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Abstract

An extension of the evolution strategy for mixed-integer optimizationprob-
lems is introduced. The resulting generalized evolution strategy is applied
to the problem of optical multilayer coating design and the results are
compared with results obtained by standard methods. The generalized
evolution strategy as a synthesis method does not require the existence of
a starting design, and it competes well with refinement methods for the
optimization of starting designs. The results are very encouraging and
indicate that this method is a robust and helpful algorithm for optical mul-
tilayer design. Furthermore, the generalized evolution strategy is not a
tailored heuristic but can be used for arbitrary mixed-integer optimization
problems.

1 INTRODUCTION

Evolution strategies (ES) (Rechenberg 1973; Schwefel 1981) are a member of
the class of so-called evolutionary algorithms, probabilistic search and optim-
ization algorithms gleaned from organic evolution (see e.g. Bäck and Schwe-
fel 1993). Evolution strategies work by imitating the biological principles of
a population of individuals which undergo processes of recombination, muta-
tion, and selection. Each individual is interpreted as a search point whose
quality (fitness) can be measured according to the optimization problem the
algorithm is applied to. The selection operator favors the individuals of
higher quality to produce individuals for the next generation, such that the
population evolves towards increasingly better regions of the search space.

Although some very early experiments with the evolution strategy dealt
with discrete optimization problems using binomially distributed muta-
tions (see Klockgether and Schwefel 1970; Lichtfuss 1965; Schwefel 1968),
the modern (�+; �)-ES (the notation summarizes both the (�+�)- and (�,�)-
variant of the ES; see Bäck and Schwefel 1993) is designed for solving
continuous parameter optimization problems of the form

minff(~x) j ~x 2M � IRng : (1)

Many application problems in industry, however, involve the simultan-
eous use of discrete and continuous object variables (Kelahan and Gaddy



1978). Therefore, a more general formulation of the global optimization
problem as

minff(~x; ~d) j ~x 2M � IRnx ; ~d 2 N � ZZndg (2)

has greater applicability, and it is highly desirable to develop an extension
of the evolution strategy capable of yielding good solutions to nonlinear,
mixed-integer optimization problems. There are many reasons to develop
such an algorithm.

First, it is not sufficient to rely on the naive approach of embedding ZZ in
IR and using the standard evolution strategy with rounding of the discrete
object variables. For a discrete optimization problem, the optimum point
obtained by rounding the result of the continuous optimization might be
different from the true discrete optimum point even for linear objective func-
tions with linear constraints (see e.g. Schütz 1994, p. 46). Furthermore, the
evolution strategy mechanism to approximate an optimum with arbitrary
precision can cause stagnation of the search in case of discrete optimiza-
tion problems if the step sizes drop below one, because one is the smallest
distance between two different points in ZZnd .

Second, one might be tempted to optimize discrete and continuous para-
meters independently of each other as done in the structure evolution ap-
proach by Lohmann (1992). This method, however, assumes a separability
between discrete and continuous optimization, which is not necessarily the
case for highly nonlinear interactions between discrete and continuous vari-
ables. Additionally, structure evolution requires the development of spe-
cialized genetic operators rather than offering a general-purpose algorithm
for mixed-integer optimization.

Third, practically no generally applicable algorithms for mixed-integer
optimization are available so far, although many practical applications cla-
rify the strong need for such an algorithm.

In this paper, an evolution strategy is generalized to a heuristic for mixed-
integer optimization, and the algorithm is described in section 2. Section 3
demonstrates the practical application of the new algorithm to the synthesis
of optical multilayer systems and shows the feasibility of the method. In
section 4, some concluding remarks and an outline of further research are
given.

2 THE GENERALIZED EVOLUTION STRATEGY

The generalized evolution strategy (GES) for mixed-integer optimization is de-
scribed in this section by using a notation for evolutionary algorithms which
was introduced in Bäck and Schwefel (1993) (see also Bäck and Hoffmeister
1994 for an overview of evolution strategies). The basic idea of the GES
consists in the introduction of mutation probabilities pj 2 (0; 1) as strategy
parameters that control the application of mutation to the discrete paramet-
ers. Assuming a dimension nx of the continuous part of the search space
and nd of the discrete part, the space of individuals extends to:

I = IRnx � ZZnd �As ; (3)

where As = IRn�
+ � (0; 1)np (n� 2 f1; : : : ; nxg, np 2 f1; : : : ; ndg) denotes

the strategy parameter space (n� standard deviations (�1; : : : ; �n�) for the



normally distributed mutation of object variables xi and np mutation prob-
abilities (p1; : : : ; pnp) for mutation of the object variables dl).

The strategy parameters of a standard (�,�)-ES include up to n� = nx
standard deviations in case of the standard mutation operator and addi-
tionally up to nx � (nx � 1)=2 covariances in case of correlated mutations
(for detailed information see Bäck and Schwefel 1993). Together, the set
of strategy parameters attached to an individual describes a generalized
nx-dimensional normal distribution which controls the mutation of this
individual. The strategy parameters are not controlled by an exogenous
process but undergo mutation and recombination in a similar way as ob-
ject variables do, such that the probability density functions for mutating
individuals evolve over time according to the topological characteristics of
the objective function. The selection operator favors advantageous strategy
parameters by exploiting the implicit link between strategy parameters and
fitness. For a more detailed introduction to the topic of self-adaptation, the
reader is referred to Hoffmeister and Bäck (1992) and Schwefel (1992).

The GES discussed in this paper does not use correlated mutations,
although the mechanism has been implemented. A description of the prin-
ciples of correlated mutations can be found in Bäck and Hoffmeister (1994)
and Rudolph (1992). The generalized evolution strategy self-adaptsdiscrete
mutation probabilities ~p in addition to standard deviations ~�.

Individuals as members of a populationP (t) at generation t are denoted

~ai(t) = (~xi(t); ~di(t); ~�i(t); ~pi(t)) :

The fitness F : I ! IR of an individual is defined by means of the value
of the objective function f , i.e., F (~a(t)) = f(~x(t); ~d(t)). In the high-level
pseudocode notation introduced in Bäck and Schwefel (1993), the general-
ized evolution strategy can be described as follows:

ALGORITHM 1 (outline of the GES)

t := 0;
initialize P (0) := f~a1(0); : : : ;~a�(0)g 2 I�

where I = IRnx � ZZnd � IRn�
+ � (0; 1)np

and ~ai(t) = (~xi(t); ~di(t); ~�i(t); ~pi(t))
8i 2 f1; : : : ; �g;

evaluate P (0) : fF (~a1(0)); : : : ; F (~a�(0))g

where F (~ai(0)) = f(~xi(0); ~di(0));
while (�(P (t)) 6= true) do

recombine: ~a0i(t) := r0frxrdr�rpg(P (t))

8i 2 f1; : : : ; �g;
mutate: ~a00i (t) := m0

f�;� 0 ;g(~a
0
i(t))

8i 2 f1; : : : ; �g;
evaluate: P 00(t) := f~a001 (t); : : : ;~a

00
�(t)g :

fF (~a001 (t)); : : : ; F (~a00�(t))g

where F (~a00i (t)) = f(~x00i (t); ~d
00
i (t));

select: P (t+ 1) := if (�,�)-selection
then s(�;�)(P

00(t));
else s(�+�)(P (t) [ P 00(t));

t := t+ 1;
od



In comparison with the standard ES, extensions of the algorithm are
almost exclusively related to the mutation operator. The selection operator
remains completely unchanged (s(�+�) deterministically selects the � best
individuals out of the union of parents and offspring to survive, while
s(�;�) selects the � best out of the offspring population). Individuals are
evaluated by applying the mixed-integer objective function f to the ~x and ~d
components of individuals. The recombination operator is extended to the
discrete object variables and the corresponding strategy parameters, and
the implementation covers all possible recombination mechanisms, i.e.:

� Discrete recombination: For each variable of the offspring individual
the variable is copied from either the first or the second (randomly
chosen) parent with probability 1/2.

� Intermediate recombination: For each variable of the offspring indi-
vidual the value is calculated as the average of the corresponding
variables of the (randomly chosen) parent individuals. This can easily
be generalized by allowing for arbitrary weighting factors w 2 [0; 1]
and 1� w instead of w = 0:5.

These operators can also be applied in their global form where one ran-
domly chosen parent is held fixed and the second parent is randomly chosen
anew for each single variable. Furthermore, different recombination operat-
ors are usually applied to the component vectors of an individual, such that
a complete recombination operator is denoted r0frxrdr�rpg in the following.
rx, r�, rp 2 f�; d;D; i; I; r; Rgdenote the possible choices of recombination
for ~x, ~�, and ~p, while rd 2 f�; d;Dg characterizes the choices for ~d. The
codes �; d;D; i; I; r; R specify no, discrete, global discrete, intermediate,
global intermediate, generalized intermediate, and global generalized in-
termediate recombination as outlined above. More formally, 8c 2 fx; d; �; pg
and 8i 2 f1; : : : ; ncg, the recombination operator can be described as fol-
lows:

r0frxrdr�rpg(P (t)) = ~a0 = (~x0; ~d0; ~�0; ~p0) (4)

where

c0i =

8>>>>>>>><>>>>>>>>:

cS;i (�)
cS;i or cT;i (d)
cS;i or cTi;i (D)
cS;i + (cT;i � cS;i)=2 (i)
cS;i + (cTi;i � cS;i)=2 (I)
cS;i + u � (cT;i � cS;i) (r)
cS;i + ui � (cTi;i � cS;i) (R)

(5)

The indices S and T denote two parents selected at random from the pop-
ulation (the index i in Ti indicates T to be sampled anew for each value of
i), u 2 [0; 1] is a uniform random variable, sampled anew for each possible
value of the counter i when used in the form ui and sampled once per
creation of one offspring individual when it is not indexed. “or” denotes
a decision by a fair random coin toss. As indicated by the indices rx; rd; r�
and rp the complete recombination operator results from combining the
component-wise operators. For example, the code r0IDIi denotes a recom-
bination operator which performs global intermediate recombination on ~x



and ~�, intermediate recombination on ~p, and global discrete recombination
on ~d.

The mutation operator m0
f�;� 0;g : I ! I operates on continuous vari-

ables ~x and the corresponding standard deviations ~� just as in case of the
standard evolution strategy, i.e., (8i 2 f1; : : : ; nxg) (Bäck and Hoffmeister
1994):

�0i = �i � exp(� 0 �N (0; 1) + � �Ni(0; 1)) (6)
x0i = xi + �0i �Ni(0; 1) : (7)

Here, N (0; 1) denotes a realization of a normally distributed random
variable with expectation zero and standard deviation one. The index i
in Ni(0; 1) indicates that the random variable is sampled anew for each
possible value of i. Schwefel (1981) suggests values

� / 1p
2
p
nx

; � 0 / 1p
2nx

(8)

for the exogenous control parameters � and � 0 (“learning rates”). Usually,
the constant of proportionality equals one in both cases.

For the mutation probabilities pj , (with j 2 f1; : : : ; npg), a mutation
mechanism is searched for such that after mutation p0j 2 (0; 1) is still
guaranteed. As usual, small changes should be more likely than large ones,
and changes towards increasing pj should occur with the same probability
as changes towards decreasing pj (i.e., the median equals pj). Based on
these requirements, Obalek (1994) proposed to use a logistic transformation
of the form (8j 2 f1; : : : ; npg):

p0j =

�
1 +

1� pj
pj

� exp (� �Nj(0; 1))

��1

; (9)

such that p0j is distributed according to the logistic normal distribution with
probability density function

fp0

j
(x) =

1p
2�x(1� x)

exp

0B@� ln
�

1
x(1�x) � �

�2
22

1CA ; (10)

where � = ln pj
1�pj

. In the implementation, a transformation is used which
guarantees that the pj neither converge towards zero nor towards one due
to the limited precision of the representation of numbers on a computer.
The transformation simply resets p0j := "p if p0j < "p and p0j := 1 � "p if
p0j > 1 � "p, where "p is a small constant value (10�40 in the experimental
results presented in section 3). This transformation has no impact on the
probability density function (10) (see Schütz 1994, p. 60). In analogy with
� , the learning parameter  is chosen according to the proportionality

 / 1p
2
p
nd

: (11)

The experiments with this mutation mechanism clearly demonstrated
that the learning process works well when np = 1 is chosen, but it has



some problems in the general case np = nd (see Schütz 1994, pp. 89–90).
Therefore, the following experiments were performed with np = 1, and
further tests of the mutation mechanism remain to be performed in future
work.

The mutated mutation probability p0 is used to determine whether
the discrete object variables dl (l 2 f1; : : : ; ndg) should undergo muta-
tion according to the outcome of a sample of a uniform random variable
u � U (0; 1):

d0l =

�
dl ; ul > p0eXl ; ul � p0

(12)

eX indicates the outcome of sampling a random variable with an appro-
priate distribution over the discrete space, e.g., a distribution with max-
imum entropy. In the following, a uniform distribution over the set of
possible values is assumed. This decision is justified because in case of the
application to optical multilayer systems a semantically reasonable metrics
does not exist on the discrete subspace f0; : : : ; n� 1g � ZZ which is used to
represent the available set of choices for discrete variables. In other words,
all possible values are treated equally and it is not possible to define a
distance or similarity measure between them. This equality of choices is
taken into account by using a uniform distribution over f0; : : : ; n� 1g. This
argument also excludes the self-adaptation of step sizes of discrete probab-
ility distributions as introduced by Rudolph (1994) for application problems
where the natural metrics on ZZ are meaningful.

To conclude this section, a notation for the generalized evolution strategy
is defined that summarizes the most important parameters of the algorithm
in the abbreviation

ES(nx; nd; n�; np; rfrxrdr�rpg; s(�;�)) :

This notation is used in the following section to describe the ES-variants
applied to optical multilayer design problems.

3 SYNTHESIS OF OPTICAL MULTILAYER SYSTEMS

Optical multilayer coatings are of remarkable importance in a number of
application fields such as optical and scientific instrumentationmanufactur-
ing, spectroscopy, medicine, and astronomy. An optical multilayer coating
consists of a set of plane parallel isotropic layers separating two homogen-
ous isotropic media (often these are air and a substrate). The permittivity
and conductivity of the layers depend on one spatial coordinate perpendic-
ular to the layer-media boundaries. A plane electromagnetic wave enters
from the first medium (air) into the multilayer system and is partially re-
flected or transmitted at the borders between layers of different refractive
indices.

The behavior of a multilayer system can be characterized by the spectral
reflectance profile at the substrate, i.e., the dependence of reflectances on the
wavelength. The spectral reflectance profile depends mainly on the number
n of layers, their refractive indices ~� = (�1; : : : ; �n), and the thicknesses
~d = (d1; : : : ; dn) of the n layers. Given these parameters, several methods



are known to calculate the spectral reflectance profile of a multilayer system
(see Furman and Tikhonravov 1992, chapter 1).

For the design of optical multilayer coatings, however, the inverse prob-
lem has to be solved: Given a desired spectral reflectance profile, find the
parameters of an optimal multilayer coating that approximates the desired
behavior as well as possible. To measure the difference between the target
reflectance ~R(�) (� denotes the wavelength) and the actual coating reflect-
ance R(~d; ~�; �) within the spectral band [�d; �u] of interest, a merit function

f(~d; ~�) =

Z �u

�d

h
R(~d; ~�; �)� ~R(�)

i2
d� (13)

based on mean square estimation is used (Furman and Tikhonravov 1992,
p. 106). Then, the design of optical multilayer coatings consists in solving
the highly multimodal optimization problem of minimizing f(~d; ~�). In
practice, an approximation of equation (13) over a discrete number m of
(usually equidistant) wavelength values �i (i 2 f1; : : : ;mg) is used:

f(~d; ~�) =
mX
i=1

h
R(~d; ~�; �i) � ~R(�i)

i2
: (14)

Presently, refinement and synthesis methods for the design problem are
distinguished. Refinement methods work by modifying the construction
parameters of a given starting design, while synthesis methods do not re-
quire the input of a starting design. They generate a multilayer coating
by themselves and often use a refinement method to improve its perform-
ance. Because the choice of a starting design is a time-consuming, difficult
problem (especially for the design of antireflection coatings, neutral beam
splitters and multilayer systems featuring non-standard spectral proper-
ties), the development of good synthesis methods is an important topic of
research.

Normally, local optimization methods for the refinement of starting
designs are indicated to yield (more or less) reasonable results (Furman and
Tikhonravov 1992, p. 108). A large number of such refinement methods,
including adaptive random search, damped least squares, a modified gradi-
ent method, golden section, the Hooke-Jeeves method, Powell’s conjugate
search, Rosenbrock’s rotating coordinates, generalized simulated anneal-
ing, Monte Carlo simulated annealing, and a revised Nelder-Mead simplex
method are compared by Dobrowolski and Kemp (1990). On three different
problems, they were not able to identify a single best method, but recom-
mended the choice of the Hooke-Jeeves or damped least squares method.
The good performance of the Hooke-Jeeves algorithm corresponds well
with the results reported in the reference article by Aguilera et al. (1988)
that compares refinement software packages as used by nine different re-
searchers. They define a reference problem which is also optimized by
Dobrowolski and Kemp (1990) and therefore forms a good test case for the
extended evolution strategy as described in the previous section.

First results concerning the application of genetic algorithms as syn-
thesis methods have been published recently (Eisenhammer, Lazarov, Leut-
becher, Schöffel, and Sizmann 1993; Martin, Brunet-Bruneau, Rivory, and



Schoenauer 1994). Genetic algorithms are evolutionary algorithms which
were originally defined to operate on fixed-length binary strings with an
emphasis on recombination and probabilistic selection and without the cap-
ability of self-adapting strategy parameters (Goldberg 1989; Holland 1975).

Eisenhammer et al. (1993) use a genetic algorithm with traditional binary
encoding for the 2n parameters of silver-based heat mirrors. With 8-bit
resolution per layer thickness (restricted to the range 20 – 530 �m and,
due to the number of bits, a grid resolution of 2 nm) and 3-bit per layer
material (sufficient to encode eight different materials), they synthesize
a five-layer system and demonstrate the utility of genetic algorithms to
generate a starting design “from scratch.”

Martin et al. (1994) also refer to their evolutionary method as a genetic
algorithm, but they work directly on a real-valued representation of layer
thicknesses and refractive indices. In addition to proportional selection from
genetic algorithms, they use a recombination operator similar to generalized
intermediate recombination in evolution strategies and a mutation operator
which adds normally distributed perturbations with expectation zero and
a fixed standard deviation to the object variables. Refractive indices are
forced to feasible values by rounding them to the nearest admissable value.
After running the algorithm for 1600 generations, they apply a gradient
refinement method to the resulting design.

Both articles demonstrate the robustness of evolutionary algorithms to
find a solution even for quite difficult problems, if no starting design is
given. The algorithms, however, are not sufficiently general to cover the
properties of the synthesis problem, which — for reasons as outlined in the
introduction — requires an algorithm for mixed-integer optimization.

The Reference Problem

Aguilera et al. (1988) proposed the design of an antireflection coating of
germanium (Ge; � = 4:2) and zinc sulfide (ZnS; � = 2:2) in the wave
length region 7.7 – 12.3 �m. Within this range, m = 47 wavelength values
are defined according to �1 = 7:7�m and (i 2 f1; : : : ;mg):

�i = �1 +
i � 1

m � 1
� (12:3� 7:7) [�m] : (15)

The objective function is given by the reflection mean square (RMS) func-
tion, a slight modification of equation (14):

M (~d; ~�) =

0BBBB@
mX
i=1

v(�i)
h
R(~d; ~�; �i)� ~R(�i)

i2
mX
i=1

v(�i)

1CCCCA
1=2

; (16)

where all weighting factors v(�i) = 1 and the target reflectance ~R(�i) = 0
(i 2 f1; : : : ;mg), i.e.,

M (~d; ~�) =

vuut 1

m

mX
i=1

R(~d; ~�; �i)2 ! min : (17)



According to the matrix-method, the reflection R(~d; ~�; �i) of a multilayer
system at wavelength �i is given by (see Furman and Tikhonravov 1992,
pp. 21–26):

R(~d; ~�; �i) = j�0B � Cj2 �D�1 (18)
D = j�0B + Cj2 (19)

where �0 denotes the refractive index of the entrance medium air (�0 = 1).
B and C are obtained as follows:�

B
C

�
=M(~d; ~�; �i)

�
1
�s

�
; (20)

where �s denotes the refractive index of the substrate germanium (�s = 4)
and

M(~d; ~�; �i) =
nY
j=1

�
cos�ij i��1j sin�ij

i�j sin�ij cos �ij

�
(21)

�ij =
2��jdj
�i

: (22)

In order to get an impression of the topological characteristics of the ob-
jective function defined by equations (17)–(22), a three-dimensional plot of
RMS-values for a two-layer filter with �1 = 2:2, �2 = 4:2, and d1, d2 varying
in the range 0–20 �m is shown in figure 1. The landscape is characterized by

Figure 1: Topology of the RMS merit function in case of a fixed two-layer filter
structure with �1 = 2:2 and �2 = 4:2. Optical thicknesses are varied in the range
0 – 20 �m.



parallel “waves,” separated by valleys of increasing depth and decreasing
width. It is obvious that optimizationalgorithms may stagnatewithin a sub-
optimal valley without ever surmounting the next wave and finding a better
but narrower valley. Even within a valley, the landscape is characterized
by local optima of different quality, located at the valley’s bottom, and the
algorithm would have to adapt to the valley direction in order to search for
a better optimum within the valley. Evidently, the optimization of the RMS-
function of an n-dimensional filter is an extremely complex, multimodal
optimization problem, especially when no problem-specific knowledge —
e.g., a starting design — is provided to the algorithm.

Figure 2: Final best objective function value and final effective filter dimension over
the initial filter dimension for an ES(n;n; n; 1; rIDII; s(8;50)).

Experimental Results

The design of the evolution strategy follows the general principle that
the algorithm is not tailored to the optimization of optical multilayer coat-
ings but can be used for arbitrary mixed-integer optimization problems.
Consequently, the algorithm presently does not incorporate the straightfor-
ward idea of combining adjacent layers of the same refractive index into
a single layer. This operation is performed only at the end of an optim-
ization run in order to determine the real structure of the filter. To get an
impression of the dependence of the effective number of layers (after per-
forming the final unification of adjacent layers of identical material) on the
dimension n = nx = nd which was used for initialization of the algorithm,
single optimization runs with the reference problem were performed for
initial dimensions in the range n 2 f1; : : : ; 100g. An (8,50)-ES with global



Figure 3: Refractive-index profile of the best antireflection coating found by the
extended evolution strategy. The refractive indices of the layers are plotted over the
corresponding optical thicknesses. The plot can be interpreted as a cut through the
filter.

discrete recombination on integer variables and global intermediate recom-
bination on all further variables (an ES(n; n; n; 1; rIDII; s(8;50))) was run for
3000 generations, and the final best objective function value as well as the
final effective filter dimension are plotted as a function of the initial filter
dimension n in figure 2.

The results clearly demonstrate the improvement of the final reflectance
value with growing initial filter dimension n, corresponding to a growing
effective filter dimension. In comparison to the initial filter dimension, the
effective filter dimension reduces to about one fourth during the optimiza-
tion runs.

The largest improvement of reflectance values is observed for effective
filter dimensions in the range 4–10. Beyond an effective dimension of
10, reflectance values in the range 0.94–1.63% are consistently found by
the evolution strategy, and almost all values are better than 1.35%, the
second best value found by refinement methods for a predefined starting
design (Aguilera et al. 1988). The best value reported by Aguilera et
al. (1988) also achieves a quality of 0.94% as obtained by the evolution
strategy. These results indicate the robustness of an evolution strategy as a
synthesis method.

A further experimental test was performed to investigate the impact of
the values of learning rates � / 1=(

p
2
p
nx) and  / 1=(

p
2
p
nd) on the final

reflectance values. The test was based on an ES(70; 70; 70; 1; rIDII; s(15;100)),
running for 3000 generations for each single value of � and  (varying in
the range 0.01–0.5 in steps of 0.01). An initial dimension nx = nd = 70



Figure 4: Spectral reflectance profile of the best antireflection coating found by the
extended evolution strategy. The reflectances in % are plotted over the wavelength.
This elucidates the characteristics of the filter over the wavelength.

was chosen because the best result reported by Aquilera et al. (1988) was
achieved for a starting design with 69 layers. The experimental results
confirm the choice of � , while the test runs suggest a correction of  by a
factor of 3/5 (see Schütz 1994, pp. 118–120).

Using these parameter values for � and  and the evolution strategy
parameters as indicated above, a single run of 25,000 generations yields a
final reflectance value of 0.709% for a filter with 20 effective layers. The
refractive-index profile of this filter is shown in figure 3; its spectral reflect-
ance profile is shown in figure 4. Column A of table 1 specifies the exact
filter structure in comparison with the starting design given by Aquilera et
al. (1988) (column 1B) and the overall best results reported there (column
3F), which was obtained from the special starting design with 69 layers.
Taking into account that the evolution strategy finds the solution of quality
0.709% without requiring an initial design, which is normally well thought
out, the quality of this solution is remarkable.

When the evolution strategy is applied with fixed dimension to the
starting design given in column 1B of table 1, a result of quality 1.287%
as reported in column B of table 2 is obtained (this value reflects the best
result found within 10 runs). The corresponding coating consists of only
13 effective layers and still yields a reasonable and useful reflectance value
(which ranks second-best when compared to the results given in (Aguilera
et al. 1988), table II).



1B A 3F (Tab. III)
Starting ES (Aguilera et al. 1988)

Layer � �d � �d � �d

Substrate 4.0 4.0 4.0
1 2.2 0.7150 4.2 9.7505 2.2 0.1753
2 4.2 0.7675 2.2 0.4323 4.2 5.7821
3 2.2 0.7300 4.2 0.6883 2.2 1.3845
4 4.2 0.7825 2.2 0.7574 4.2 0.2953
5 2.2 0.7300 4.2 0.8351 2.2 2.7938
6 4.2 0.7675 2.2 1.1462 4.2 2.8657
7 2.2 0.7150 4.2 2.5962 2.2 0.3023
8 4.2 0.7675 2.2 0.4108 4.2 1.3117
9 2.2 1.1000 4.2 1.4234 2.2 2.7810
10 4.2 0.1450 2.2 0.7966 4.2 1.1075
11 2.2 1.1000 4.2 0.3279 2.2 0.4671
12 4.2 0.3050 2.2 1.4493 4.2 2.7636
13 2.2 1.6450 4.2 1.3594 2.2 2.7489
14 4.2 0.3050 2.2 0.2400 4.2 0.4351
15 2.2 1.1000 4.2 3.1560 2.2 1.1792
16 4.2 0.1450 2.2 2.6750 4.2 2.5351
17 2.2 4.3250 4.2 0.4876 2.2 2.3890
18 4.2 0.5825 2.2 1.1183
19 2.2 6.0125 4.2 2.5736
20 4.2 1.3875 2.2 2.3804
21 2.2 2.7975
Air 1.0 1.0 1.0P

�d [�m] 26.93 34.60 31.32
Reflection % 10.6 0.709 0.66

Table 1: A comparison of different multilayer filter solutions found.

Comparison with a Genetic Algorithm

To assess its qualities on a test problem for which results from an other evolu-
tionary heuristic are known, the generalized evolution strategy is compared
in this section with the “genetic algorithm” proposed by Martin et al. (1994)
(for a brief discussion of their algorithm see section 3).

The problem presented by Martin et al. (1994) consists in designing an
antireflection coating in the region of 500� 1000nm. For this problem, the
available materials are MgF2, ZnS, SiO2, Si3N4 and Al2O3, the incident
medium is air (�0 = 1:0), and the substrate is glass (�s = 1:5). To take the
dispersiveness of the materials into consideration, a Cauchy law is assumed
to calculate the refractive index

�(�) = A+
B

�2
+

C

�4

for each material (the material-dependent values of the constantsA, B, and
C are given in table 2 of (Martin et al. 1994)). As the materials are only



B C
ES ES

Layer � �d � �d

Substrate 4.0 1.5
1 2.2 0.6381 1.378 0.044717
2 4.2 1.1226 1.606 0.040172
3 2.2 1.7249 1.378 0.103689
4 4.2 1.1539 1.448 0.033130
5 2.2 0.7761 1.606 0.005947
6 4.2 3.3985 2.255 0.000520
7 2.2 0.3484 1.606 0.039084
8 4.2 5.9490 1.378 0.075274
9 2.2 5.4071 1.606 0.421092
10 4.2 0.8947 1.378 0.035882
11 2.2 5.7535 1.606 0.428359
12 4.2 1.1886 1.378 0.082064
13 2.2 2.8530 1.606 0.231126
14 2.255 0.106371
15 1.606 0.048374
16 2.255 0.006470
17 2.0 0.046954
18 2.255 0.064731
19 1.606 0.000515
20 1.378 0.185529
Air 1.0 1.0P

�d [�m] 31.22 2.0
Reflection % 1.287 0.163

Table 2: A comparison of different multilayer filter solutions found.

slightly dispersive, however, it is possible to define an average refractive
index for each material, a method which yields the values �MgF2 = 1:378,
�Al2O3

= 1:606, �ZnS = 2:255, �SiO2
= 1:448, and �Si3N4

= 2:0. In contrast
to Martin et al. (1994) where the wavelength dependent refractive index
values are used, the results presented here are obtained on the basis of the
averaged index values as given above. The numerical difference between
both methods is negligible.

To formulate the objective function as a minimization problem (in con-
trast to Martin et al. (1994) in which the inverse of the sum of squared
reflectance values is maximized), the negative sum over a total of m = 26
equidistant wavelengths �i is minimized here:

f(~d; ~�; n) = �
 

mX
i=1

R(~d; ~�; �i)
2

!�1

! min : (23)

Martin et al. (1994) synthesized a 40-layer system of 2000 nm (= 2�m)
total optical thickness. This can be achieved by scaling (multiplying) each



Figure 5: Topology of the merit function in case of a fixed five-layer filter structure
with �1 = �0 = 1:0, �2 = 1:606, d2 = 100nm, �3 = 2:255, d3 = 100nm, �4 = 1:448,
d4 = 100nm and �5 = �s = 2:0. Optical thicknesses of the first and fifth layer are
varied in the range 0 – 1�m.

thickness by the constant

c =
2000

~d~�t
:

Figure 5 displays the topology of the objective function of a five dimen-
sional system. While the layers two, three, and four are fixed (�2 = 1:606,
d2 = 100nm, �3 = 2:255, d3 = 100nm, �4 = 1:448, d4 = 100nm), the thick-
nesses of layer one (�1 = �0 = 1:0) and layer five (�5 = �s = 2:0) are varied
in the range 0 – 1000nm. In contrast to the previous reference problem a dis-
tinct, sharp global minimum can be identified in the plot of this simplified
version of the merit function.

Again, the generalized evolution strategy yields remarkably good res-
ults: Similar to the GA offered in Martin et al. (1994), the GES identifies an
antireflection coating with an average reflectance of 0:2% after 1600 gener-
ations (i.e., the averaged reflection over all wavelengths amounts to 0:2%).
After executing the algorithm for an additional 3400 generations the aver-
age reflectance of the system decreases to 0:163% with 20 layers (the spectral
profile of the filter resulting after these 5000 generations is presented in fig-
ure 6). This value is nearly as good as the 0:15% system (with 29 layers)
generated by the refinement method used by Martin et al. to get a better
performance for the coating found by their genetic algorithm.

The corresponding refractive index profile is shown in figure 7, and
column C of table 2 lists the structure of the system.



Figure 6: Spectral profile of the best antireflection coating found after 5000 genera-
tions.

4 CONCLUSIONS

The results presented for the design of optical multilayer coatings demon-
strate that the generalized evolution strategy is a useful new algorithm
for the synthesis of such systems. For a reference problem by Aguilera et
al. (1988), the results obtained by the evolution strategy ranked second-
best in comparison with refinement methods using a starting design, and
for a reference problem optimized by Martin et al. (1994), with an evolu-
tionary heuristic on the basis of a real-valued genetic algorithm, the evolu-
tion strategy achieved comparable results while not needing a refinement
method to improve its solutions.

Although these results are encouraging, the algorithm still offers some
obvious directions for further investigations, especially regarding the fol-
lowing questions:

� The test runs indicated just one mutation probability to yield best per-
formance of the algorithm. This mutation probability decreases relat-
ively quickly, such that the search converges towards an optimum in
the discrete subspace faster than in the continuous subspace. It is im-
portant to investigate the conditions for self-adaptation of more than
one mutation probability, e.g., by means of increasing the selective
pressure.

� The dimension of the objective function might also be variable for op-
timization problems such as the optical multilayer design. Operators
such as gene deletion and gene duplication are helpful to incorporate this



Figure 7: Refractive index profile of the best antireflection coating found after 5000
generations. The profile is shown from the substrate (left) to air (right).

into the generalized evolution strategy. The design of the recombin-
ation operator, however, forms a major problem in this case (Schütz
1994).

� As for all synthesis methods, the generalized evolution strategy can be
combined with refinement methods that perform local optimization
of the final design or of intermediate solutions obtained during a run.

� Correlated mutations (see e.g. Bäck and Hoffmeister 1994) are not
tested within the generalized evolution strategy so far. It is expected,
however, that they are able to yield a further improvement of the
results because correlations might allow for a learning of the direction
of valleys. Consequently, with correlated mutations the algorithm
might be able to find better optima within such a valley (cf. figure 1).

It is important to recall that the generalized evolution strategy is design-
ed as a general-purpose algorithm for mixed-integer optimization which
does not rely on any knowledge which is problem-specific for optical coating
design. Renunciating such knowledge, the algorithm still yields solutionsof
remarkable quality and promises successful applicability to a large number
of important industrial problems.
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mierung einer Zweiphasendüse, Teil I. Technischer Bericht 11.034/68, 35,
Berlin: AEG Forschungsinstitut.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models.
Chichester: Wiley.

Schwefel, H.-P. (1992). Imitating evolution: Collective, two-level learning
processes. In U. Witt (Ed.), Explaining Process and Change — Approaches
to Evolutionary Economics, pp. 49–63. Ann Arbor, MI: The University of
Michigan Press.


