
Faculty of Computer Science
Algorithm Engineering (Ls11)
44221 Dortmund / Germany
http://ls11-www.cs.uni-dortmund.de/

SAHN Clustering in Arbitrary

Metric Spaces Using Heuristic
Nearest Neighbor Search

Nils Kriege
Petra Mutzel
Till Schäfer

Algorithm Engineering Report
TR13-1-003
August 2013

ISSN 1864-4503

SAHN Clustering in Arbitrary Metric Spaces
Using Heuristic Nearest Neighbor Search

Nils Kriege, Petra Mutzel, and Till Schäfer

Dept. of Computer Science, Technische Universität Dortmund, Germany
{nils.kriege,petra.mutzel,till.schaefer}@cs.tu-dortmund.de

Abstract. Sequential agglomerative hierarchical non-overlapping
(SAHN) clustering techniques [10] belong to the classical clustering
methods that are applied heavily in many application domains, e.g.,
in cheminformatics [4]. Asymptotically optimal SAHN clustering
algorithms are known for arbitrary dissimilarity measures, but their
quadratic time and space complexity even in the best case still limits
the applicability to small data sets.
We present a new pivot based heuristic SAHN clustering algorithm ex-
ploiting the properties of arbitrary metric distance measures in order to
obtain a best case running time of O(n logn) for the input size n. Our
approach requires only linear space and supports median and centroid
linkage. It is especially suitable for expensive distance measures, as it
needs only a linear number of exact distance computations. In extensive
experimental evaluations on real-world and synthetic datasets, we com-
pare our approach to exact state-of-the-art SAHN algorithms in terms of
quality and running time. The evaluations show a subquadratic running
time in practice and a very low memory footprint.

Keywords: SAHN clustering, nearest neighbor heuristic, data mining

1 Introduction

Clustering is a generic term for methods to identify homogeneous subsets, so-
called clusters, in a set of objects. As unsupervised classification method it is
a key technique in exploratory data analysis and widely applied in many fields
like drug discovery, storage and retrieval, network analysis and pattern recogni-
tion [4,10]. A wealth of different clustering algorithms have emerged with varying
definition of homogeneity. Typically this definition is based on a symmetric dis-
similarity measure for pairs of objects to be clustered.

A special class of clustering algorithms are hierarchical methods, which pro-
vide additional information on the relationship between clusters and can reveal
nested cluster structures. A prominent example are sequential agglomerative hi-
erarchical non-overlapping clustering techniques (SAHN) [10]. These approaches
start with singleton clusters and iteratively merge two clusters with minimal
dissimilarity until only one cluster remains. The inter-cluster dissimilarity is de-
termined by a linkage strategy and based on the dissimilarity of the objects

contained in the clusters. The single, complete, average, median, centroid, and
Ward linkage methods are well-studied and widely used [9]. A unique advantage
of hierarchical methods is that the result can naturally be visualized as a den-
drogram, a rooted binary tree where each node is linked to a merge operation
with a certain dissimilarity. Cutting the dendrogram horizontally at a specific
height leads to a set of subtrees where each root is associated with a subcluster.
Thus, the result of a SAHN clustering allows for iterative refinement of clusters
making these methods especially suitable for an interactive exploration process,
even for very large data sets [3].

We motivate further requirements for our clustering algorithm by a concrete
example arising in cheminformatics, although similar constraints apply in other
application areas: (1) Data sets in cheminformatics are often large containing
tens of thousands of molecules. (2) A hierarchical method is needed since the
whole similarity structure of the data is important. Furthermore, SAHN cluster-
ing methods are well-known and studied in cheminformatics [4] and users may
be accustomed to dendrogram representations. (3) Support for arbitrary metric
distance measures is required, since chemical compounds are complex structures,
which are typically represented as graphs or bit vectors, so-called fingerprints.
(4) Distance measures between these objects may be expensive, e.g., based on
the maximum common subgraph of two molecular graphs. Thus, we desire a low
dependence on the computational complexity of the distance measure.

A major drawback of hierarchical clustering algorithms is their high time and
space complexity. The best exact algorithms known for arbitrary dissimilarity
measure have a worst-case running time of O(n2) [6] and are optimal since the
general problem requires time Ω(n2) [11]. Exact approaches are typically based
on a symmetric distance matrix, which leads to quadratic memory requirements
and a quadratic number of distance computations. However, quadratic time and
space complexity is prohibitive when applied to large datasets in practice.

Related Work. Several exact algorithms with quadratic worst-case running time
are known, some of which are limited to specific linkage methods, e.g., the NN-
Chain algorithm [9], the single linkage minimum spanning tree algorithm [14]
and methods based on dynamic closest pairs [6]. Some SAHN algorithms (e.g.,
NNChain) can avoid the quadratic distance matrix when using representatives,
e.g., centroids, for cluster representation. However, this approach is limited to
vector space and leads to an increased amount of exact distance computations.

Several methods to speedup clustering have been proposed. Data summa-
rization is a common accelerating technique. An easy approach is to draw a
random sample and cluster it instead of the whole dataset. However, using ran-
dom sampling leads to distortions in the clustering results. The kind of distortion
is influenced by the used linkage method and because of this, many sophisticated
summarization techniques are only suitable for special linkages. For example Pa-
tra et al. [13] proposed to use an accelerated leaders algorithm to draw a better
sampling for average linkage. Another example is the Data Bubble summariza-
tion technique [19,2] which was originally developed for OPTICS clustering [1],
but is also suitable for single linkage SAHN clustering.

2

Further acceleration is possible when using heuristic methods. Koga et al. [7]
proposed Locality Sensitive Hashing (LSH) for a single linkage like algorithm. Its
time complexity is reduced to O(nB), where B is practically a constant factor.
Although the runtime is very promising, it relies on vector data and is limited
to single linkage, which is rarely used in cheminformatics.

Using the properties of metric distance function is a common approach to
accelerate different clustering techniques. Pivot based approaches have been pro-
posed to reduce the number of exact distance computations for hierarchical clus-
tering [12] and to speedup k-means [5]. To accelerate OPTICS a pivot based
approach for heuristic k-close neighbor rankings was proposed by Zhou and
Sander [17,18]. They also introduced a pivot tree data structure that enhances
the effectiveness of the pivots for close neighbor rankings. SAHN clustering al-
gorithms often rely on nearest neighbor (NN) queries (e.g., NNChain, Generic
Clustering [11], Conga Line data structure [6]), which can be accelerated for met-
ric distance functions [16]. However, the reduction of the NN search complexity
does not necessarily reduce the asymptotic runtime of the clustering algorithms
(see Sect. 3 for more details).

Our contribution. We propose a new SAHN clustering algorithm for centroid
and median linkage that benefits from sublinear NN queries and combine it with
a pivot based indexing structure to obtain subquadratic running time in prac-
tice. The theoretical time complexity of our algorithm for clustering n objects is
O(n2 log(n)) in the worst case and O(n log(n)) in the best case. Our approach is
broadly applicable since it is not limited to the Euclidean vector space and many
dissimilarity measures actually are a metric. Moreover, the new method requires
only linear space and a linear number of distance computations and therefore
allows to cluster large datasets even when distance computations are expensive.
Our extensive experimental evaluation on a real-world dataset from cheminfor-
matics and on two synthetic datasets shows that the new method yields high-
quality results comparable to exact algorithms, in particular when the datasets
indeed contain a nested cluster structure.

2 Preliminaries

A clustering of a set of objects X = {x1, . . . , xn} is a partition C = {C1, . . . , Ck}
of X . A hierarchical clustering of n objects yields n distinct clusterings ob-
tained from cutting the associated dendrogram at different heights. We refer to
a clustering which results from such a cut and containing i clusters as the clus-
tering at level i ∈ {1, . . . , n}. SAHN clustering is performed based on a distance
function d : X × X → R≥0 between the objects and an inter-cluster distance
D : P(X)× P(X)→ R≥0 which is also called linkage.

Let P ⊂ X be a set of pivots. The triangle inequality in combination with
the symmetric property fulfilled by metric distance functions yields a lower and
upper bounds for the distances between any two objects based on the exact

3

distances between the objects and the pivots:

∀xi, xj ∈ X , p ∈ P : |d(xi, p)− d(xj , p)| ≤ d(xi, xj) ≤ d(xi, p) + d(xj , p) (1)

In the following we are using a tilde as notion for heuristic functions (e.g.
NN(x) is the exact NN of x while ÑN(x) represents the heuristic NN).

3 A Heuristic SAHN Clustering Algorithm

We present a Heuristic SAHN (HSAHN) algorithm that is based on a variation of
the generic clustering algorithm from [11] and utilizes an index structure for NN
search. To efficiently determine heuristic NNs we adopt the approach of [18,17]
based on best frontier search combined with a pivot tree and generalize it to
support the specific requirements for use with SAHN clustering.

3.1 Generic Clustering

The original generic clustering algorithm has a complexity of Ω(n (log(n) + k+
m)) and O(n2 (log(n)+k)) for geometric linkages in vector space and Ω(n2) for
arbitrary linkages and distance measures. The value k is the complexity of the
NN search and m the complexity of the merge process. Although other SAHN
clustering algorithms have a quadratic upper bound, the practical runtime of the
generic clustering competes with the other algorithms [11] and is orientated to-
wards the lower bound. We have chosen the generic clustering algorithm, because
our modified version of the algorithm (Alg. 1) achieves Ω(n (log(n) + k +m))
for arbitrary linkage and distance measures and therefore the lower bound is
directly influenced by the complexity of the NN search. This is also the case
for the NNChain algorithm, but it requires the reducibility property, which is
not guaranteed for heuristic NN searches. Note that HSAHN requires metric
distance function and is therefore limited to median and centroid linkage, but
this is due to the NN search and not a limitation of the clustering algorithm.

Additionally to the runtime modifications, we modified the generic clustering
algorithm, that it minimizes distance distortions for our NN search. In our case
the heuristic NN search directly implies a non-symmetric, heuristic distance D̃.
Since we use the lower bound of (1) as a heuristic for the real distance, we know:

D(x, ÑN(x)) ≥ max{D̃(x, ÑN(x)), D̃rev = D̃(ÑN(x), x)}

It is possible to detect some cases of D̃min < D̃minrev
for the minimal distance

D̃min without recalculating the distance over all pivots after a NN search. For
symmetric distance measures the minimal pairwise distance implies a reciprocal
NN pair. Although this assumption does not hold for the used heuristic NN
search, it does hold with a high probability. If the minimal distance implies a
reciprocal NN object pair, we can use the already computed reverse distance and
improve the quality of our heuristic by reinserting the tuple (x, ÑN(x)) in the
priority queue with a distance of max{D̃min, D̃minrev

} (lines 11 − 13 of Alg. 1).
Our benchmarks have proven that this approach is faster than recalculating the
distance over all pivots and it does not harm the clustering quality significantly.

4

1: function genericClustering(X)
2: currentLevel← singletonClusters(X) . clusters of the actual level
3: for all C ∈ currentLevel do . initialization of Q
4: Q.insert(C, ÑN(C), D̃(C, ÑN(C))) . Q is sorted by D̃(C, ÑN(C))

(value at the time of insertion)
5: while currentLevel.size() > 1 do . main loop
6: (Ci, Cj)← Q.extractMin()
7: while !currentLevel.contains(Ci) or !currentLevel.contains(Cj) do

. invalid entry → recalculation of NN
8: if currentLevel.contains(Ci) then
9: Q.insert(Ci, ÑN(Ci), D̃(Ci, ÑN(Ci)))
10: (Ci, Cj)← Q.extractMin()

11: if ÑN(Cj) = Ci and D̃(Ci, Cj) < D̃(Cj , ÑN(Cj)) then
. using already calculated ÑN(Cj)

12: Q.insert(Ci, Cj , D̃(Cj , ÑN(Cj)))
13: continue
14: Ck ← mergeCluster(Ci, Cj) . (Ci, Cj) minimal reciprocal NN pair
15: currentLevel← currentLevel \ {Ci, Cj} ∪ Ck

16: Q.insert(Ck, ÑN(Ck), D̃(Ck, ÑN(Ck)))

17: return currentLevel.get(0) . return root node of the dendrogram

Algorithm 1. Modified Generic Clustering Algorithm

3.2 Pivot Tree

As mentioned before, we are using the lower bound of (1) for heuristic distance
approximations:

D̃(Ci, Cj) = max
p∈P
|D(Ci, p)−D(p, Cj)|

At this point it becomes clear that the inter-cluster distance D (i.e. linkage)
needs to be metric, and therefore the HSAHN algorithm is limited to centroid
and median linkage.

To increase the effectiveness of the pivots for close or NN queries Zhou and
Sander proposed a pivot tree data structure [18]. The main idea behind this
structure is, that the distance between close objects must be more precise than
the distance between further objects to calculate the correct close or nearest
neighbors. In our case we are searching for NNs with the following formula:

ÑN(Ci) = argminCj
{D̃(Ci, Cj)} (2)

The original pivot tree is a static data structure. In contrast SAHN clustering
merges clusters and therefore we extended the data structure to allow deletion
and insertion of objects and clusters, respectively. Additionally we used a dif-
ferent strategy to calculate the heuristic distances within the pivot tree and a
simplified notion.

As shown in Fig. 1 each node of the pivot tree is linked to a set of clusters X
and a set of pivots P ⊆ X. The set of pivots is randomly chosen from X. One

5

X
P = {p1, . . . , pf}

Xp1

Pp1 = {p11, . . . , p1f}

Xp11

Pp11 = {p111, . . . , p11f}
Xp1f

Pp1f = {p1f1, . . . , p1ff}

Xpf

Ppf = {pf1, . . . , pff}
. . .

.
...

Fig. 1. Pivot Tree

child node is created for each pivot. The root nodes set X contains all clusters,
while the child nodes set Xpi contains all nodes from X which are closest to pi.
Therefore all clusters in Xpi are relatively close to each other. The calculation of
the heuristic distance in combination with the pivot tree can be over the common
pivots Pi∪j :

Pi∪j = {p ∈ Pk | Ci, Cj ∈ Xk}
D̃(Ci, Cj) = max

p∈Pi∪j

|D(p, Ci)−D(p, Cj)|

It is computationally cheap to compute Pi∪j since we now that each cluster is
present only on the direct path from a leaf to the root node. To find the leaf node
in constant time we store this relationship in a hashing data structure during the
construction process. The relevant nodes for Pi∪j are all ancestors of the lowest
common ancestor (LCA) of the leaf nodes for Ci and Cj and the LCA itself.

The construction process starts with the root node followed by a series of
split operations until a maximum number of leaf nodes are reached. Each split
operation creates the child nodes for the node with the maximum size (i.e. car-
dinality of X). At construction time the data structure contains all singleton
clusters.

The deletion of a cluster C from the pivot tree is simply the removal of C
from all Xi. Inserting a merged cluster Ci∪j into the data structure is a bit more
complicated since we cannot compute the exact distances to all pivots efficiently.
It can be done efficiently with the Lance Williams Update Formula [8] for all
ancestors of the LCA of Ci and Cj , because we know the distance of both clusters
to the nodes pivots and we can use D̃ as distance between the merge clusters.
This approach has the drawback that the depth of the pivot tree will decrease
over a series of merge operations. However, this will happen relatively late in the
merge process because close clusters will be merged first during SAHN clustering.
Also the locality property of clusters in X will not be violated.

6

3.3 Best Frontier Search

The best frontier search was already suggested to accelerate the OPTICS clus-
tering algorithm in [17,18]. We will briefly describe the main idea below.

When ordering all clusters by their distance to a single pivot p the heuristic
distances D̃(Ci, Cj) to a fixed cluster Ci are monotonically increasing when Ci
and Cj are further away in the ordering. Hence, it is sufficient to consider the
neighbors of Ci (in the ordering) to find Ci’s NN with respect to a single pivot.

Typically more than one pivot is needed to achieve sufficient quality and the
minimal maximum lower bound is what we are searching for. The best frontier
search solves this problem by calculating a sorted list Lp of clusters for each
pivot p. To find the position of a cluster in Lp in amortized constant time, the
list elements are inserted into a hash table. Furthermore the best frontier search
uses a priority queue which contains entries of these lists that form the frontier.
It is sorted by the lower bound with respect to the single pivot to which the
entry belongs.

When searching a NN of C the queue initially contains all clusters next
to C in a list Lp for some p ∈ P . Then the clusters with the lowest bounds
are successively retrieved from the queue and it is counted how often a certain
cluster is retrieved. After the retrieval of each cluster Cx the frontier is pushed
by adding the cluster to the queue that is next to Cx in the list Li from which
Ci was added to the queue. The cluster Cj which is counted |P | times first is
the heuristic NN with respect to (2). The rationale is that the lower bounds
induced by the clusters retrieved from the queue are monotonically increasing.
That means all lower bounds which will be obtained in the future are greater
than the heuristic distance D̃(Ci, Cj) and therefore Cj must be the heuristic NN
of Ci.

To combine the pivot tree with the best frontier search, Zhou and Sanders run
a k-close neighbor ranking for each node of the pivot tree and joins the different
close neighbors for each object afterwards. This approach is not possible for
SAHN clustering since we cannot efficiently calculate which of the heuristic NNs
found for each node is the best. Furthermore it is possible that the NNs found
for each node are not correct with respect to (2), while the best frontier search
in general can guarantee to find the correct heuristic NN. For that reason we
need to use a different technique which will be described below.

Our integration of the best frontier search into the pivot tree runs a NN
query for cluster Ci over all pivots p ∈ Px where Ci ∈ Xx. While searching for
the NN of Ci the cardinality of Pi∪j is not fixed for an arbitrary cluster Cj .
Therefore it must be calculated for each cluster Cj that is retrieved from the
frontier separately. The value can be calculated by finding the LCA of Ci and
Cj in the pivot tree and counting the number of all pivots on the path between
the LCA and the root node. To avoid unnecessary calculations, it is calculated
on demand and cached for the time of the NN query.

Because the asymptotic worst case complexity of a NN query with the best
frontier search is not better than linear (see Sect. 3.4), a search depth bound s

7

is used. After s clusters are retrieved from the priority queue the best frontier
search is stopped and the cluster that is counted most often is returned as NN.

3.4 Theoretical Complexity

Time complexity. To initialize the pivot tree data structure n clusters are as-
signed to f pivots on each level of the tree. The construction of the pivot tree
therefore needs Θ(d f n) time where d represents the tree depth. Since the num-
ber of required pivots for a achieving certain quality does not depend on the
input size (Sect. 4), f and d can be seen as constant values and the overall
construction time is linear.

As mentioned before, the generic clustering algorithm has a runtime of
Ω(n (log(n) + k + m)) and O(n2 (log(n) + k)), if k is the complexity of the
NN search and m the complexity of the merge process.
The merging consists of two deletions from and one insertion into the pivot tree.
Therefore, the complexity for merging is O(d log(n)) as it takes O(log(n)) time
to insert a cluster into a sorted list Li.
The search of a NN is limited by O(p s) if p is the number of the used pivot
elements and s the search depth bound. The runtime includes O(s) extractions
from the frontier queue with length O(p). Pushing the frontier and finding the
initial elements in Li for each pivot takes constant time. With the same rationale
as before p can be seen as a constant. It is shown in the experimental evaluation
in Sect. 4 that s can be chosen as a constant value, too.

The overall time complexity for HSAHN clustering is therefore limited by
O(n2 log(n)) in the worst case and O(n log(n)) in the best case.

Space requirements. Since the tree depth d is a constant factor and therefore
the number of nodes is also a constant, the pivot tree needs only linear space.
Each node stores a constant number of sorted lists Li which store at most n
clusters. Also the hash table (to find the leaf nodes), the priority queue in the
generic clustering algorithm and the frontier queue need O(n) space. Therefore
the overall space requirements are linear with respect to the input size.

4 Experimental Results

This section will cover performance and quality measurements of our Java im-
plementation. All tests were performed on an Intel Core i7 CPU 940 (2.93GHz)
with a Linux operating system and a Java HotSpot virtual machine (version 1.6)
which was limited to 5 GiB of heap space. The implementation as well as the
evaluation framework is publicly available at the Scaffold Hunter Website1 and
licensed under the GPLv3.

We used real-world as well as synthetic datasets2 for the evaluation. The real-
world dataset (SARFari kinase) stems from the ChEMBL3 database and contains
1 http://scaffoldhunter.sourceforge.net
2 http://ls11-www.cs.tu-dortmund.de/staff/publication_data_schaefer
3 https://www.ebi.ac.uk/chembldb

8

http://scaffoldhunter.sourceforge.net
http://ls11-www.cs.tu-dortmund.de/staff/publication_data_schaefer
https://www.ebi.ac.uk/chembldb

Ti
m

e
in

 S
ec

on
ds

Size
2000 4000 6000 8000

0

500

1000

1500

2000

2500

3000
5; 1; ∞
20; 1; ∞
50; 1; ∞
5; 10; ∞
5; 20; ∞
5; 50; ∞
5; 100; ∞
exact

(a) Unbounded Search Depth

Ti
m

e
in

 M
in

ut
es

Size
0 10000 20000 30000 40000 50000

0

10

20

30

40

50

60
exact
5; 50; 4000

(b) Complete Kinase Dataset

Fig. 2. Runtime / Kinase Dataset / Tanimoto Distance

a set of ≈ 50 000molecules. The Euclidean and Tanimoto distance are utilized for
this dataset, while the latter is applied on the Daylight bit fingerprint (1024 bits)
from the CDK toolkit4 which represent structural information of the molecules.
Two additional synthetic euclidean datasets are used to analyze the impact of
the clusterability on the quality. The first contains uniformly distributed data
and the second 32 normally distributed and well-separated clusters.

All quality measurements are done by comparing each level of the HSAHN
results with the exact results. The Fowlkes Mallows Index and the Normalized
Variation of Information measurement is employed to measure each single level.
All test results (performance and quality) are averaged over three runs, because
the random selection of pivots results in a non-deterministic behavior of the algo-
rithm. Without an exception the differences were very small and the results were
stable over different runs. However one might not over-interpret small differences
in the plots. In the legends of the plots the parameters of the best frontier search
are noted as (f ; l; s), where f is the number of pivots per node, l is the number
of leaf nodes and s is the search depth bound. Note that l = 1 means that the
pivot tree is deactivated.

Speed. As shown in Fig. 2(a) the performance of the algorithm scales linear
with the number of pivots. For the unbounded search depth the asymptotic
runtime behavior is clearly quadratic and the absolute runtime for a high pivot
count even exceeds the runtime of the exact algorithm. It is noteworthy that the
number of leafs in the pivot tree does not have a major influence on the overall
performance. With a reasonably set of parameters (the rationale follows in the
quality evaluation) the time to cluster the whole kinase dataset (Fig. 2(b)) is
much lower than for the exact case. The heuristic curve flattens in the higher
levels. Therefore the asymptotic behavior is subquadratic.

It it important to know that we were unable to cluster a dataset with 30 000
structures with the exact algorithm due to memory constraints. On the contrary,

4 http://cdk.sourceforge.net

9

http://cdk.sourceforge.net

Fo
w

lk
es

-M
al

lo
w

s-
In

de
x

(F
M

)

Level
2000 4000 6000 8000

0.85

0.9

0.95

1

5; 1; ∞
20; 1; ∞
50; 1; ∞
5; 10; ∞
5; 20; ∞
5; 50; ∞
5; 100; ∞

(a) Quality: Number of Pivots

Fo
w

lk
es

-M
al

lo
w

s-
In

de
x

(F
M

)

Level
2000 4000 6000 8000

0.75

0.8

0.85

0.9

0.95

1

5; 100; 200
5; 100; 500
5; 100; 1000
5; 100; 4000

(b) Quality: Search Depth

Fig. 3. Kinase Dataset / Euclidean Distance (5 Dimensions)

N
or

m
al

is
ed

 V
ar

ia
tio

n
of

 In
fo

rm
at

io
n

(N
VI

)

Level
200 400 600 800

0.2

0.4

0.6

0.8

1

32 Cluster - Normal Distribution | 5; 10; 1000
Random Data - Equal Distribution | 5; 10; 1000

(a) Synthetic Datasets

Fo
w

lk
es

-M
al

lo
w

s-
In

de
x

(F
M

)

Level
2000 4000 6000 8000

0.2

0.4

0.6

0.8

1

5; 100; 200
5; 100; 500
5; 100; 1000
5; 100; 4000
5; 100; ∞

(b) Ambiguity: Kinase / Tanimoto

Fig. 4. Influence of the Data Distribution

the heuristic clustering algorithm used less than 1 GiB of memory to cluster the
whole kinse dataset.

Quality - Pivot Count and Pivot Tree. From the theoretical point of view more
pivots should result in a better quality of the best frontier search. However our
test results do not show significant differences in quality if the number of pivots
are increased over a certain threshold. From our observations the main aspect
that influences this threshold is the intrinsic dimensionality of the data and not
the input size. Figure 3(a) clearly shows that there is no significant difference
in quality if no pivot tree and 5, 20 or 50 pivots are used. Anyway, when using
the pivot tree data structure, the quality can be enhanced further. This is a
remarkable result, as the runtime of the setting (50; 1;∞) is more than 10 times
higher than the runtime of the setting (5; 100;∞).

Quality - Search Depth and Ambiguity. The search depth is limiting the runtime
of the best frontier search. Therefore it is very important to know, if the search
depth can be chosen in a sublinear relation to the input size, while retaining

10

a constant quality. Our tests revealed that this search bound can be chosen
constant. For this we calculated an average quality score over all levels but the
lowest 10% (e.g. level 9 001 to 10 000 for the input size 10 000) and compared
this values for different fixed search depths over a series of different input sizes.
Also for very low search depths the quality was constant over all input sizes.
The reason to not use the lowest 10% is that this levels are strongly influenced
by the starting situation where both clusterings contain only singletons.

Experimental evaluation showed that the search depth can be chosen about
500 in the low dimensional euclidean space (Fig. 3(b)). Lower values significantly
harm the quality of the results. The search depth seems to be sensitive to the
number of pivots used and the dimensionality of the data. The first observations
are not surprising, since an increased amount of pivots increases the exit condi-
tion in the best frontier search loop. The second observation can be explained
by the distribution of the distances. For high dimensional space the distances
become more equal to each other. Equal distance means that even a small de-
viation of the lower distance bound (1) results in a higher probability, that this
item is retrieved falsely from the frontier.

This observation also explains why the quality of the Tanimoto measurement
(Fig. 4(b)) is lower than the quality of the Euclidean measurement and why the
limitation of the search depth has such a huge impact. The number of different
distances for the Tanimoto distance is limited by the length of the Farey sequence
which is 3n2

π2 , where n is the bit count. For a dataset size of 10 000 this means
that the number of object pairs is about 300 times more than the number of
distinct distance values. This leads to a high ambiguity in the clustering process
and makes the results even unstable when comparing two exact algorithms. It is
a general problem when comparing clustering by their structure, that alternative
good clusterings cannot be covered by such a measure.

The peak in Fig. 4(b) at level 5 000 is also explainable when having a look
at Fig. 4(a). If we have separated clusters inside the dataset, the quality is good
at exactly the level which corresponds to the number of clusters. This implies
that we are able to identify real clusters in a dataset with the HSAHN algorithm
albeit the clustering quality might not be very well over all levels. This conclusion
is very important because it proves the practicability of our approach.

5 Conclusions

Our tests show that the HSAHN algorithm can greatly expand the size of
datasets which can be clustered in a reasonable amount of time. Furthermore
the memory usage is lowered dramatically, which often sets a hard limit to the
dataset size. The linear dependence on exact distance calculations makes it pos-
sible to use computationally expensive distance measures even on huge datasets.

Our approach was integrated in the software Scaffold Hunter [15], a tool for
the analysis and exploration of chemical space, and has been proven a valuable
alternative to exact approaches in practice.

11

References

1. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to
identify the clustering structure. SIGMOD Rec. 28(2), 49–60 (Jun 1999)

2. Breunig, M.M., Kriegel, H.P., Kröger, P., Sander, J.: Data bubbles: quality preserv-
ing performance boosting for hierarchical clustering. SIGMOD Rec. 30(2), 79–90
(May 2001)

3. Chen, J., MacEachren, A.M., Peuquet, D.J.: Constructing overview + detail
dendrogram-matrix views. IEEE Transactions on Visualization and Computer
Graphics 15, 889–896 (2009)

4. Downs, G.M., Barnard, J.M.: Clustering Methods and Their Uses in Computa-
tional Chemistry, pp. 1–40. John Wiley & Sons, Inc. (2003)

5. Elkan, C.: Using the triangle inequality to accelerate k-means. In: ICML’03. pp.
147–153 (2003)

6. Eppstein, D.: Fast hierarchical clustering and other applications of dynamic closest
pairs. J. Exp. Algorithmics 5 (Dec 2000)

7. Koga, Hisashi, Ishibashi, Tetsuo, Watanabe, Toshinori: Fast agglomerative hierar-
chical clustering algorithm using Locality-Sensitive Hashing. Knowledge and In-
formation Systems 12(1), 25–53 (2007)

8. Lance, G.N., Williams, W.T.: A general theory of classificatory sorting strategies
1. hierarchical systems. The Computer Journal 9(4), 373–380 (1967)

9. Murtagh, F.: Multidimensional clustering algorithms. In: COMPSTAT Lectures 4.
Physica-Verlag, Wuerzburg (1985)

10. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview.
Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 2(1), 86–97 (2012)

11. Müllner, D.: Modern hierarchical, agglomerative clustering algorithms (2011),
arXiv:1109.2378v1

12. Nanni, M.: Speeding-up hierarchical agglomerative clustering in presence of expen-
sive metrics. In: Advances in Knowledge Discovery and Data Mining. pp. 378–387.
Springer Berlin (2005)

13. Patra, B.K., Hubballi, N., Biswas, S., Nandi, S.: Distance based fast hierarchical
clustering method for large datasets. In: Proceedings of the 7th international con-
ference on Rough sets and current trends in computing. pp. 50–59. RSCTC’10,
Springer-Verlag (2010)

14. Rohlf, F.J.: Hierarchical clustering using the minimum spanning tree. Comput.
Journal 16, 93–95 (1973)

15. Wetzel, S., Klein, K., Renner, S., Rauh, D., Oprea, T.I., Mutzel, P., Waldmann, H.:
Interactive exploration of chemical space with Scaffold Hunter. Nature Chemical
Biology 5(8), 581–583 (Jun 2009)

16. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach, Advances in Database Systems, vol. 32. Springer (2006)

17. Zhou, J.: Efficiently Searching and Mining Biological Sequence and Structure Data.
Ph.D. thesis, University of Alberta (2009)

18. Zhou, J., Sander, J.: Speedup clustering with hierarchical ranking. In: Proceedings
of the Sixth International Conference on Data Mining. pp. 1205–1210. ICDM ’06,
IEEE Computer Society, Washington, DC, USA (2006)

19. Zhou, J., Sander, J.: Data bubbles for non-vector data: Speeding-up hierarchical
clustering in arbitrary metric spaces. In: Proceedings of the 29th international
conference on very large data bases - Volume 29. pp. 452–463. VLDB ’03, VLDB
Endowment (2003)

12

	SAHN Clustering in Arbitrary Metric Spaces Using Heuristic Nearest Neighbor Search

