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ABSTRACT

Ion mobility spectrometry (IMS), coupled with multicapillary
columns (MCCs), is a technology for analyzing the concen-
tration of volatile organic compounds (VOCs) in the air or in
exhaled breath. We introduce a new model-based method for
peak description and thus for manifold data reduction. De-
pending on the number of peaks, we reduce the raw data by
five orders of magnitude (about 250 000-fold). Each peak
is described with seven parameters, which are estimated by
an expectation maximization (EM) algorithm that copes well
with overlapping peaks. We transform the parameters into ro-
bust and interpretable peak descriptors, which are suitable for
downstream analysis steps.

Index Terms— Ion mobility spectrometry (IMS), data re-
duction, parameter estimation, mixture model, EM algorithm,
three-parameter inverse Gaussian distribution

1. INTRODUCTION

Ion mobility spectrometry (IMS) technology has recently
gained importance because it can measure volatile organic
compounds in the air or in exhaled breath under normal air
pressure, in contrast to mass spectrometry (MS), which re-
quires a vacuum. Therefore IMS instruments are easier to
build and less expensive. So IMS technology, coupled with
multi-capillary columns (MCCs) for pre-separating complex
mixtures, is now being explored for exhaled breath analysis
in medical applications; several diseases like lung cancer [1]
can potentially be diagnosed early.

Main results. The size of a full MCC/IMS measurement
can be several tens or hundreds of megabytes depending on
the instrument’s resolution, e.g. 12500x6000 data points from
10 minutes of measurement. Comparing measurements with
an annotated reference database of metabolic compounds at

this level of detail is not only time-consuming, but also com-
plicated due to inherent noise and small differences in loca-
tion and shape of the peaks. Therefore we reduce the original
data to few peak descriptors. Our approach is to describe the
peaks with appropriate parameterized model functions which
reduce the amount of data down to the parameters of the func-
tions. Our model has seven parameters per peak, reducing
the data by five orders of magnitude or about 250 000-fold.
We introduce peak descriptors, which have the advantage that
they can be naturally interpreted as location and shape param-
eters of the peaks and are in a one-to-one correspondence with
the (technical) model parameters. Since peaks may overlap,
we interpret the measured data as a sample from a mixture of
several peak models plus background, and we use an expecta-
tion maximization (EM) algorithm for parameter estimation.

Previous work. Bader [2] used hard assignments to dis-
tinguish the peaks, with the disadvantage that such methods
do not cope well with overlapping peaks. In Vogtland’s ap-
proach [3], the peak description in drift time is a combina-
tion of two semi-distributions. The fronting of a peak is de-
scribed by a normal distribution while after the mode a Breit-
Wigner distribution is used for a better tailing approximation.
Bödecker [4] used a least-square method to estimate the pa-
rameters for Vogtland’s function to describe peaks. The ap-
proach [3, 4] complicates parameter estimation, since incon-
sistent relative weights for both semi-distributions are used to
ensure continuity. Rossoni and Feng [5] previously used the
EM algorithm to describe interspike interval data in the neu-
rosciences with mixtures of (two-parameter) inverse Gaussian
distributions (among others).

Outline. In Section 2 we summarize the background of
MCC/IMS technology and mention standard preprocessing
steps. In Section 3 we introduce the peak model and explain
how a measurement is interpreted as a sample from a mixture
distribution of several peaks and the background. Section 4
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Fig. 1. Heat map of an MCC/IMS measurement. X-axis: drift
time t in ms; Y-axis: retention time r in seconds; intensity:
white (lowest) < blue < purple < red < yellow (highest),
reaction ion peak (RIP) at t = 17.5ms

describes the EM algorithm used to estimate peak parame-
ters, and in Section 5 we introduce robust interpretable peak
descriptors. An evaluation of our approach is presented in
Section 6, while Section 7 concludes.

2. BACKGROUND

MCC/IMS experiments. The function of IMS devices is
well documented [6] and is only summarized here briefly. For
this work, a BioScout IMS (B&S Analytik, Dortmund, Ger-
many) with a 63Ni ß-ionization source is used. Neutral ana-
lyte compounds are ionized by reaction ions into product ions
before they are moved though the IMS tube by an electric
field. Molecule properties like mass, polarizability and struc-
ture lead to a characteristic drift time for every single com-
pound. To obtain comparable drift times independent of ex-
ternal conditions (temperature, pressure), they are converted
into reduced inverse mobilities [6]. The measurement pro-
cess takes about 100 milliseconds. A signal intensity (voltage
change) is captured at each time point with 250 kHz.

It is impossible to distinguish different compounds with
identical mean drift time. Therefore the IMS device is cou-
pled with an MCC, which separates the compounds before
they enter the IMS device. According to the strength of inter-
acting molecules with the matrix of the MCC, different com-
pounds are retained for different times in the MCC. After a
specific retention time r, several molecules of a compound
reach the IMS device. Thus an IMS measurement is executed
many times, about ten times each second. Let R be the fi-
nite set of retention time points where an IMS measurement
is taken, and let T be the finite set of measured drift time
points. Because of equidistant time points, we may assume
that R = {1, . . . , |R|} and T = {1, . . . , |T |}. We obtain a
two-dimensional spectrum S = (sr,t) indexed by retention
time r ∈ R and drift time t ∈ T . Here (sr,t) can be inter-
preted as a sum of events counted at index (r, t). It can be
visualized as a two-dimensional heat map (Fig. 1). A column
S·,t with fixed drift time t is called a chromatogram.

Preprocessing. The data is noisy and contains a dominant
reaction ion peak (RIP, visible in Fig. 1 around t = 17.5 ms).
To compensate for such signals that are constantly present at
specific drift times t, we subtract the chromatogram’s median
from each chromatogram. We next use a low-pass filter to re-
move high frequencies via a two-dimensional discrete Fourier
transform (DFT). We smooth the data in each spectrum with
a Savitzky-Golay filter, which computes weighted averages
across small drift time windows (9 data points). These are
standard procedures and already used in commercial soft-
ware.

3. PEAK MODEL

Regions with a high signal intensity are called peaks. Since
peaks may overlap, we cannot assign each coordinate (r, t)
to a unique peak (or to the background). So a probabilistic
assignment method is desirable, and we describe the whole
measurement S as a mixture of several peak components and
a background component accounting for remaining noise.

The main feature of our proposed model is that the mea-
sured values sr,t are interpreted as a (finite) sample from a
two-dimensional probability density f = f(r, t), the said
mixture model. Detecting (overlapping) peaks is challenging,
and we assume that the number of peaks c and their mode po-
sitions are known. The problem is to first choose a parametric
family for the components of f and then, from the data, deter-
mine the parameters of each component and probabilistically
assign coordinates (r, t) to components.

To choose appropriate functions for the peak model, we
examined several hundred measured peaks and noted that (a)
horizontal cross sections (intensity over drift time) are al-
most symmetric, but sometimes slightly skewed (when the
ionized molecules moved through the drift tube, the drift gas
flows in opposite direction through the tube to blow the de-
ionized molecules out of the tube, slowing the ions), (b) ver-
tical cross sections (intensity over retention time) are almost
always skewed (long tailing due to MCC interaction).

The inverse Gaussian distribution can represent both sym-
metric and tail-skewed shapes. It phenomenologically fits
well to many of the observed peaks; therefore it was chosen
as the parametric model in what follows. Note that there is no
principled physical theory yet available to describe the peak
shape on either axis that fits with the observations.

While the original inverse Gaussian distribution has two
parameters µ > 0, λ > 0 with a fixed origin at zero, we
use an additional offset parameter o ∈ R. It is known as the
shifted or three-parameter inverse Gaussian distribution [7].
The density is

gµ,λ,o(x) = [x > o] ·

√
λ

2π(x− o)3
· exp

(
−
λ
(
(x− o)− µ

)2
2µ2(x− o)

)
.

Here µ > 0 is the mean of the distribution (relative to the
offset o; thus the true mean is µ+ o), and λ > 0 controls the

1802



shape and skewness of the distribution.
The two-dimensional peak model density function p is a

product of shifted inverse Gaussians in both retention time r
and drift time t and defined as

pµR,λR,oR,µT,λT,oT(r, t) := gµR,λR,oR(r) · gµT,λT,oT(t).

The model is a probability density, so
∫
R2 p(r, t) dr dt = 1.

To describe peaks of different (relative) volume, the model
function can be scaled by an arbitrary positive factor. The
data is not on R2, but on a finite lattice R × T , so using
the density values p(r, t) directly yields a discretization er-
ror that is corrected by introducing a normalization factor
Zp =

∑
r,t p(r, t) and replacing p by P := p/Zp.

A measurement is modeled as a sample from a weighted
mixture of peak models. Let c be the number of peaks and

θj := (µR,j , λR,j , oR,j , µT,j , λT,j , oT,j)

be the parameter vector of peak j (1 ≤ j ≤ c), and let ωj
be the normalized weight of peak j. To explain the remain-
ing noise and regions without peaks, we assume a background
component with uniform density 1/(|R||T |) across all reten-
tion and drift times and normalized weight ω0; for conve-
nience, we set θ0 to an empty parameter vector. Thus the
full mixture model has probability mass function

fω,θ(r, t) =
ω0

|R||T |
+

c∑
j=1

ωj · Pθj (r, t). (1)

4. PEAK PARAMETER ESTIMATION

The goal is to estimate parameters ωj and θj for each compo-
nent, such that the log-likelihood∑

r∈R, t∈T
sr,t · log fω,θ(r, t) (2)

of the measurement S is maximized, where fω,θ is the mix-
ture from (1). However, this is difficult because (2) is not
concave in ω, θ and has several local maxima.

The expectation maximization (EM) algorithm [8] is an
iterative method to optimize parameters in mixture models,
starting with reasonable estimates, and increasing the log-
likelihood in each step until convergence to a local optimum.
It has been successfully applied in many contexts, among
others to mixtures of (non-shifted) one-dimensional inverse
Gaussian distributions [5].

EM works by introducing hidden assignment variables
W(r,t),j ∈ {0, 1} indicating whether data point (r, t) ∈ R×T
belongs to model component j ∈ {0, 1, . . . , c}. The joint log-
likelihood of W,ω, θ for data S = (sr,t) is

∑
r,t

sr,t

c∑
j=0

W(r,t),j log(ωjPθj (r, t)). (3)

For EM, the assignment is soft (probabilistic) instead of hard,
and W(r,t),j is replaced by the expected value

W (r,t),j := E[W(r,t),j |S] = P(W(r,t),j = 1 |S),

conditional on the data S. The EM algorithm alternates be-
tween two phases: In the expectation (E) phase, the expec-
tations of the hidden variables are estimated. In the maxi-
mization (M) phase, the parameters of each components and
the relative weights are optimized with maximum-likelihood-
estimators (MLE), using the fixed hidden variables. Each
of the phases results in convex optimization problems if the
model functions Pθj are appropriately chosen, and one can
prove that the log-likelihood increases in every step until con-
vergence to a local optimum [9].

Expectation Step. We estimate P(W(r,t),j = 1 |S), where
P denotes the probability measure of the mixture model with
current parameters (θ0, ω0). Using Bayes Theorem, we arrive
at the intuitively appealing result that W (r,t),j is proportional
to ω0

j Pθ0j (r, t), that is, ensuring proper normalization,

W (r,t),j =
ω0
j Pθ0j (r, t)∑
k ω

0
k Pθ0k(r, t)

. (4)

Maximization step. Using W (r,t),j , the data sr,t decom-
poses into independent components s(j)r,t , each of which rep-
resents a single peak (or the background), via

s
(j)
r,t :=W (r,t),j · sr,t. (5)

We first estimate the new model weights ω∗j by maximum
likelihood; a standard calculation shows that

ω∗j =
1

ZS

∑
r,t

s
(j)
r,t ,

where ZS =
∑
r,t sr,t is the total signal intensity.

For the background component (j = 0), there are no fur-
ther parameters, and we are done.

For the peak component, we estimate each parameter
of θj . MLEs for the one-dimensional shifted inverse Gaus-
sian are known [7, 10]. Since our two-dimensional model
factors into two one-dimensional inverse Gaussians, these
estimators can be used by marginalizing over the respec-
tive other dimension. We here provide the resulting esti-
mators (µ∗R,j , λ

∗
R,j , o

∗
R,j) for the retention time axis. Let

s̃
(j)
r :=

∑
t∈T s

(j)
r,t be the marginalized signal.

The relative mean is naturally estimated as

µ∗R,j =

∑
r r · s̃

(j)
r

ω∗j ZS
− o∗R,j .

Thus to estimate µ∗R,j the offset estimate o∗R,j has to be known.
We solve this problem by first using the previous value o0R,j ,
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then estimate o∗R,j (see below) using µ∗R,j , and finally update
µ∗R,j by using o∗R,j . This can be repeated until convergence,
but we found that one iteration is sufficient in practice.

The shape parameter λ∗R,j is ML-estimated by

λ∗R,j =
ω∗j ZS∑

r s̃
(j)
r ·

(
1/(r − o∗R,j)− 1/µ∗R,j

) .
We circumvent the difficulty of requiring o∗R,j as above.

The ML-estimator for the offset o∗R,j is determined by

0 =
∑
r

s̃(j)r ·
( 3

λ∗R,j(r − o∗R,j)
+

1

(µ∗R,j)
2
− 1

(r − o∗R,j)2
)
.

There is no closed formula for o∗R,j , but its value can be effi-
ciently determined using Newton’s method.

Starting values. EM requires starting parameters ω0, θ0,
from which it will converge towards a local optimum. Choos-
ing reasonable starting values is essential for quick conver-
gence and good results. The initial component weights are
chosen uniformly as ωj :≡ 1/(c + 1), but they are immedi-
ately re-estimated. The key issue is choosing reasonable peak
parameters θj . Since the shifted inverse Gaussian distribution
is zero to the left and below of (oR, oT), the origin parameters
should be set to the left and below the main peak volume.
This is at present done visually and interactively with a heat-
map visualization of the IMS spectrum as in Fig. 1. The other
parameters can be initialized with any small positive value.

Convergence criteria. There are two alternatives for stop-
ping EM: no significant log-likelihood improvement, or no
significant change in the model parameters. We check the
model parameters. Let θj,k be the k-th parameter in θj ; let
θ0j,k denote the old value and θ∗j,k the new value. We compute
the regularized relative change Cj,k =

∣∣θ∗j,k − θ0j,k∣∣/(|θ∗j,k|+
1). Iteration stops when C := maxj,k Cj,k < ε, a given
threshold. In practice ε = 10−3 works well, and we usually
reach convergence after 10–20 iterations, depending on the
number of peaks and their overlap. On an Intel i5 Quad-Core
2.8GHz, this takes about one second per peak on a standard-
resolution IMS (3× 106 data points) and 20 seconds per peak
on a high-resolution IMS (75× 106 data points).

5. PEAK DESCRIPTORS

Substantially distinct parameter values of the shifted inverse
Gaussian may result in similar distributions (Fig. 2). For hu-
man interpretation and for comparing different experiments, it
help if similar distributions were described with similar peak
descriptors, replacing the technical parameters (µ, λ, o). Here
we advocate the mean µ′, the standard deviation σ, and the
mode m (position of the maximum). Note that, because of
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Fig. 2. Significantly different shifted inverse Gaussian param-
eter combinations (µ, λ, o), here (10.93, 106.42, 9.63) and
(20.41, 786.08, 0), result in similar distributions.

Fig. 3. Section of an IMS measurement with three peaks

the skewness, mean and mode generally do not agree for an
inverse Gaussian. The three descriptors are in a one-to-one-
correspondence to the technical parameters. In particular,

µ′ = µ+ o, σ =
√
µ3/λ,

m = µ
(√

1 + (9µ2)/(4λ2)− (3µ)/(2λ)
)
+ o.

We obtain the original parameters back from the descriptors;
define

p :=
(
−m(2µ′ +m) + 3 · (µ′2 − σ2)

)
/
(
2(m− µ′)

)
,

q :=
(
m(3σ2 + µ′ ·m)− µ′3

)
/
(
2(m− µ′)

)
.

Then o = −p/2−
√
p2/4− q, µ = µ′ − o, λ = µ3/σ2.

Example. We independently ran EM 1000 times on a
section of a measurement (Fig. 3) with dimensions |R| =
54, |T | = 141. Starting modes (mR,mT) for the three peaks
were visually chosen as (9, 55)M1

, (20, 72)M2
, (32, 65)M3

.
To obtain randomized EM start parameters (µ, λ, o) in each
dimension, we draw them uniformly from the intervals
µ ∈ [m + 40,m + 60] and λ ∈ [µ3/4, µ3]. We set
o := m − µ + 10−3. These ranges ensure that the initial
model is smaller in its shape than the original peak. Table 1
shows the resulting mean and standard deviation for model
parameters and descriptors. The descriptors are much more
robust than the technical model parameters.

6. EVALUATION

We evaluate the quality of the obtained peak models by com-
puting the log-likelihood of the observed normalized signal
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M1 M2 M3

µR 59.3± 181 70.8± 180 82± 179
λR 129000± 1.16 · 106 133000± 106 120000± 787000
oR −50.2± 181 −50± 180 −49.6± 179
µT 96.7± 181 113± 181 108± 176
λT 8010± 45500 14100± 67100 6470± 30600
oT −49.6± 182 −50± 182 −50.3± 178
µ′R 9.09± 0.032 20.76± 0.026 32.37± 0.055
σR 1.28± 0.013 1.64± 0.006 2.15± 0.037
mR 9.05± 0.099 20.7± 0.122 32.28± 0.134
µ′T 47.05± 0.739 63.58± 0.409 57.82± 1.49
σT 10.68± 0.45 10.25± 0.051 14.03± 0.997
mT 45.29± 2.65 62.2± 1.79 55.12± 2.48

Table 1. Comparison between model parameters and descrip-
tors, resulting from 1000 independent EM executions with
different start parameters, mean ± standard deviation.
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Fig. 4. Q in relation to the signal weight 1 − ω0 for 110
datasets.

sor,t := sr,t/ZS under three different distributions: (1) the
empirical distribution sor,t itself, the most accurate descrip-
tion of the data requiring |R| |T | parameters; (2) the estimated
mixture model fω,θ requiring seven parameters per peak; (3)
the uniform distribution on R × T , unaware of the data and
requiring no parameters. Thus let

LD :=
∑

r,t
sor,t log(s

o
r,t),

LM :=
∑

r,t
sor,t log(fω,θ(r, t)),

LU :=
∑

r,t
sor,t log(1/(|R| |T |)) = − log(|R| |T |).

Of course LD ≥ LM ≥ LU ; we claim that for IMS measure-
ments with high peak density, LD ≈ LM � LU , even though
our model requires only seven parameters per peak instead of
|R| |T | data points. Thus we compute the relative size of LM
in the interval [LU, LD], that isQ := (LM−LU)/(LD−LU) ∈
[0, 1]; values closer to 1 mean more accurate models.

Sparse measurements with few peaks (and much back-
ground noise) are (globally) already well described by the
uniform model; thus we plotQ in relation to the weight 1−ω0

of the signal components in our model (Fig. 4). For data sets
that predominantly consist of peaks (1 − ω0 > 0.4), almost
all Q-values are above 0.8, with few exceptions.

7. CONCLUSION

We have introduced two-dimensional shifted inverse Gaus-
sian distributions as models for peaks in IMS measurements;
they phenomenologically fit well to the observed symmetrical
and skewed peak shapes. Each peak is described with seven
(technical) parameters and alternatively with seven descrip-
tors that allow better interpretation and comparison of peak
position and shape. Our evaluation shows that these seven
descriptors per peak suffice to describe IMS measurements
accurately. Our approach results both in a data reduction by
at least five orders of magnitude and simplifies further pro-
cessing of peaks, such as comparisons between measurements
and to reference databases. Data and additional material can
be found at www.rahmannlab.de/research/ims.
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