}] [-i] [<input file>]

Arguments overview

Argument Description Parameters

-h Print help text
-? Print help text
-i Input file contains sequence IDs

Arguments explained

-h and -?: gc writes a short description of what it does and an overview of its arguments to
standard output.

-i: This switch tells gc that the first column of the input file contains sequence identifiers
(names or numbers). The sequences are then expected in the second column. The identifiers
are also used in the output. See also the paragraphs on input and output below. In interactive
mode, this switch is ignored.

Input

The input file is supposed to be a normal text file, with one nucleic acid sequence in each line.
Empty lines are ignored. Whitespaces and other characters not representing bases are also
ignored.

If the -i switch is used, everything from the beginning of each line up to the first space or
tabulator is treated as a sequence identifier. The rest of the line is then read as the nucleic
acid sequence.

See appendix B.3 for examples of input files.

Output

No files are written, the calculated data (length, number of G and C bases, GC ratio) are
written to standard output.

The output format is the same in interactive mode (when no input file is given). See the next
paragraph for some example outputs.

Examples

gc example_seqs.txt
reads sequences from the file example seqs.txt, calculates length, absolute GC content and GC
ratio and writes the results to standard output. The output starts like this:

43

sequence length number_GC GC_ratio
gtacttccttaaacgacgcagg 22 11 0.5
ggcggtaaaagaatcttggctg 22 11 0.5
catatctcggcacacatgatgg 22 11 0.5
...

gc -i example_seqs_w_IDs.txt
also reads sequence identifiers from the input file:

ID sequence length number_GC GC_ratio
eins gtacttccttaaacgacgcagg 22 11 0.5
Karl ggcggtaaaagaatcttggctg 22 11 0.5
23 catatctcggcacacatgatgg 22 11 0.5
...

An interactive session can look like this:

>gc
Enter sequence (@ to exit):
aaaaaaaaaaa
sequence length number_GC GC_ratio
aaaaaaaaaaa 11 0 0

Enter sequence (@ to exit):
gcgcgcgcgcg
sequence length number_GC GC_ratio
gcgcgcgcgcg 11 11 1

Enter sequence (@ to exit):
acgugcaugaccgauca
sequence length number_GC GC_ratio
acggcagaccgaca 14 9 0.642857

Enter sequence (@ to exit):
@

>

3.1.7 nb unique (version 1.03)

This program reads a pool of DNA sequences from an input file, analyzes the frequency of subse-
quences of a given length, and reports non-unique subsequences to standard output. A sequence
pool is said to be nb-unique, when each subsequence of length nb that occurs in the pool, occurs
only once, and its Watson-Crick complement does not occur at all [Feldkamp et al., 2003]. As
a consequence, self-complementary subsequences may not occur. nb unique finds and reports
each subsequence of length nb within a given range violating this uniqueness property by oc-
curing more than once (complement included) or being self-complementary. This uniqueness
concept is also used in the sequence design tools.

44

Usage

nb unique [-{h|?}] [-l <number>] [-u <number>] [-i] [-r] [-s] [-d] <input file>

Arguments overview

Argument Description Parameters

-h Print help text
-? Print help text
-i Input file contains sequence IDs
-r Output file in rich text format
-s Seperate entries of different base strands
-d Input file is in DeLaNA format
-l Lower bound for subsequence length (default 4) integer ∈ {1, . . . , 15}
-u Upper bound for subsequence length (default 10) integer ∈ {1, . . . , 15}

Arguments explained

-h and -?: nb unique writes a short description of what it does and an overview of its arguments
to standard output.

-i: This switch tells nb unique that the first column of the input file contains sequence identifiers
(names or numbers). The sequences are then expected in the second column. The identifiers
are also used in output. See also the paragraphs on input below.

-r: If this flag is set, the output is in rich text format, with the uniqueness-violating subse-
quences written in red within the complete sequences. Therefore it makes sense to redirect the
output into a RTF file. If this flag is not set (which is default) the output is plain ASCII.

-s: In the output, each subsequence has as many lines as occurences in the input sequences.
If this flag is set, groups of lines for different subsequences are seperated by an empty line in
the output.

-d: If this flag is set, the input file is expected to be in DeLaNA format (described in section
2.1). The arguments -i and -u are ignored. If the -l argument is provided, this value is taken as
subsequence length. Otherwise, subsequence length is as stated within the DeLaNA file. This
mode is particularly useful, when the user wants to analyze concatenations of sequences.

-l and -u: These arguments must be followed by positive integer numbers less than 16. These
numbers are the lower and upper bound for subsequence length. For each subsequence length
between these bounds (both bounds included) nb unique runs an uniqueness analysis. If both
bounds are equal exactly one analysis is done. If -l is omitted the lower bound is set to 4, if -u
is omitted the upper bound is set to 10.

Input

The input file is supposed to be a normal text file, with one nucleic acid sequence in each line.
Empty lines are ignored. Whitespaces and other characters not representing bases are also
ignored.

If the -i switch is used, everything from the beginning of each line up to the first space or
tabulator is treated as a sequence identifier. The rest of the line is then read as the nucleic
acid sequence. If the -d switch is used, input is expected to be in DeLaNA format, which is
described in section 2.1.

45

See appendix B.3 for examples of input files.

Output

No files are written, the results of the analysis are written to standard output. The output
is a table with seven columns. The first line contains the column headers, each following line
shows information on one non-unique subsequence. The columns are tabulator-seperated. This
does not always look nice in a text editor, but is useful for easy import in MS-Excel or other
spreadsheet programs. The seven entries of a line contain:

� the subsequence length currently examined

� the non-unique subseqence found

� the number of times this subsequence and its Watson-Crick complement occur in the
pool.

� This entry identifies the sequence in which the subsequence occurs. If the -i switch is used,
this entry contains the identifier read from the input file. Otherwise, the sequences in
the input file are consecutively numbered (starting with 0), and the fourth entry contains
this number.

� the starting position of the subsequence in the input sequence (starting with 0)

� the base sequence of the input sequence in which the subsequence occurs.

� the word ’yes’ or ’no’, depending on whether the subsequence is self-complementary or
not.

See below for some output examples.

If the -r switch is used, the output is in rich text format, with the uniqueness-violating base
strands written in red within the complete sequences, and should be redirected into a RTF file.
If the -s switch is used, lines dealing with different base strands are seperated by an empty
line.

Examples

nb_unique example_seqs.txt
analyses the nb-uniqueness of the eight sequences from example seqs.txt, with nb running from
4 to 10, and writes subsequences violating this uniqueness to standard output. The output
starts like this (see appendix B.3 for input sequences):

Length Base strand Frequency Seq-No Pos Sequence self-comp
4 tcgc 2 0 1 ttcgccctgctactaacacg no
4 tcgc 2 2 3 ggatcgcaggatctcagtca no
4 gccc 2 0 3 ttcgccctgctactaacacg no
4 gggc 2 5 5 agaccgggctccgcacctgt no
...

This means that the 4mer subsequence tcgc occurs twice within the input pool, once starting
at the second base of the first sequence, and once at the fourth base of the third sequence
(numbering of sequence and positioning starts with 0). The subsequence gccc occurs only
once, but its complement gggc is also present, thus violating 4-uniqueness. None of these
subsequences is self-complementary. The output ends with

46

...
7 ccttcca 2 3 8 gtgaccctccttccagtccg no
7 ccttcca 2 4 12 gaattccatatcccttccaa no

which not only indicates that this subsequence occurs twice. Since the analysis continued up
to nb = 10 but the last output line is for nb = 7, one can conclude that no subsequence of
length 8 (or longer) violates nb-uniqueness. Thus, the input pool is 8-unique.

nb_unique -s example_seqs.txt
produces similar output, only a little bit easier to read:

Length Base strand Frequency Seq-No Pos Sequence self-comp

4 tcgc 2 0 1 ttcgccctgctactaacacg no
4 tcgc 2 2 3 ggatcgcaggatctcagtca no

4 gccc 2 0 3 ttcgccctgctactaacacg no
4 gggc 2 5 5 agaccgggctccgcacctgt no

...

nb_unique -i -l 6 -u 6 example_seqs_w_IDs.txt
analyzes the input sequences for nb = 6 only, reading and using also the sequence identifiers
from the input file. The output looks like this:

Length Base strand Frequency Seq-No Pos Sequence self-comp
6 cctgct 2 Karl 5 ttcgccctgctactaacacg no
6 agcagg 2 Willy 7 agataacagcaggatttctt no
6 gcagga 2 Willy 8 agataacagcaggatttctt no
6 gcagga 2 seq03 5 ggatcgcaggatctcagtca no
6 caggat 2 Willy 9 agataacagcaggatttctt no
6 caggat 2 seq03 6 ggatcgcaggatctcagtca no
6 tccttc 2 xyz1 7 gtgaccctccttccagtccg no
6 tccttc 2 last_seq 1 gtccttcccgcggtttctac no
6 ccttcc 3 xyz1 8 gtgaccctccttccagtccg no
6 ccttcc 3 dog 12 gaattccatatcccttccaa no
6 ccttcc 3 last_seq 2 gtccttcccgcggtttctac no
6 cttcca 2 xyz1 9 gtgaccctccttccagtccg no
6 cttcca 2 dog 13 gaattccatatcccttccaa no
6 gaattc 1 dog 0 gaattccatatcccttccaa yes
6 attaat 1 Igor 13 cttcacatacaaaattaatc yes
6 ccgcgg 1 last_seq 7 gtccttcccgcggtttctac yes

The last three 6mers are self-complementary.

3.1.8 rand seqs (version 1.01)

This program generates a pool of DNA sequences randomly. At each base within the sequences,
the probability for each of the four bases to be chosen is 0.25. As pseudo random number
generator the ran4 routine from [Press et al., 1992] is used.

47

Usage

rand seqs [-{h|?}] [-n <number>] [-l <number> [-u <number>]] [-s <number>] [-o
<output file>] [-i]

Arguments overview

Argument Description Parameters

-h Print help text
-? Print help text
-n Number of sequences (default 100) integer ≥ 0
-l Sequence length (or lower bound, default 20) integer ≥ 0
-u Upper bound for sequence length integer ≥ 0
-s Random seed (default 0) integer
-o Output file name string
-i Add IDs to output

Arguments explained

-h and -?: rand seqs writes a short description of what it does and an overview of its arguments
to standard output.

-n This argument must be followed by a non-negative integer number which sets the number of
sequences that rand seqs generates. If this argument is omitted, 100 sequences are generated.

-l This argument must be followed by a non-negative integer number which sets the length of
the sequences that rand seqs generates. If this argument is omitted, the generated sequences
are 20 bases long. If the -u switch is also used (see below) the number given after -l defines
the lower bound of sequence lengths.

-u This argument must be followed by a non-negative integer number which sets the upper
bound for sequence lengths. If this switch is used rand seqs generates sequences with random
lengths that are uniformly distributed between the bounds fixed by -l and -u. If this switch is
omitted, all generated sequences have exactly the length determined by -l.

-s This argument must be followed by an integer number which sets the starting point for the
pseudo random number generator (the so-called random seed). Setting the random seed to 0
(which is the default value) tells rand seqs to use the number of seconds elapsed since midnight
(00:00:00), January 1, 1970, as stated by system time. CAVEAT: The random seed 0 is actually
a mechanism to get a new random seed every time rand seqs is started. Unfortunately, since
a pseudo RNG is used, restarting rand seqs with the same random seed produces the same
DNA sequences. Thus, if you restart rand seqs with 0 as random seed (or without the -s
switch) several times within the same second (e.g. when it is called by a script or batch file),
your output will always be the same. And even if rand seqs is called once every second, the
generated sequences will be quite similar (try rand_seqs -n 1 -l 20 several times once a
second to see what I mean). Therefore, if you want to generate a number of different sequence
pools by calling rand seqs from within a script, I recommend to use a row of random numbers
as random seeds.

-o This argument must be followed by a string that forms a valid filename. The output (the
random sequences) is then written to the file with the given name. If a file with the given
name already exists its contents are overwritten. If -o is omitted output is written to standard
output.

48

-i If this switch is used each sequence in the output is preceeded by a sequential number (as a
simple sequence identifier). The number is seperated from the sequence by a tabulator.

Input

rand seqs does not take any input besides the command line arguments.

Output

The random sequences are written to standard output, one sequence per line. If the -i switch
is used, each sequence is preceeded by a number and a tabulator. If the -o switch is used,
output is written to the given file.

Examples

rand_seqs
rand_seqs -s 0
both generate 100 20mers, taking system time as random seed, and write the sequences to
standard output.

rand_seqs -n 12 -l 23 -s 111 -o twelve_sequences.txt
generates twelve 23mers, taking 111 as random seed, and writes the sequences to the file
twelve sequences.txt.

rand_seqs -l 20 -u 30 -i
generates 100 sequences with random lengths ranging between 20 and 30 (boundaries included)
and writes them to standard output, preceeded by sequential numbers.

3.1.9 reverse (version 1.0)

This program reads nucleic acid sequences and writes the reverse sequences to standard output.
The sequences are usually read from an input file. If no filename is given, reverse works in
interactive mode. In this mode the user is prompted to type in a sequence, and the reverse
sequence is put out immediately. You can leave the interactive mode (and exit the program)
by entering @.

Usage

reverse [-{h|?}] [-i] [-{dna|rna|iupac}] [<input file>]

Arguments overview

Argument Description

-h Print help text
-? Print help text
-i Input file contains sequence IDs
-dna Sequences are DNA (default)
-rna Sequences are RNA
-iupac Sequences contain degenerate bases

Arguments explained

-h and -?: reverse writes a short description of what it does and an overview of its arguments
to standard output.

49

-i: This switch tells reverse that the first column of the input file contains sequence identifiers
(names or numbers). The sequences are then expected in the second column. The identifiers
are also used in the output. See also the paragraphs on input and output below. In interactive
mode, this switch is ignored.

-dna, -rna, and -iupac: Only one of these three switches should be used since they state
whether the sequences in the input file are DNA or RNA sequences, or whether they contain
degenerate bases. These switches determine which characters in the input sequences are treated
as non-base encoding characters and are removed in a preprocessing step. If the -dna switch
is used (or none of the three switches) u and U are treated like non-base characters and thus
are removed; if the -rna switch is used t and T are removed. The case of the characters does
not matter. If -iupac is used, the input sequences may contain degenerate bases, e.g. S for
the strong binding bases C and G. Degenerate bases are encoded according to the IUPAC-IUB
recommendations [Cornish-Bowden, 1985] (see appendix A.1). If two or all switches are used,
the last one in the command line overrules the preceding ones. If none of these switches is
used, the input sequences are supposed to be DNA.

Input

The input file is supposed to be a normal text file, with one nucleic acid sequence in each line.
Empty lines are ignored. Whitespaces and other characters not representing bases are also
ignored. This ignorance is directed by the use of -dna, -rna, and -iupac, as described above.

If the -i switch is used, everything from the beginning of each line up to the first space or
tabulator is treated as a sequence identifier. The rest of the line is then read as the nucleic
acid sequence.

See appendix B.3 for examples of input files.

Output

No files are written, the reverse sequences are written to standard output.

Examples

reverse example_seqs.txt
reads sequences from the file example seqs.txt and writes the according reverse sequences to
standard output.

reverse -i -rna example_RNA_seqs_w_IDs.txt
reads RNA sequences from the file example RNA seqs w IDs.txt which contains sequence iden-
tifiers and writes the reverse sequences to standard output.

An interactive session tolerating degenerate bases can look like this:

>reverse -iupac
Enter sequence (@ to exit):
aacgttt
tttgcaa

Enter sequence (@ to exit):
aaysswrrbby
ybbrrwssyaa

Enter sequence (@ to exit):

50

@

>

3.1.10 seq dist (version 1.01)

This program reads DNA sequences from an input file (which contains one sequence in each
line) and compares each pair of consecutive sequences with several distance measures (so that
if n sequences are read n/2 pairs are compared). If you want to measure the distance between
all possible pairs of sequences in a pool, please use seq dist2 (see section 3.1.11). The results
of the comparisons are written to standard output in one table with a line for each sequence
pair and a column for each distance measure.

Usage

seq dist [-{h|?}] [-i] [-m <string>] <input file>

Arguments overview

Argument Description Parameters

-h Print help text
-? Print help text
-i Input file contains sequence IDs
-m Distance measure selection string

(default Hamc;Hme;Hmec;Hdi;Homc;Edic)

Arguments explained

-h and -?: seq dist writes a short description of what it does and an overview of its arguments
to standard output.

-i: This switch tells seq dist that the first column of the input file contains sequence identifiers
(names or numbers). The sequences are then expected in the second column. The identifiers
are also used in the output. See also the paragraphs on input and output below.

-m: This argument must be followed by a string that determines which distance measures
are calculated, and with which parameters. Each measure is identified by a three-letter ab-
breviation, different measures are seperated by ;, numerical parameters are seperated by ,.
An additional c immediately behind the abbreviation indicates that the distance is calculated
between the first sequence and the Watson-Crick-complement of the second one. This is useful
e.g. when the distance is supposed to indicate the likeliness of two sequences to hybridize.
The same abbreviation may occur several times in the string, e.g. when you want to measure
a distance with different parameters. See the Examples paragraph below for some example
strings. The default string is Hamc;Hme;Hmec;Hdi;Homc;Edic.

In the following description, X and Y are two DNA sequences of length n and m, respectively,
xi, 1 < i < n, identifies the i-th base of X, and Y is the Watson-Crick-complement of Y . The
measures, their abbreviations and parameters are:

Ham Hamming distance, i.e. the number of positions i with xi 6= yi. If n > m (or n < m), the
number of unpaired bases n−m (or m− n) is added.

51

Hme H-measure [Garzon et al., 1997]. This is an extension of Hamming distance, shifting the
sequences and taking the minimum Hamming distance. Furthermore, X is compared
with Y . Let Ham(·, ·) be the Hamming distance and σk(Y) be the sequence Y shifted
for k positions to the right (so that negative k results in a left-shift). Then the H-measure
h(·, ·) is given by Hme(X,Y) = min

−n<k<n
{|k|+Ham(X,σk(Y))}.

Hdi H-distance [Garzon et al., 1997]. Since the H-measure is no metric (e.g. h(X,X) > 0
for all sequences that are not self-complementary), Garzon et al. also invented the H-
distance, which is not measured between single sequences but between sequence classes,
so-called projective oligos, or poligos. Each poligo contains two sequences that are
Watson-Crick-complements of one another. Poligos containing a self-complementary se-
quence contain only this one sequence. The H-distance between two poligos PX and PY
is given by Hdi(PX,PY) = min

X∈PX,
Y ∈PY

{Hme(X,Y)}.

Hom Homology [Feldkamp, 2000] is defined as Hom(X,Y) = max{match(X,σk(Y))}/l, where
σ is the shift function described above, match counts the number of identical bases
xi = yi+k, and l = max{n,m} is the length of the longer sequence. The result lies
between 0 and 1, with 1 indicating identical sequences and 0 indicating sequences with
no bases in common. Thus, 1−Hom(X,Y) would actually be more suited for a distance
measure.

Edi Edit- or Levenshtein-distance (e.g. [Gusfield, 1997]), i.e. the minimum number of opera-
tions needed to turn the first sequence into the second. Legal operations are Insert adding
exactly one base to the sequence, Delete removing exactly one base from the sequence,
and Replace turning one base into another one. For example, Edi(aaaa, aacca) = 2
because you must at least replace one a with a c and insert another c to get from aaaa
to aacca.

Gal Global alignment using the Needleman-Wunsch algorithm [Needleman and Wunsch, 1970]
(better explained e.g. in [Durbin et al., 1998]). Four numerical parameters are needed:
the score for matching bases, the penalty for mismatches, the penalty for opening a gap,
and the penalty for extending a gap.

LZ1 is a measure based on Lempel-Ziv-complexity [Lempel and Ziv, 1976]. Let c(X) be the
Lempel-Ziv-complexity of sequence X and XY the concatenation of sequences X and
Y . Then LZ1(X,Y) = max{c(XY)−c(X),c(Y X)−c(Y)}

max{c(X),c(Y)} . This measure is called d∗(X,Y) in
[Otu and Sayood, 2003].

LZ2 is another Lempel-Ziv-complexity based measure, namely d∗∗1 from [Otu and Sayood, 2003].
It is defined as LZ2(X,Y) = c(XY)−c(X)+c(Y X)−c(Y)

1
2

(c(XY)+c(Y X))
.

LZ3 is like LZ1, but with a minimum length for vocabulary entries. This minimum length is
needed as a parameter.

LZ4 is like LZ2, but with a minimum length for vocabulary entries. This minimum length is
needed as a parameter.

LE1 L-tuple based measure dE
L (X,Y) from [Vinga and Almeida, 2003]. This measure and the

following ones calculate for each sequence X a vector cXL = (cXL,1, ..., c
X
L,K) with L being

52

a fixed subsequence length, K = 4L the number of all possible subsequences of length L,
and cXL,i counting how often the i-th possible L-tuple can be found in sequence X. Then
this distance measure is defined as the Euklidean distance between two such vectors:
LE1(X,Y) = (cXL − cYL)T · (cXL − cYL) =

∑K
i=1(cXL,i − cYL,i)

2. This measure needs the tuple
length L as a parameter.

LE2 L-tuple based measure d2 from [Vinga and Almeida, 2003]. This is a cumulated version
of LE1 for several tuple lengths L: LE2(X,Y) =

∑u
L=l

∑K
i=1(cXL,i − cYL,i)

2. All weight
terms ρi mentioned in [Vinga and Almeida, 2003] are here set to 1. This measure needs
the lower and upper bounds l and u for the tuple length L as parameters.

LSE L-tuple based measure dSE
L from [Wu et al., 1997] (reproduced incorrectly in

[Vinga and Almeida, 2003]). This is a standardized version of the Euklidean distance.

LSE(X,Y) =
∑K

i=1

(cX
L,i−cY

L,i)
2

sii
, where sii = l · 4−L − 4−2L(l2 − (l − L + 1)(l − L)) +∑L−1

k=1 (l−k)4−kQL−k, with l = n−L+1 and Qj =

{
1 if (z1, . . . , zj) = (zL−j+1, . . . , zL),
0 else

and Z = (z1, . . . , zL) is the i-th L-tuple. This measure needs the tuple length L as a
parameter.

LS2 L-tuple based measure dSE∗ from [Vinga and Almeida, 2003]. This is a cumulated version
of LSE, defined as LS2(X,Y) =

∑u
L=l

∑K
i=1 LSE(X,Y). This measure needs the lower

and upper bounds l and u for the tuple length L as parameters.

LLC L-tuple based measure dLCC
L from [Vinga and Almeida, 2003]. This measure is based on

the linear correlation coefficient of the frequency vectors fX
L with fX

L,i = cXL,i/(n−L+ 1).

It is defined as LLC(X,Y) =
K

∑K
i=1 fX

L,i·f
Y
L,i−

∑K
i=1 fX

L,i·
∑K

i=1 fY
L,i[

K
∑K

i=1(fX
L,i)

2−(
∑K

i=1 fX
L,i)

2

]1/2

·
[
K

∑K
i=1(fY

L,i)
2−(

∑K
i=1 fY

L,i)
2

]1/2 .

Actually, it makes more sense to take 1−LLC(X,Y) as a distance measure. This measure
needs the tuple length L as a parameter.

Lco L-tuple based measure dcos
L from [Vinga and Almeida, 2003]. This measure uses the angle

between the counting vectors: Lco(X,Y) = θXY ,with cos(θXY) =
∑K

i=1 cX
L,i·c

Y
L,i√∑K

i=1(cX
L,i)

2·
√∑K

i=1(cY
L,i)

2
.

This measure needs the tuple length L as a parameter.

Lev L-tuple based measure dEvol
L from [Vinga and Almeida, 2003]. This measure also used

the angle between the counting vectors: Lev(X,Y) = − ln[(1+cos θXY)/2]. This measure
needs the tuple length L as a parameter.

Lcm L-tuple base measure that counts the L-tuples common to both sequences. This measure
needs the tuple length L as a parameter.

LCR Longest common substring, i.e. the longest stretch of consecutive bases common to both
sequences.

LCQ Longest common subsequences, i.e. the longest series of bases common to both sequences
in the same order, but not necessarily consecutive.

53

Input

The input file is supposed to be a normal text file, with one nucleic acid sequence in each line.
Empty lines are ignored. Whitespaces and other characters not representing bases are also
ignored. Two consecutive lines contain the sequences of one pair, so that if n lines are read,
n/2 pairs are compared. If the number of sequences read from the input file is odd, the last
sequence is discarded.

If the -i switch is used, everything from the beginning of each line up to the first space or
tabulator is treated as a sequence identifier. The rest of the line is then read as the nucleic
acid sequence.

See appendix B.3 for examples of input files.

Output

No files are written, the table is written to standard output. The first line of the table contains
the column headers, indicating the distance measures calculated, and whether sequence X is
compared to sequence Y or its complement Y . Each following line starts with the identifiers
of both sequences, seperated by ,. If the -i switch is used, these are the identifiers read from
the input file. Otherwise, each sequence gets a consecutive number. The following entries are
the distances calculated with the different measures. The columns are seperated by tabulators.
This does not look very nice in text editors but allows for easy import in MS-Excel or other
spreadsheet programs. See below for some example outputs.

Examples
seq_dist example_seqs.txt
reads the eight sequences contained in the file example seqs.txt, forms four sequence pairs,
and calculates for each such pair (X,Y) the Hamming distance between X and Y , H-measure
between X and Y , H-measure between X and Y , H-distance between the poligos containing X
and Y , Homology between X and Y , and Edit-distance between X and Y . The output looks
like this:

pair Hamming(compl.) HMeasure HMeasure(compl.) HDistance Homology(compl.) Edit(compl.)
1,2 19 11 13 11 0.45 13
3,4 18 12 12 12 0.4 10
5,6 17 12 13 12 0.4 13
7,8 16 14 14 14 0.3 14

seq_dist -i example_seqs_w_IDs.txt
does the same, but reads also sequence identifiers from the input file, which are also used in
the first column of the output:

pair Hamming(compl.) HMeasure HMeasure(compl.) HDistance Homology(compl.) Edit(compl.)
Karl,Willy 19 11 13 11 0.45 13
seq03,xyz1 18 12 12 12 0.4 10
dog,cat 17 12 13 12 0.4 13
Igor,last_seq 16 14 14 14 0.3 14

seq_dist -m Ham;Hamc example_seqs.txt
calculates for each of the four sequence pairs (X,Y) the Hamming distance between X and Y ,
and the Hamming distance between X and Y .

seq_dist -m Gal,1,-1,-3,-0.5 example_seqs.txt
calculates the global alignment scores for the four sequence pairs, with a base match score of
1, a mismatch penalty of -1, a gap opening penalty of -3, and a gap extension penalty of -0.5.

54

seq_dist -m LE1,3;LE1,4;LE1,5 example_seqs.txt
calculates for the four sequence pairs the L-tuple based distance dE

L with tuple lengths 3, 4,
and 5.

3.1.11 seq dist2 (version 1.01)

This program reads DNA sequences from an input file (which contains one sequence in each
line) and compares each possible pair of sequences with several distance measures. Otherwise,
seq dist2 is very similar to seq dist, so I will here only describe features in which the two
programs differ. For the rest, please refer to section 3.1.10. The results of the comparisons are
written to standard output. You can choose whether you want all results in one big table or
whether one table for each distance measure is written.

Usage

seq dist2 [-{h|?}] [-i] [-m <string>] [-t {1|n}] <input file>

Arguments overview

Argument Description Parameters

-h Print help text
-? Print help text
-i Input file contains sequence IDs
-m Distance measure selection string

(default Hamc;Hme;Hmec;Hdi;Homc;Edic)
-t Number of tables (default 1) 1 or n

Arguments explained

-h and -?: seq dist2 writes a short description of what it does and an overview of its arguments
to standard output.

-i: This switch tells seq dist2 that the first column of the input file contains sequence identifiers
(names or numbers). The sequences are then expected in the second column. The identifiers
are also used in the output. See also the paragraphs on input and output below.

-m: The string following this argument determines which distance measures are calculated.
See section 3.1.10 for details.

-t: This argument must be followed by 1 or n, which determines the number of output tables.
A 1 means that all results are written in one big table, n tells seq dist2 to write one table for
each distance measure. See the output paragraph below for more details. If this argument is
omitted, seq dist2 writes all results in one table.

Input

The input file is supposed to be a normal text file, with one nucleic acid sequence in each line.
Empty lines are ignored. Whitespaces and other characters not representing bases are also
ignored.

If the -i switch is used, everything from the beginning of each line up to the first space or
tabulator is treated as a sequence identifier. The rest of the line is then read as the nucleic
acid sequence.

55

See appendix B.3 for examples of input files.

Output

No files are written, the table is written to standard output. If -t 1 is used (or the -t switch
is omitted), the output table looks like the one produced by seq dist (see section 3.1.10). If
-t n is used, one table is written for each distance measure used. The first line of each table
contains the distance measure name and whether the complement of the second sequence
is used, followed by the identifiers of the pairs’ second sequences. If the -i switch is used,
these are the identifiers read from the input file. Otherwise, each sequence gets a consecutive
number. Each following line contains the identifier of the pairs’ first sequence and the calculated
distances. The columns are seperated by tabulators. This does not look very nice in text editors
but allows for easy import in MS-Excel or other spreadsheet programs. Tables are seperated
by empty lines. See below for some example outputs.

Examples
seq_dist2 example_seqs.txt
reads the eight sequences contained in the file example seqs.txt, forms 64 sequence pairs, and
calculates for each such pair (X,Y) the Hamming distance between X and Y , H-measure
between X and Y , H-measure between X and Y , H-distance between the poligos containing X
and Y , Homology between X and Y , and Edit-distance between X and Y . The output starts
like this:

pair Hamming(compl.) HMeasure HMeasure(compl.) HDistance Homology(compl.) Edit(compl.)
1,1 18 10 0 0 0.5 13
1,2 19 11 13 11 0.45 13
1,3 18 13 13 13 0.35 12
1,4 19 13 9 9 0.35 13
1,5 13 13 13 13 0.35 12
1,6 16 14 11 11 0.3 15
1,7 16 14 12 12 0.3 13
1,8 16 13 10 10 0.35 13
2,1 19 11 13 11 0.45 13
2,2 14 10 0 0 0.5 10
...

seq_dist2 -t 1 example_seqs.txt
does the same.
seq_dist2 -i example_seqs_w_IDs.txt
also reads the sequence identifiers from the input file and uses them in the output, which then
looks like this:

pair Hamming(compl.) HMeasure HMeasure(compl.) HDistance Homology(compl.) Edit(compl.)
Karl,Karl 18 10 0 0 0.5 13
Karl,Willy 19 11 13 11 0.45 13
Karl,seq03 18 13 13 13 0.35 12
Karl,xyz1 19 13 9 9 0.35 13
Karl,dog 13 13 13 13 0.35 12
Karl,cat 16 14 11 11 0.3 15
Karl,Igor 16 14 12 12 0.3 13
Karl,last_seq 16 13 10 10 0.35 13
Willy,Karl 19 11 13 11 0.45 13
Willy,Willy 14 10 0 0 0.5 10

56

...

seq_dist2 -m Ham;Edic -t n example_seqs.txt
calculates Hamming distance and Edit distance with complementary second sequences, and
prints two tables, one for each measure. The output looks like this:

Hamming 1 2 3 4 5 6 7 8
1 0 17 13 9 15 17 14 15
2 17 0 13 16 13 15 13 15
3 13 13 0 14 13 15 19 15
4 9 16 14 0 13 16 16 16
5 15 13 13 13 0 16 17 13
6 17 15 15 16 16 0 19 14
7 14 13 19 16 17 19 0 15
8 15 15 15 16 13 14 15 0

Edit(compl.) 1 2 3 4 5 6 7 8
1 13 13 12 13 12 15 13 13
2 13 10 12 12 12 13 13 11
3 12 12 10 10 12 10 13 13
4 13 12 10 14 14 14 13 12
5 12 12 12 14 14 13 12 15
6 15 13 10 14 13 11 15 14
7 13 13 13 13 12 15 13 14
8 13 11 13 12 15 14 14 10

See section 3.1.10 for more measure string examples.

3.1.12 thermo (version 1.01)

This program reads DNA sequences and writes some thermodynamic properties to standard
output. These are melting temperature Tm, as well as differences in enthalpy ∆H, entropy
∆S, and Gibbs free energy ∆G of the hybridization reaction between each sequence and its
Watson-Crick complement.

The sequences are usually read from an input file. If no filename is given, thermo works in
interactive mode. In this mode the user is prompted to type in a sequence, and the ther-
modynamic data are put out immediately. You can leave the interactive mode (and exit the
program) by entering @.

Usage

thermo [-{h|?}] [-Na c] [-Mg c] [-Fo c] [-Sample c] [-p {W|P|B|S|L|U|T}] [-s {W|L|O|U}]
[-t] [-i] [<input file>]

Arguments overview

Argument Description Parameters

-h Print help text
-? Print help text
-i Input file contains sequence IDs

57

-t Table mode
-Na or -na Na+ concentration (default 0.12 M) real number ≥ 0
-Mg or -mg Mg++ concentration (default 0.0 M) real number ≥ 0
-Fo or -fo formamide concentration (default 0.0 % vol.) real number ≥ 0
-Sample or -sample DNA strand concentration (default 1e-9 M) real number > 0
-p Calculation method and parameter set (default U) ∈ {W,P,B,S,L,U,T}
-s Salt correction method (default U) ∈ {W,L,C,U}

Arguments explained

-h and -?: thermo writes a short description of what it does and an overview of its arguments
to standard output.

-i: This switch tells thermo that the first column of the input file contains sequence identifiers
(names or numbers). The sequences are then expected in the second column. The identifiers
are also used in the output. See also the paragraphs on input and output below. In interactive
mode, this switch is ignored.

-t: This switch activates the table mode, i.e. thermo does not write a five-line mini-report
for each sequence, but resumes all data for a sequence in a single line. See the paragraph on
output below for more details.

-Na or -na: This argument must be followed by a non-negative real number, identifying the
molar Na+ concentration in the solution in which melting or hybridization shall take place.
[Na+] and [Mg2+] may not both be 0. If this switch is omitted, Na+ concentration is set to
0.12 M.

-Mg or -mg: This argument must be followed by a non-negative real number, identifying
the molar Mg++ concentration in the solution. [Na+] and [Mg2+] may not both be 0. If this
switch is omitted, Mg++ concentration is set to 0.0 M.

-Fo or -fo: This argument must be followed by a non-negative real number, identifying
the formamide concentration (in percent by volume) in the solution. If this switch is omitted,
formamide concentration is set to 0.0 % vol. Tm is adjusted by subtracting 0.72·(%formamide)
[McConaughy et al., 1969].

-Sample or -sample: This argument must be followed by a positive real number, identifying
the molar DNA strand concentration in the solution. If this switch is omitted, sample concen-
tration is set to 10−9 M. This argument is only used for the nearest-neighbor method, and is
ignored when the Wallace rule or the percent GC method are chosen.

-p: This argument must be followed by one of the characters W, P, B, S, L, U, or T, encoding
the melting temperature calculation method and the parameter set used. The methods and
parameter sets are:

W Wallace rule [Suggs et al., 1981]. For each G or C in the sequence, 4 � are added, for
each A or T 2 �. If this method is chosen, only Tm is calculated, but not ∆S, ∆H, or
∆G.

P Percent GC method [Wetmur, 1997]. Tm = 81.5+0.41 ·rGC−500/n, where n is sequence
length and rGC is the GC-ratio number of G and C in sequence

n . If this method is chosen, only
Tm is calculated, but not ∆S, ∆H, or ∆G.

B Nearest-neighbor method with Breslauer parameter set [Breslauer et al., 1986]. First,

58

∆S, ∆H, and ∆G are calculated by summing up fixed values for each pair of neighboring
base pairs. Then, Tm is derived from enthalpy and entropy, using Tm = ∆H

∆S+R·ln(f ·c) ,
where R = 1.987 cal/mol·K is the gas constant, c is the molar DNA strand concentration,
and factor f equals 1.0 if the sequence is self-complementary, and 0.25 else. Gibbs free
energy ∆G is calculated for 25 �.

S Nearest-neighbor method with Sugimoto parameter set [Sugimoto et al., 1996]. The
method is described above. Gibbs free energy ∆G is calculated for 37 �.

L Nearest-neighbor method with SantaLucia parameter set [SantaLucia et al., 1996]. The
method is described above. Gibbs free energy ∆G is calculated for 37 �.

U Nearest-neighbor method with Unified parameter set [SantaLucia, 1998]. The method is
described above. Gibbs free energy ∆G is calculated for 37 �.

T Nearest-neighbor method with Tanaka parameter set [Tanaka et al., 2004]. The method
is described above. Gibbs free energy ∆G is calculated for 37 �.

If this switch is omitted, the nearest-neighbor method with the unified parameter set is used
(parameter U).

-s: This argument must be followed by one of the characters W, L, C, or U, encoding the salt
concentration correction method used. Melting temperature of nucleic acid strands depends
on the salt concentrations in solution. The model used here regards Na+ and Mg++ ion con-
centrations, where Mg++ concentration is transformed into an equivalent Na+ concentration:
[salt] = [Na+] + 4 ·

√
[Mg++] [Wetmur, 1997]. The methods are:

W Wetmur method [Wetmur, 1997]. Tm is corrected by adding 16.6 · log([salt]
1+0.7[salt]).

L SantaLucia method [SantaLucia et al., 1996]. Tm is corrected by adding 12.5 · log[salt].

C Cantor/Schimmel method [Cantor and Schimmel, 1980]. Tm is corrected by adding 16.6 ·
log[salt].

U Method from unified parameter set [SantaLucia, 1998]. Here, calculation of ∆S already
takes salt concentrations into account. ∆S is adjusted by adding 0.368(n− 1) · ln[salt],
where n is the sequence length. This also influences ∆G, which is adjusted by subtracting
0.114(n− 1) · ln[salt].

If this switch is omitted, the method published with the unified parameter set is used (param-
eter U).

Input

The input file is supposed to be a normal text file, with one nucleic acid sequence in each line.
Empty lines are ignored. Whitespaces and other characters not representing bases are also
ignored.

If the -i switch is used, everything from the beginning of each line up to the first space or
tabulator is treated as a sequence identifier. The rest of the line is then read as the nucleic
acid sequence.

See appendix B.3 for examples of input files.

59

Output

No files are written, the thermodynamic data are written to standard output.

If the -t switch is used, all results are put in a table. The first line contains the column
headers. Each following line contains the data for one examined sequence. It starts with the
base sequence itself, eventually preceeded by the sequence identifier if the -i switch is used,
followed by Tm, and, if the nearest-neighbor method is chosen, ∆H, ∆S, and ∆G. The columns
are seperated by tabulators, which does not look very nice in a text editor, but allows for easy
import in MSExcel or other spreadsheet programs.

If the -t switch is not used, a block of two or five lines is printed for each examined sequence.
The first line contains the base sequence itself, eventually preceeded by the sequence identifier
if the -i switch is used. The next line shows the calculated Tm. If the nearest-neighbor method
is used, three additional lines show ∆H, ∆S, and ∆G, respectively. Each value is preceeded
by the name of the calculated variable and an equal sign, and is followed by the appropriate
dimension. Two consecutive blocks are seperated by an empty line.

The output format is the same in interactive mode (when no input file is given). See the next
paragraph for some example outputs.

Examples

thermo example_seqs.txt
reads sequences from the file example seqs.txt, calculates Tm, ∆H, ∆S, and ∆G with the
nearest-neighbor model using the unified parameter set and the according salt correction term.
The results are then written to standard output, in five line blocks. The output starts like
this:

ttcgccctgctactaacacg
Tm = 53.2752 deg C
DeltaH = -158.4 kcal / mol
DeltaS = -441.325 cal / K per mol
DeltaG = -21.4175 kcal / mol, at 37 deg C

agataacagcaggatttctt
Tm = 44.8461 deg C
DeltaH = -147.6 kcal / mol
DeltaS = -420.225 cal / K per mol
DeltaG = -17.1275 kcal / mol, at 37 deg C

ggatcgcaggatctcagtca
Tm = 52.0266 deg C
DeltaH = -154.9 kcal / mol
DeltaS = -432.425 cal / K per mol
DeltaG = -20.6775 kcal / mol, at 37 deg C
...

thermo -i -p W example_seqs_w_IDs.txt
also reads sequence identifiers from the input file and uses the simple Wallace method. Thus,
only Tm is calculated:

Karl ttcgccctgctactaacacg

60

Tm = 62 deg C

Willy agataacagcaggatttctt
Tm = 54 deg C

seq03 ggatcgcaggatctcagtca
Tm = 62 deg C
...

thermo -Na 0.3 -Mg 0.1 example_seqs.txt
raises the salt concentrations in the solution (compared to the default values), thus stabilizing
the duplexes and raising also the melting temperature.

ttcgccctgctactaacacg
Tm = 65.8182 deg C
DeltaH = -158.4 kcal / mol
DeltaS = -434.918 cal / K per mol
DeltaG = -23.4022 kcal / mol, at 37 deg C

agataacagcaggatttctt
Tm = 57.643 deg C
DeltaH = -147.6 kcal / mol
DeltaS = -413.818 cal / K per mol
DeltaG = -19.1122 kcal / mol, at 37 deg C

ggatcgcaggatctcagtca
Tm = 64.7641 deg C
DeltaH = -154.9 kcal / mol
DeltaS = -426.018 cal / K per mol
DeltaG = -22.6622 kcal / mol, at 37 deg C
...

thermo -p L -s L -t example_seqs.txt
uses the nearest-neighbor method with parameter set and salt correction term taken from the
1996 paper of SantaLucia [SantaLucia et al., 1996]. The results are then printed in a table:

sequence Tm [deg C] DeltaH [kcal/mol] DeltaS [cal/K mol] DeltaG_37 [kcal/mol]
ttcgccctgctactaacacg 52.3596 -151.4 -405.3 -25.29
agataacagcaggatttctt 43.7015 -141.6 -387.3 -21.58
ggatcgcaggatctcagtca 51.7963 -142.5 -379.6 -24.96
gtgaccctccttccagtccg 57.5841 -141.7 -370.1 -26.51
gaattccatatcccttccaa 44.735 -137.5 -373.5 -21.49
agaccgggctccgcacctgt 62.919 -150.2 -388.2 -29.22
cttcacatacaaaattaatc 37.2746 -143.4 -401.5 -18.77
gtccttcccgcggtttctac 55.496 -150.7 -399.1 -26.37

An interactive session using default settings can look like this:

>thermo

61

Enter sequence (@ to exit):
aaaaaaaaaa
Tm = 1.01574 deg C
DeltaH = -66.5 kcal / mol
DeltaS = -198.622 cal / K per mol
DeltaG = -4.76461 kcal / mol, at 37 deg C

Enter sequence (@ to exit):
gcgcgcgcgc
Tm = 45.7317 deg C
DeltaH = -91.2 kcal / mol
DeltaS = -244.822 cal / K per mol
DeltaG = -15.3446 kcal / mol, at 37 deg C

Enter sequence (@ to exit):
@

>

3.2 Miscellaneous Tools

I also wrote some tools that have nothing to do with DNA sequences, but that I needed for
statistical analysis. Since they might be useful for someone else, I just put them into CANADA.

3.2.1 corr coeff (version 1.0)

This program reads a table of measurements from an input file where each column contains the
measurements for one variable and each row contains the measurements for one sample. The
linear correlation coefficient for each pair of variables is written in tabular form to standard
output.

Usage

corr coeff {[-{h|?}] | -r <number> -c <number> [-R <number>] [-C <number>]
<input file>}

Arguments overview

Argument Description Parameters

-h Print help text
-? Print help text
-r Number of rows (samples) integer ≥ 1
-c Number of columns (variables) integer ≥ 1
-R Number of lines to be ignored (default 1) integer ≥ 0
-C Number of columns to be ignored (default 1) integer ≥ 0

62

Arguments explained

-h and -?: corr coeff writes a short description of what it does and an overview of its arguments
to standard output.

-r: This argument must be followed by a positive integer, specifying the number of samples,
i.e. the number of rows in the input file containing data. This number does not include the
lines ignored by using the -R switch. This argument is mandatory.

-c: This argument must be followed by a positive integer, specifying the number of variables
that shall be compared, i.e. the number of columns in the input file. This number does not
include the columns ignored by using the -C switch. This argument is mandatory.

-R: This argument must be followed by a non-negative integer, specifying the number of leading
lines in the input file that do not contain data and are to be ignored (e.g. the table header
line). If this switch is omitted, the first line will be ignored.

-C: This argument must be followed by a non-negative integer, specifying the number of leading
columns in the input file that do not contain data and are to be ignored (e.g. identifiers or
other row headers in a table). If this switch is omitted, the first column will be ignored.

Input

The input file is supposed to be a normal text file, containing the measured samples for the
variables that shall be compared in a table. Each row contains the measurements for one
sample, each column contains the measurements for one variable. Columns are seperated by
tabulators. The table may also contain extra rows and columns, e.g. for the names of the
variables and samples. These can be ignored by using the -R and -C arguments.

See appendix B.4 for examples of input files.

Output

No files are written, the table of correlation coefficients are written to standard output.

The first line of the table begins with r, the usual symbol for correlation coefficients, followed
by the numbers 1 through n, where n is the number of variables specified with the -c argument.
Each following line begins with a variable’s consecutive number, followed by the correlation
coefficients.

See the next paragraph for some example outputs.

Examples

corr_coeff -r 20 -c 4 corr_example.txt
reads 21 rows with 5 columns from the file corr example.txt, ignores the first row and column,
and treats the rest as 20 measurements of 4 variables. It then prints the linear correlation
coefficients for all pairs of variables to standard output in a table that looks like this:

r 1 2 3 4
1 1 -1 1 0.27
2 -1 1 -1 -0.27
3 1 -1 1 0.27
4 0.27 -0.27 0.27 1

corr_coeff -r 20 -c 4 -R 0 -C 0 corr_example_data_only.txt
does the same, but here the input file contains only measurements, so no row or column shall

63

be ignored.

3.2.2 rank corr (version 1.0)

This program reads a table of measurements from an input file where each column contains
the measurements for one variable and each row contains the measurements for one sample.
The Spearman rank correlation coefficient for each pair of variables is written in tabular form
to standard output.

Actually, everything written about corr coeff (see section 3.2.1 above) is also valid for rank corr.
The only difference is the meaning of the results you get. So I will not repeat the complete
stuff from the section on corr coeff, but will only describe the differences.

Usage

rank corr {[-{h|?}] | -r <number> -c <number> [-R <number>] [-C <number>]
<input file>}

Output

In addition to the output described for corr coeff (see 3.2.1), rank corr also produces a file named
ranks.txt. This plain text file contains a table with n rows and m columns, where n and m are
the numbers of measurements and variables specified by the -r and -c arguments, respectively.
This table contains the ranks each measurements gets, which are used for calculating the
Spearman rank correlation coefficient.

See the next paragraph for some example output.

64

Examples

rank_corr -r 20 -c 4 corr_example.txt
reads 21 rows with 5 columns from the file corr example.txt, ignores the first row and column,
and treats the rest as 20 measurements of 4 variables. It then prints the Spearman rank
correlation coefficients for all pairs of variables to standard output in a table that looks like
this:

r 1 2 3 4
1 1 -1 1 0.28
2 -1 1 -1 -0.27
3 1 -1 1 0.28
4 0.28 -0.27 0.28 1

In addition, a file named ranks.txt containing the ranks of the measurements is produced,
which looks like this:

1 20 1 2
2 19 2 14.5
3 18 3 5.5
4 17 4 8
5 16 5 2
6 15 6 12.5
7 14 7 10.5
8 13 8 18.5
9 12 9 8
10 11 10 18.5
11 10 11 5.5
12 9 12 4
13 8 13 18.5
14 7 14 8
15 6 15 16
16 5 16 12.5
17 4 17 14.5
18 3 18 10.5
19 2 19 2
20 1 20 18.5

65

Appendix A

Tables

A.1 IUPAC-IUB Recommendation for Degenerate Base Sym-
bols

Symbol Bases Description
A A Adenin
C C Cytosin
G G Guanin
T T Thymin
R G, A Purine
Y T, C Pyrimidine
M A, C Amino
K G, T Keto
S G, C strong bond (3 H-bridges)
W A, T weak bond (2 H-bridges)
H A, C, T not G (H follows G in the alphabet)
B C, G, T not A
V A, C, G not T (for RNA: not U)
D A, G, T not C
N A, C, G, T any base

Table A.1: Notation for incompletely specified (degenerate) bases, following the IUPAC-IUB
recommendation [Cornish-Bowden, 1985]. The three columns show the recommended symbols,
the bases represented by each symbol, and a short hint why these symbols are chosen.

66

Appendix B

Example Input Files

B.1 DeLaNA Files

B.1.1 all features.dln

The file all features.dln is a DeLaNA file containing all objects and statements with their
properties.

// This is a comment line.

/* This is a comment
running over
several lines. */

SEQUENCE fixed_oligo {
seq_mask = "aattggcc"; }

SEQUENCE oligo_A, oligo_B {
NA_type = RNA;
length = 10;
GC_ratio = 0.3;
Tm = [55;60];
DG = [-10.0;0.0];
seq_mask = "nnaunncgnn";
forbidden = fixed_oligo, "ggg"; }

SEQUENCETYPE my_20mer {
NA_type = DNA;
length = 20;
GC_ratio = [0.1;0.9];
Tm = [55;65];
DeltaG = [-100.0;-10.0];
seq_mask = "yyyyyyyyyyrrrrrrrrrr";
forbidden = "ata"; }

67

my_20mer oligo_C;

my_20mer oligo_D {
Tm = [0.0;100.0];
forbidden += "atg", "gtg", "ttg"; }

CONCAT oligo_A, oligo_B;

CONCAT Complement(oligo_A), oligo_C;

CONCAT oligo_B, Complement(oligo_D);

3WJ oligo_A, Complement(oligo_B), oligo_D;

4WJ oligo_A, complement(oligo_D), complement(oligo_B), oligo_C;

POOL p1 {
sequences = oligo_A, oligo_B, oligo_C, oligo_D;
n_uniqueness = 6;
Hamming = [5;20]
H_distance = [5;20];
sample_conc = 0.005;
Na_conc = 0.123;
formamide_conc = 0.001;
Tm_method = Sugimoto;
salt_method = CantorSchimmel;
violation_tolerance = 1;
forbidden = "ttt", fixed_oligo, complement(fixed_oligo);
no_shorties = false;
no_GGG = false;
no_AUG = false;
no_GUG = false;
no_UUG = false;
no_fraying = true;
base_strand_GC = [0.3;0.7];

}

DESIGNTOOL {
random_seed = 12345;
ID_in_table = true;
analyze_uniqueness = false;

}

68

B.1.2 dsg small pool.dln

This input file for dsg is used to generate a 4-unique pool containing different oligomers. No
more than two consecutive guanine bases may occur.

// 4-unique pool of oligomers
// without three or more G’s in a row

SEQUENCE oli1 {
length = 10;
}

SEQUENCE oli2 {
length = 20;
GC_ratio = 0.5;
}

SEQUENCE oli3, oli4 {
length = 15;
Tm = [50;55];
}

POOL mypool {
n_uniqueness = 6;
Na_conc = .05;
sample_conc = 2e-7;
Formamide_conc = 0;
forbidden = "ggg";
}

DESIGNTOOL {
Random_Seed = 0;
}

B.1.3 dsg big pool.dln

This input file for dsg is used to generate a 6-unique pool containing 100 oligomers of length
20.

// 6-unique pool of 100 20mers

SEQUENCETYPE twentymer {
length = 20; }

twentymer x[100];

POOL mypool {
n_uniqueness = 6;

69

0 1s e0 0

01s e01 1 10 0

0 0 0 0 01s 1 1 0 e

self-assembly

0

1
s e

0

1

se

synthesize

S sA
A 0A
A 1A
A e

_
HindIII s A

5' agctt ctgatctacgtgttcgggcg 3'
3' a gactagatgcacaagcccgcg gcctttgtag 5'

_

A 0 A
5' cataggaatg cttgctaactaaagggcatc 3'
3' gaacgattgatttcccgtag gtatccttac 5'

_

A 1 A
5' cataggaatg cagagtttacgaggatatac 3'
3' gtctcaaatgctcctatatg gtatccttac 5'

I e BamHI

5' cataggaatg gctttgtttccgtcgagcag g 3'
3' cgaaacaaaggcagctcgtc cctag 5'

compile

Figure B.1: Binary random number generator with DNA molecules [Rauhe et al., 2000,
Feldkamp et al., 2003].

Na_conc = .05;
sample_conc = 2e-7;
Formamide_conc = 0;
}

DESIGNTOOL {
Random_Seed = 0;
}

B.1.4 dsc RNG.dln

This input file for dsc is used to generate oligomers for a binary random number generator as
described in [Rauhe et al., 2000, Feldkamp et al., 2003] (see Fig. B.1).

// binary random number generator

SEQUENCETYPE terminal {
length = 20;
GC_ratio = 0.5;

}

SEQUENCETYPE variable {
length = 10;

}

terminal s, e, t0, t1;

variable A;

SEQUENCE HindIII { // restriction site

70

seq_mask = "aagctt";
}

SEQUENCE BamHI { // restriction site
seq_mask = "ggatcc";
}

CONCAT HindIII, s;
CONCAT s, A;

CONCAT A, t0;
CONCAT t0, A;

CONCAT A, t1;
CONCAT t1, A;

CONCAT A, e;
CONCAT e, BamHI;

POOL p {
N_uniqueness = 4;
Violation_tolerance = 1;
Sample_conc = 2e-7;
Na_conc = 1.0;
Tm_method = NNSantaLucia;
}

DESIGNTOOL {
Random_Seed = 0;

}

B.1.5 dsc 4WJ.dln

This input file for dsc is used to generate oligomers for a four-way junction structural motif as
described in [Seeman, 1982] (see Fig. B.2) without using the 4WJ statement.

// 4 way junction motif
// without using the 4WJ statement

SEQUENCETYPE arm {
length = 8;

}

SEQUENCETYPE sticky_end {
length = 5;

}

// one arm for each direction

71

arm_N

se_V

arm_E

arm_S
arm_W

se_H

se_V

se_H

Figure B.2: Sketch of a four-way junction motif. Colored arrows represent the strands’ back-
bones, with the arrow point indicating the 3’-end. Bases are indicated by grey bars. The
number of bases/base pairs shown here does not have to match the number in the DeLaNA file.

arm arm_N, arm_E, arm_S, arm_W {
GC_ratio = 0.5; }

// one sticky end for horizontal assembly,
// one for vertical assembly
sticky_end se_V, se_H {
GC_ratio = [0.6;1.0]; // a little bit stability
}

// red strand
CONCAT se_H, complement(arm_W);
CONCAT complement(arm_W), arm_N;

// green strand
CONCAT complement(se_V), complement(arm_N);
CONCAT complement(arm_N), arm_E;

// blue strand
CONCAT complement(se_H), complement(arm_E);
CONCAT complement(arm_E), arm_S;

// violet strand
CONCAT se_V, complement(arm_S);
CONCAT complement(arm_S), arm_W;

72

A

F

C

D

B

E
Figure B.3: Sketch of a DAE-DX motif [Fu and Seeman, 1993]. Colored arrows represent the
strands’ backbones, with the arrow point indicating the 3’-end. Bases are indicated by grey
bars. The number of bases/base pairs shown here does not have to match the number in the
DeLaNA file.

POOL p {
N_uniqueness = 4;
Violation_tolerance = 0;
Sample_conc = 2e-7;
Na_conc = 1.0;
Tm_method = NNSantaLucia;
}

DESIGNTOOL {
Random_Seed = 0;

}

B.1.6 dsc DX.dln

This input file for dsc is used to generate oligomers for a double-crossover (DX) structural
motif as described in [Fu and Seeman, 1993] (more precisely: a DAE-DX tile) (see Fig. B.3).

// DAE double crossover motif without sticky ends
// [fu1993], Fig. 4

// upper helix
SEQUENCE A {
length = 11; }

SEQUENCE B {
length = 10; }

SEQUENCE C {
length = 11; }

// lower helix
SEQUENCE D {
length = 11; }

SEQUENCE E {

73

length = 10; }
SEQUENCE F {
length = 11; }

/*
// If one would not use the 4WJ statement, it could look like this:

// red strand
CONCAT A, B;
CONCAT B, C;

// blue strand
CONCAT D, E;
CONCAT E, F;

// brown strand
CONCAT complement(F), complement(A);

// violet strand with no nick
CONCAT complement(E), complement(B);
CONCAT complement(B), complement(E);

// green strand
CONCAT complement(C), complement(D);
*/

// left crossover point
4WJ complement(A), B, complement(E), F;

// right crossover point
4WJ complement(B), C, complement(D), E;

POOL p {
N_uniqueness = 4;
Violation_tolerance = 0;
Sample_conc = 2e-7;
Na_conc = 1.0;
Tm_method = NNSantaLucia;
}

DESIGNTOOL {
Random_Seed = 0;

}

74

B.2 Configuration Files

B.2.1 dsc config.cfg

The file dsc config.cfg contains parameter settings specific for the design tool dsc.

// sample config file
random_seed = 12345;
ID_in_table = true;
analyze_uniqueness = false;
RTF = true;
seperate_entries = true;
group_size = c;
group_shuffling = true;
successor_choice = f;
SC_parameter = 0.1;
/* closing comment */

B.3 Sequence Pools

This sections shows some files containing DNA sequences, serving as input for several tools.

B.3.1 example seqs.txt

The file example seqs.txt contains eight randomly generated 22mers, one sequence per line, in
lower case.

gtacttccttaaacgacgcagg
ggcggtaaaagaatcttggctg
catatctcggcacacatgatgg
cttatcgctttatgaccggacc
gcttcggattaacagtgacgtg
caatgaaacactaggcgaggac
cttcacgattgccactttccac
cgtgtagcctttgtattcgtcc

B.3.2 example seqs w IDs.txt

The file example seqs w IDs.txt contains the same eight 22mers as example seqs.txt (see above),
but with an additional identifier preceding the actual sequence. The two columns are tabulator-
seperated.

eins gtacttccttaaacgacgcagg
Karl ggcggtaaaagaatcttggctg
23 catatctcggcacacatgatgg
x cttatcgctttatgaccggacc
Willy gcttcggattaacagtgacgtg

75

ABC caatgaaacactaggcgaggac
Lemmy cttcacgattgccactttccac
17 cgtgtagcctttgtattcgtcc

B.4 Tables with Numbers

This section shows some files containing tab-seperated tables comprised of numerical data,
serving as input files for the statistical analysis tools.

B.4.1 corr example.txt

The file corr example.txt contains contains 20 samples or measurements of four viariables. The
variables are called ’first’, ’second’, ’third’, and ’last’. The samples are labelled with the lower
case letters ’a’ through ’t’. The columns are tabulator-seperated.

cc first second third last
a 1 20 2 21
b 2 19 4 27
c 3 18 6 23
d 4 17 8 24
e 5 16 10 21
f 6 15 12 26
g 7 14 14 25
h 8 13 16 29
i 9 12 18 24
j 10 11 20 29
k 11 10 22 23
l 12 9 24 22
m 13 8 26 29
n 14 7 28 24
o 15 6 30 28
p 16 5 32 26
q 17 4 34 27
r 18 3 36 25
s 19 2 38 21
t 20 1 40 29

B.4.2 corr example data only.txt

The file corr example data only.txt contains the same numbers as corr example.txt (see above),
but without the first line and column containing identifiers of variables and samples.

1 20 2 21
2 19 4 27
3 18 6 23
4 17 8 24
5 16 10 21

76

6 15 12 26
7 14 14 25
8 13 16 29
9 12 18 24
10 11 20 29
11 10 22 23
12 9 24 22
13 8 26 29
14 7 28 24
15 6 30 28
16 5 32 26
17 4 34 27
18 3 36 25
19 2 38 21
20 1 40 29

77

Bibliography

[Ackermann and Gast, 2003] Ackermann, J. and Gast, F.-U. (2003). Word design for biomolec-
ular information processing. Zeitschrift für Naturforschung, 58a:157–161.

[Allawi et al., 1997] Allawi, H. T., Peyret, N., Seneviratne, P. A., and SantaLucia, Jr., J.
(1997). DNA mismatch thermodynamics and structure. Abstracts of Papers of the American
Chemical Society, 213:270.

[Allawi and SantaLucia, 1998a] Allawi, H. T. and SantaLucia, Jr., J. (1998a). Nearest neigh-
bor thermodynamic parameters for internal G·A mismatches in DNA. Biochemistry,
37(8):2170–2179.

[Allawi and SantaLucia, 1998b] Allawi, H. T. and SantaLucia, Jr., J. (1998b). Nearest-
neighbor thermodynamics of internal A·C mismatches in DNA: Sequence dependence and
pH effects. Biochemistry, 37(26):9435–9444.

[Allawi and SantaLucia, 1998c] Allawi, H. T. and SantaLucia, Jr., J. (1998c). Thermodynam-
ics of internal C·T mismatches in DNA. Nucleic Acids Research, 26(11):2694–2701.

[Breslauer et al., 1986] Breslauer, K. J., Frank, R., and Blöcker, H. (1986). Predicting DNA
duplex stability from the base sequence. Proceedings of the National Academy of Sciences,
83(4):3746–3750.

[Cantor and Schimmel, 1980] Cantor, C. R. and Schimmel, P. R. (1980). Biophysical Chem-
istry Part III: The Behavior of Biological Macromolecules. W. H. Freeman and Company.

[Cornish-Bowden, 1985] Cornish-Bowden, A. (1985). Nomenclature for incompletely specified
bases in nucleic acid sequences: recommendations 1984. Nucleic Acids Research, 13(9):3021–
3032.

[Durbin et al., 1998] Durbin, R., Eddy, S., Krogh, A., and Mitchinson, G. (1998). Biological
sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University
Press.

[Feldkamp, 2000] Feldkamp, U. (2000). Ein DNA-Sequenz-Compiler. Technical Report of
the Systems Analysis Research Group SYS–2/00, University of Dortmund, Department of
Computer Science.

[Feldkamp and Niemeyer, 2006] Feldkamp, U. and Niemeyer, C. M. (2006). Rational design
of DNA nanoarchitectures. Angewandte Chemie International Edition, 45:1856–1876.

[Feldkamp et al., 2003] Feldkamp, U., Rauhe, H., and Banzhaf, W. (2003). Software tools for
DNA sequence design. Genetic Programming and Evolvable Machines, 4(2):153–171.

78

[Fu and Seeman, 1993] Fu, T.-J. and Seeman, N. C. (1993). DNA double-crossover molecules.
Biochemistry, 32:3211–3220.

[Garzon et al., 1997] Garzon, M. H., Deaton, R., Neathery, P., Franceschetti, D. R., and Mur-
phy, R. (1997). A new metric for DNA computing. In Koza, J. R., Deb, K., Dorigo, M., Fogel,
D. B., Garzon, M., Iba, H., and Riolo, R. L., editors, Conference on Genetic Programming,
GP-97, Stanford University, Stanford, California. Special Track on DNA computing.

[Gibas and Jambeck, 2001] Gibas, C. and Jambeck, P. (2001). Developing Bioinformatics
Computer Skills. O’Reilly.

[Gusfield, 1997] Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press.

[Hofacker et al., 1994] Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker,
M., and Schuster, P. (1994). Fast folding and comparison of RNA secondary structures.
Chemical Monthly, 125:167–188.

[Lempel and Ziv, 1976] Lempel, A. and Ziv, J. (1976). On the complexity of finite sequences.
IEEE Transactions on Information Theory, 22(1):75–81.

[McConaughy et al., 1969] McConaughy, B. L., Laird, C. D., and McCarthy, B. J. (1969).
Nucleic acid reassociation in formamide. Biochemistry, 8(8):3289–3295.

[Needleman and Wunsch, 1970] Needleman, S. B. and Wunsch, C. D. (1970). A general
method applicable to the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48:443–453.

[Otu and Sayood, 2003] Otu, H. H. and Sayood, K. (2003). A new sequence distance measure
for phylogenetic tree construction. Bioinformatics, 19(16):2122–2130.

[Peyret et al., 1999] Peyret, N., Seneviratne, P. A., Allawi, H. T., and SantaLucia, Jr., J.
(1999). Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A·A,
C·C, G·G and T·T mismatches. Biochemistry, 38:3468–3477.

[Press et al., 1992] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.
(1992). Numerical Recipes in C. Cambridge University Press, 2 edition.

[Rauhe et al., 2000] Rauhe, H., Vopper, G., Feldkamp, U., Banzhaf, W., and Howard,
J. C. (2000). Digital DNA molecules. In Condon, A. E. and Rozenberg, G., ed-
itors, Preproceedings of the 6th International Workshop on DNA-Based Computers,
DNA 2000, Leiden, The Netherlands, June 2000, page 271. Leiden center for nat-
ural computing. Poster, manuscript available under http://ls11-www.informatik.uni-
dortmund.de/molcomp/Publications/publications.html.

[SantaLucia, 1998] SantaLucia, Jr., J. (1998). A unified view of polymer, dumbbell, and
oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National
Academy of Sciences, 95:1460–1465.

[SantaLucia et al., 1996] SantaLucia, Jr., J., Allawi, H. T., and Seneviratne, P. A. (1996).
Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry,
35(11):3555–3562.

79

[Seeman, 1982] Seeman, N. C. (1982). Nucleic acid junctions and lattices. Journal of Theo-
retical Biology, 99:237–247.

[Suggs et al., 1981] Suggs, S. V., Hirose, T., Miyake, T., Kawashima, E. H., Johnson, M. J.,
Itakura, K., and Wallace, R. B. (1981). Use of synthetic oligodeoxyribonucleotides for the
isolation of specific cloned DNA sequences. In Brown, D. D., editor, ICN-UCLA Symp.
Developmental Biology Using Purified Genes, volume 23, pages 683–693. Academic Press,
New York.

[Sugimoto et al., 1996] Sugimoto, N., Nakano, S., Yoneyama, M., and Honda, K. (1996). Im-
proved thermodynamic parameters and helix initiation factor to predict stability of DNA
duplexes. Nucleic Acids Research, 24(22):4501–4505.

[Tanaka et al., 2004] Tanaka, F., Kameda, A., Yamamoto, M., and Ohuchi, A. (2004). Ther-
modynamic parameters based on a nearest-neighbor model for DNA sequences with a single-
bulge loop. Biochemistry, 43:7143–7150.

[Vinga and Almeida, 2003] Vinga, S. and Almeida, J. (2003). Alignment-free sequence com-
parison — a review. Bioinformatics, 19(4):513–523.

[Welsh and Powell, 1967] Welsh, D. J. A. and Powell, M. B. (1967). An upper bound for the
chromatic number of a graph and its application to timetabling problems. The Computer
Journal, 10(1):85–86.

[Wetmur, 1997] Wetmur, J. G. (1997). Physical chemistry of nucleic acid hybridization. In
Wood, D., editor, DNA3, DIMACS: Series in Discrete Mathematics and Theoretical Com-
puter Science, pages 1–23, Providence, RI. American Mathematical Society.

[Wu et al., 1997] Wu, T.-J., Burke, J. P., and Davison, D. B. (1997). A measure of DNA
sequence dissimilarity based on Mahalanobis distance between frequencies of words. Bio-
metrics, 53:1431–1439.

80

