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Abstract

We consider survivable network design problems under a two-stage stochastic model
with recourse and finitely many scenarios (SSNDP). We propose two new cut-based formu-
lations for SSNDP based on orientation properties and show that they are stronger than
the undirected cut-based model. We use a two-stage branch&cut algorithm for solving the
decomposed model to provable optimality. In order to accelerate the computations, we
suggest a new cut strengthening technique for the decomposed L-shaped optimality cuts
that is computationally fast and easy to implement. Computational experiments show that
our cut strengthening approach significantly reduces the number of iterations required and
the computational running time.

1 Introduction

Motivation. We consider the edge-connectivity version of the survivable network design problem
which is one of the most fundamental problems in the design of telecommunication networks.
Many of the classical network design problems like, e.g., the shortest path problem, the spanning
tree problem, the Steiner tree problem, or minimum-weight edge-connected subgraphs, edge-
connectivity augmentations, etc., are all special cases of the survivable network design problem.

The (deterministic) survivable network design problem (SNDP) is defined as follows: We are
given a simple undirected graph G = (V,E) with edge costs ce ≥ 0, ∀e ∈ E, and a symmetric
|V | × |V | connectivity requirement matrix r = [rij ]. Thereby, rij ∈ N ∪ {0} represents the
minimal required number of edge-disjoint paths between two distinct vertices i, j ∈ V . The goal
is to find a subset of edges E′ ⊆ E that satisfies the connectivity requirements and minimizes the
overall solution cost being defined as

∑
e∈E′ ce. We assume that the connectivity requirements

imply that each feasible solution comprises a single connected component, in which case the
problem is called the unitary SNDP. Notice that, the higher the connectivity requirements of a
node, the more important its role in the network.

In practice, however, network planners often have to deal with uncertain data, e.g., the
importance of a node and the associated connectivity requirements are not known in advance, or
the costs of establishing links (installing new pipes, cables, etc.) may be subject to uncertainty.
One promising approach to deal with this type of uncertainty is stochastic programming (for
an introduction see, e.g., [3]). Thereby, the uncertain data is modeled using random variables
and a set of scenarios defines their possible outcomes.

In the two-stage stochastic network design problem the network planner wants to establish
profitable connections now (first stage, on Monday) while taking all possible uncertain outcomes
(scenarios) into account. In the future (second stage, on Tuesday) the actual scenario is revealed
and additional edges can be purchased (recourse action) to satisfy the now known requirements.

∗I. Ljubić is supported by the APART Fellowship of the Austrian Academy of Sciences (OEAW). This work
was partially done during the research stay of Ivana Ljubić at the TU Dortmund.
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The objective is to optimize the expected cost of the solution, i.e., the sum of the first stage
cost plus the expected cost of the second stage. Thereby, all connectivity requirements for all
scenarios have to be satisfied. For a formal definition, see Section 2.

Previous work. There exists a large body of work on various variants of the deterministic
survivable network design problem. We refer to [11] for a comprehensive literature overview
on the SNDP. Many polyhedral studies are done in the 90’s (see, e.g., [6]), and a decade later
the question of deriving stronger MIP formulations by orienting the k-connected subgraphs has
been considered (see, e.g. [1, 13]). Among the approximation algorithms for the SNDP, we point
to the work of Jain [9] whose approximation factor of two remains the best one up to date.
Regarding the stochastic variants of the SNDP, there are significantly less results published
so far. The two-stage stochastic Steiner tree problem is a special case in which connectivity
requirements are zero or one. For this problem, both approximation algorithms (see, e.g., [8])
and MIP approaches (see [4]) were developed. For the more general case in which connectivity
requirements are arbitrary natural numbers, up to our knowledge, there only exists an O(1)
approximation algorithm (see [7]) for the following special case of the SSNDP: For each pair
of distinct nodes i and j, a single scenario (whose probability is pij) is given, in which nodes i
and j need to be k-edge-connected.

Our Contribution. In this paper we study a generalization of the problem proposed in [7]. We
introduce two novel mixed integer programming (MIP) models of the deterministic equivalent
for solving the SSNDP on undirected graphs based on certain orientation properties of second-
stage solutions. We show that the new formulations are provably stronger than the original
one based on the standard undirected cuts. Directed formulations for both the SNDP and
the SSNDP may lead to stronger approximation algorithms similarly as for the deterministic
Steiner tree problem. For solving these models, we use a recently introduced decomposition
approach—similar to Benders decomposition [2] and the integer L-shaped method [12]—that
we call two-stage branch&cut (see [4]). In this paper we show how to strengthen the inserted
L-shaped optimality cuts by a simple modification of the dual solution of the subproblems.
Our computational experiments show that the new approach is up to ten times faster than the
standard approach for separating L-shaped cuts. We are convinced that our simple and fast
cut strengthening technique will be useful for general network optimization problems in the
two-stage setting. We are able to solve all our benchmark instances with up to 75 vertices, 263
edges, and 40 scenarios to provably optimality in less than 3 minutes of computation time.

2 ILP models

Problem Definition. Let G = (V,E) be an undirected network with known first-stage edge
costs c0e ≥ 0, for all e ∈ E. Connectivity requirements as well as the costs of edges to be
purchased in the second stage are known only in the second stage. These values together form
a random variable ξ, for which we assume that it has a finite support. It can therefore be
modeled using a finite set of scenarios K = {1, . . . ,K}, K ≥ 1. The realization probability of
each scenario is given by pk > 0, k ∈ K; we have

∑
k∈K p

k = 1. Denote by cke ≥ 0 the cost of
an edge e ∈ E if it is bought in the second stage under scenario k ∈ K. W.l.o.g. we assume
that

∑
k∈K p

kcke ≥ c0e, for all e ∈ E. Furthermore, let rk be the matrix of unitary connectivity
requirements under the k-th scenario. We denote by E0 the set of edges purchased in the
first-stage, and by Ek the set of additional edges purchased under scenario k, k ∈ K.

The two-stage stochastic survivable network design problem (SSNDP) can then be formulated
as follows: Determine the subset of edges E0 ⊆ E to be purchased in the first stage, and the
sets Ek of additional edges to be purchased in each scenario k ∈ K, such that the overall cost
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defined as
∑
e∈E0 c0e +

∑
k∈K p

k
∑
e∈Ek c

k
e is minimized, while E0 ∪Ek satisfies all connectivity

requirements between each pair of nodes defined by rk, for all k ∈ K. Observe that each feasible
solution of the deterministic SNDP is a connected subgraph of G, whereas the optimal first-
stage solution of the SSNDP is not necessarily connected. In fact, the optimal solution may
contain several disjoint fragments depending on the subsets of terminals throughout different
scenarios or depending on the second-stage cost structure.

2.1 Undirected model

We first present a deterministic equivalent (in extensive form) of the SSNDP and later on show
how we can strengthen the model using the ideas of orientation, i.e., by assigning a unique
direction to each edge of a feasible second stage solution. Let binary variables x0e indicate
whether an edge e ∈ E belongs to E0, and binary second-stage variables xke indicate whether e
belongs to Ek, for all k ∈ K. For D ⊆ E, let (x0 + xk)(D) =

∑
e∈D(x0e + xke). For S ⊆ V , let

δ(S) = {{i, j} ∈ E | i ∈ S and j /∈ S}. A deterministic equivalent of the SSNDP can then be
modeled using undirected cuts as follows:

(UD) min
∑

e∈E
c0ex

0
e +

∑
k∈K

pk
∑

e∈E
ckex

k
e

(x0 + xk)(δ(W )) ≥ max
i 6∈W,j∈W

rkij ∀W ⊂ V,∀k ∈ K (1)

x0e + xke ≤ 1 ∀e ∈ E,∀k ∈ K (2)

(x0, . . . , xK) ∈ {0, 1}(K+1)|E|

Constraints (1) ensure edge-connectivity between each node pair (i, j) in each scenario re-
alization. This model is an extension of one of the most prominent models from the literature
for the deterministic SNDP based on undirected cuts. The associated deterministic model has
been used in polyhedral studies (see, e.g., [6]) or to estimate the quality of heuristic solutions
(see, e.g., [9]).

MIP models on bidirected graphs are known to provide better LP-based lower bounds for
the deterministic SNDP, in particular when feasible SNDP solutions are allowed to contain
two or more edge-biconnected components (see, e.g. [1, 13]). Therefore we are looking for a
possibility to strengthen the model (UD) by bi-directing the given graph G and replacing edge-
by arc-variables in the same model. The main difficulty with the SSNDP is that the edges of
the first-stage solution cannot be oriented, even though the deterministic counterpart allows an
orientation. We will use semi-directed models instead to overcome these difficulties and provide
two MIP models that are strictly stronger than the undirected one.

2.2 Semi-directed model

To provide a semi-directed MIP model, we will exploit the ideas of Magnanti and Raghavan [13]
used for the deterministic SNDP. If connectivity requirements are {0, 1, even}, the underlying
orientation approach uses the fact that any optimal solution consists of edge-biconnected com-
ponents connected with each other by bridges. Each of those edge-biconnected components can
be oriented in such a way that for each pair of distinct nodes i and j from the same component,
there exist rij/2 directed paths between i and j, and rij/2 directed paths between j and i
(due to the result of Nash-Williams [15]). In the orientation procedure a node vr is chosen for
which we know that it is a part of an edge-biconnected component, and each bridge is oriented
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away from this component. In this approach we basically orient edge-biconnected components,
shrink them into single nodes and orient the obtained tree away from the “root” vr. The corre-
sponding MIP model, which is stronger than the undirected one, uses binary arc variables that
are associated to this orientation.

To model the general SNDP—i.e., the SNDP with arbitrary connectivity requirements
rij ∈ N∪ {0}—Raghavan and Magnanti [13] present an extended MIP formulation, using these
orientation properties. Thereby, they use the same model from above, with the only difference
that the binary arc variables are relaxed to be continuous. This change makes the model valid
for arbitrary values of rij and is provably stronger than its undirected counterpart.

Unfortunately, for the SSNDP, the first stage solution E0 is not necessarily connected.
Therefore, it is impossible to use this orientation idea for the edges from E0, since each arc is
not used in exactly the same direction over all scenarios. Hence, the first stage decision variables
remain associated with undirected edges. However, we can provide a directed formulation once
the solution gets completed in the second stage, i.e., we can “orient” the edges of E0 ∪ Ek—
independently for each scenario. We set the root vkr for each scenario k ∈ K to be one of the
nodes with the highest connectivity requirement, and search for individual orientations of each
of the K scenario solutions.

By borrowing the notation from [1], let

Wk
1 ={W |W ⊂ V, max

i∈W,j 6∈W
rkij = 1, vkr 6∈W}

Ŵk ={W ∪W c |W ⊂ V, max
i∈W,j 6∈W

rkij ≥ 2}

be the set of critical cutsets and regular cutsets, respectively, with the associated values of
fk(W ) defined as:

fk(W ) =

{
1, W ∈ Wk

1

maxi∈W,j 6∈W rkij/2, W ∈ Ŵk

The following model orients the second stage solution, given the installation of (undirected)
edges from the first stage. As above, we use variables (x0, . . . , xK) to model the solution
edges. In addition, we will use continuous variables (d1, . . . , dK) associated to directed arcs, to
“orient” the second stage solutions. Here, and in the following, A is the set of arcs containing
one directed arc for each undirected edge, i.e., ∀{i, j} ∈ E : (i, j), (j, i) ∈ A. For S ⊆ V let
δ−(S) = {(i, j) ∈ A|i 6∈ S, j ∈ S)} and analogously δ+(S) = {(i, j) ∈ A|i ∈ S, j 6∈ S)}. The first
semi-directed model will be called SD1 :

(SD1 ) min
∑

e∈E
c0ex

0
e +

∑
k∈K

pk
∑

e∈E
ckex

k
e

x0(δ(W )) + dk(δ−(W )) + dk(δ+(W )) ≥ 2fk(W ), ∀W ∈ Ŵk,∀k ∈ K (3)

x0(δ(W )) + dk(δ−(W )) ≥ 1, ∀W ∈ Wk
1 ,∀k ∈ K (4)

dkij + dkji ≤ xke , ∀e = {i, j} ∈ E,∀k ∈ K (5)

xke + x0e ≤ 1, ∀e ∈ E,∀k ∈ K (6)

dkij ≥ 0, ∀(i, j) ∈ A,∀k ∈ K (7)

(x0, . . . , xK) ∈ {0, 1}(K+1)|E|
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Constraints (3) ensure that there are at least 2fk(W ) edge-disjoint paths between W and
V \W consisting of first- and second-stage edges. Due to constraints (4) there is at least one
path to each vertex i with rkij > 0,∀j 6= i, from the root node. If nothing has been purchased
in the first stage, then constraints (4) associated to bridges will force the orientation of those
bridges away from the root node vkr . Furthermore, since variables dkij are fractional, by using

the same arguments as in [13], the model is valid for any rkij ∈ N ∪ {0}. Hence, we have the
following lemma.

Lemma 1. Formulation (SD1 ) models the deterministic equivalent of the two-stage stochastic
survivable network design problem correctly.

Proof. Let x := (x0, x1, . . . xK) be a feasible solution to an SSNDP instance. Notice that
constraints (3) can be restated as undirected cuts due to constraints (5): x0(δ(W ))+xk(δ(W )) ≥
x0(δ(W ))+dk(δ−(W ))+dk(δ+(W )) ≥ 2fk(W ). Since x is a feasible solution there are rkij edge-

disjoint path between i and j in scenario k using edges in x0 and xk. Therefore, all undirected
cuts and hence, all constraints (5) are satisfied. Due to the result of Nash-Williams [15] and
Magnanti & Raghavan [13], it is possible to find an orientation in each scenario for the sum of
the variables x0e +xke to satisfy the constraints (4). Following this orientation the values for the
directed variables dk can be set satisfying the second type of cuts. Non-negativity and all other
constraints follow directly.

To show the converse, assume (x0, x1, . . . xK , d1, . . . dK) is a feasible solution to (SD1 ).
Due to the previous discussion concerning constraints (3) it is clear that all edge connectivity
requirements with connectivity ≥ 2 are satisfied. Furthermore, constraints (4) ensure that there
is at least one (semi-directed) path from the root node to each vertex with requirement one.
Hence, all connectivity requirements are satisfied and each solution to (SD1 ) is a valid solution
to SSNDP.

Let Proj(x0,...,xK)(PSD1
) denote the projection of the polytope defined by the LP-relaxation

of (SD1 ) onto the space of (x0, x1, . . . , xK) variables given as x0 := x̂0, and xk := x̂k,∀k ∈ K.
Let PUD be the polytope of the LP-relaxation of (UD).

Lemma 2. The semi-directed formulation (SD1 ) is provably stronger than the undirected for-
mulation (UD), i.e., Proj(x0,...,xK)(PSD1 ) ( PUD and there exist instances for which the strict
inequality holds.

Proof. Let (x̂0, x̂1 . . . , x̂K , d1, . . . , dK) be a feasible solution of (SD1 ) with objective value zSD1 .
Obviously, the projected vector (x0e, x

1, . . . , xKe ) is a valid solution to (UD) with the same
objective value as zSD1

. The feasibility of the undirected cuts follows directly since (x0 +
xk)(δ(W )) =

∑
e∈δ(W )(x

0
e + xke) =

∑
e∈δ(W )(x̂

0
e + x̂ke) ≥

∑
e∈δ(W )(x̂

0
e + dkij + dkji) = x̂0(δ(W )) +

dk(δ−(W )) + dk(δ+(W )) ≥ 2fk(W ) ≥ maxi∈W,j 6∈W rkij , for each W ⊂ V , k ∈ K.
The strict inequality of the previous lemma is shown by the example given in Figure 1(a).

Assume that we have 2 scenarios with equal probability, r101 = r102 = 1, r203 = 1, and c0e =
10, cke = 12,∀e ∈ E, k ∈ {1, 2}. The optimum solution of (UD) buys edges only in the second
stage with a total objective value of 15: x101 = x112 = x102 = 0.5 and x103 = 1. On the other hand,
this solution is infeasible for the relaxed model of (SD1 ), i.e., there is no solution to (SD1 ) with
the same objective value.

2.3 Stronger semi-directed formulation

In the following model, which represents an alternative model to (SD1 ), binary variables yke
are used to model the second-stage solution. These variables include the edges that are already
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bought in the first stage, i.e., we have yke = 1 if e ∈ E0∪Ek, and yke = 0, otherwise. To “orient”
the edges from E0 ∪ Ek, as above, continuous variables zkij are used. The model will be called
SD2 :

(SD2 ) min
∑

e∈E
c0ex

0
e +

∑
k∈K

pk
∑

e∈E
cke(yke − x0e)

zk(δ−(W )) ≥ fk(W ), ∀W ∈ Wk
1 ∪ Ŵk,∀k ∈ K (8)

zkij + zkji ≥ x0e, ∀e = {i, j} ∈ E,∀k ∈ K (9)

zkij + zkji ≤ yke , ∀e = {i, j} ∈ E,∀k ∈ K (10)

zkij ≥ 0, ∀(i, j) ∈ A,∀k ∈ K (11)

(x0, y1, . . . , yK)T ∈ {0, 1}(K+1)|E|

Constraints (8) model the “orientation” of the solution, independently for each of the sce-
narios. Variables zkij are fractional, and therefore, the model is valid for any rkij ∈ N ∪ {0}.
Finally, constraints (9) and (10) ensure that variables zkij can be used only along the edges that
are either purchased in the first stage, or added in the second stage.

Lemma 3. Formulation (SD2 ) models the deterministic equivalent of the two-stage stochastic
survivable network design problem correctly.

Proof. Again, let (x0, x1, . . . xK) be a feasible solution to an SSNDP instance. Following the
ideas of the proof of Lemma 1 it is possible to find an orientation for the directed variables zk

using edge capacities (x0 + xk) for each scenario and hence create a valid solution for (SD2 ).
Conversely, a feasible solution (x0, y1, . . . , yK , z1, . . . zK) to (SD2 ) satisfies all edge connec-

tivity requirements in each scenario due to the directed formulation and variables zk. Thereby,
zkij ≤ yke and analogously to the deterministic case (x0, (xk = x0−yk)k=1,...,K) implies a feasible
solution to SSNDP.

Let Proj(x0,...,xK)(PSD2) denote the projection of the polytope of the LP-relaxation of (SD2 )

onto the space of (x0, x1, . . . , xK) variables with xk := yk − x0.

Lemma 4. The semi-directed formulation (SD2 ) is provably stronger than the semi-directed
formulation (SD1 ), i.e., Proj(x0,...,xK)(PSD2

) ( Proj(x0,...,xK)(PSD1
) and there exist instances

for which the strict inequality holds.

Proof. Let (x̂0, y1 . . . , yK , z1, . . . , zK) be a feasible solution of (SD2 ) with objective value zSD2
.

For each k ∈ K, (i, j) ∈ A, e = {i, j} ∈ E let λkij := 0 if zkij + zkji = 0 and λkij := zkij/(z
k
ij + zkji),

otherwise. Hence, λkij+λkji = 1,∀(i, j) ∈ A with zkij+zkji > 0. Moreover, x0 := x̂0, xk := yk−x0

and dkij := zkij − λkijx0e.
Obviously, the objective value of this (SD1 )-solution is equal to zSD2

. Connectivity con-
straints (3) are satisfied since for each W ∈ Ŵk, k ∈ K, we have: x0(δ(W )) + dk(δ−(W )) +
dk(δ+(W )) = x̂0(δ(W )) +

∑
e={i,j}∈δ(W )(z

k
ij − λkijx0e + zkji − λkjix0e) = x̂0(δ(W )) + zk(δ−(W )) +

zk(δ+(W )) − x̂0(δ(W )) ≥ 2fk(W ). The 1-connectivity constraints (4) are also fulfilled since
for each W ∈ Wk

1 , k ∈ K, we have: x0(δ(W )) + dk(δ−(W )) = x̂0(δ(W )) +
∑

(i,j)∈δ−(W )(z
k
ij −

λkijx
0
e) ≥ zk(δ−(W )) ≥ fk(W ). All remaining constraints (5)–(7) are also satisfied: ∀k ∈ K, e ∈

E, (i, j) ∈ A: (5): dkij +dkji = zkij +zkji− x̂0e ≤ yke −x0e = xke , (6): xke +x0e = yke − x̂0e + x̂0e ≤ 1, and
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Figure 1: Two counterexamples that prove the strength of the new formulations. 1(a) instance
with LP (SD1 ) > LP (UD), 1(b) instance with LP (SD2 ) > LP (SD1 ), and 1(c) the optimal
LP-solution of (SD1 ): A solid line represents an LP value of 1, a dashed line a value of 0.5.
Gray nodes have connectivity requirement two, all other nodes connectivity requirement one.

dk variables are non-negative: dkij = zkij−(zkij/(z
k
ij+zkji))x̂

0
e ≥ zkij−(zkij/(z

k
ij+zkji))(z

k
ij+zkji) = 0.

Hence, (x0, x1, . . . , xK , d1, . . . , dK) is a feasible solution for (SD1 ) with the same objective value.
To show that there exist instances for which the strict inequality holds, consider the input

graph shown in Figure 1(b). We assume that the input consists of a single scenario in which the
gray nodes require two-connectivity and the remaining ones only simple connectivity. Further-
more, all edge costs are 1 in the first stage and 10 in the second stage. The LP solution shown
in Figure 1(c) shows the first-stage solution (nothing needs to be purchased in the second stage)
with a total objective value of 5. This solution is valid for the model (SD1 ) but it is impossible
to “orient” this solution such that it becomes feasible for the model (SD2 ).

3 Decomposition

Notice that, even for a constant number of scenarios, our model contains an exponential number
of constraints that can be typically separated in a cutting-plane fashion (e.g., in a single-stage
branch&cut approach). The main drawback of such a branch&cut approach is that we still
have to deal with a large set of variables. Alternatively, in [4] we have proposed to combine the
cutting plane algorithm with a Benders-like decomposition approach in which the variables of
the first stage are kept in the master problem, and the second stage variables are projected out
and replaced by a single variable per scenario (Θk). The objective function of the decomposed
model becomes: min c0x0 +

∑
k∈K pkΘk, where Θk represents the lower bound on the value

of the second stage subproblem in scenario k. For a fixed first stage decision x̃0, the problem
decomposes into K subproblems, each of which can be independently solved using a branch&cut
approach. Dual variables of the LP-relaxations of these subproblems impose L-shaped cuts
that are added to the master while the exact solutions of the subproblems impose integer
L-shaped cuts [12, 19]. This new decomposition approach that combines the branch&cut in
the master problem with the branch&cut in the subproblems is called two-stage branch&cut
algorithm. Computational results of [4], applied to the stochastic Steiner tree problem, have
shown that two-stage branch&cut significantly outperforms the branch&cut applied directly to
the deterministic equivalent in extended formulation.

Hence, in this paper we propose to solve the SSNDP using the two-stage branch&cut from [4]
applied to the stronger of the two semi-directed models, namely (SD2 ). The main details of
this decomposition approach are provided below.

For each fixed—and possibly fractional—first-stage solution x̃0, the second-stage problem
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decomposes into K independent subproblems, which we will refer to as restricted deterministic
SNDP’s. For each k ∈ K, these subproblems are given as follows:

(P :SD2 ) min
∑

e∈E
cke(yke − x̃0e)

zk(δ−(W )) ≥ fk(W ), ∀W ∈ Wk
1 ∪ Ŵkc (12)

zkij + zkji ≥ x̃0e, ∀e = {i, j} ∈ E (13)

yke − zkij − zkji ≥ 0 ∀e = {i, j} ∈ E (14)

zkij ≥ 0 ∀(i, j) ∈ A (15)

−yke ≥ −1, ∀e ∈ E (16)

yk ∈ {0, 1}|E|

By removing the integrality constraints and using dual variables αW , βe, γe, ηij and τe
associated to constraints (12), (13), (14), (15), and (16), respectively, we obtain the following
dual problem, for each fixed k ∈ K and the first stage solution x̃0:

(D:SD2 ) max
∑

W∈Wk
1∪Ŵk

fk(W )αW +
∑

e∈E
(x̃0eβe − cke x̃0e − τe)

γe − τe ≤ cke , ∀e ∈ E (17)∑
W∈Wk

1∪Ŵk:(i,j)∈δ−(W )

αW + βe − γe + ηij ≤ 0, ∀(i, j) ∈ A (18)

(α, β, γ, η, τ) ≥ 0 (19)

Let α̃W , β̃e, γ̃e, η̃ij , τ̃e be an optimal solution to (D:SD2 ). A (decomposed) L-shaped opti-
mality cut is then defined as follows:

Θk +
∑

e∈E
x0e(c

k
e − β̃e) ≥

∑
W :W∈Wk

1∪Ŵk
fk(W )α̃W −

∑
e∈E

τ̃e (20)

Rounded L-shaped cuts are obtained by replacing the coefficients of x0e by
min(cke − β̃e,

∑
W :W∈Wk

1∪Ŵk fk(W )α̃W −
∑
e∈E τ̃e), for each e ∈ E and k ∈ K.

3.1 Two-stage branch&cut algorithm

Let RMP denote the relaxed master problem, i.e., min c0x0 +
∑
k∈K pkΘk s.t. additional sepa-

rated L-shaped and integer optimality cuts. Furthermore, RSPk denotes the relaxed subprob-
lem (restricted deterministic SNDP) of scenario k, k ∈ K. A brief description of the algorithm
is given as follows:

Step 0: Initialization. UB = +∞ (global upper bound, corresponding to a feasible solution),
ν = 0. Create the first pendant node. In the initial RMP the set of (integer) L-shaped
cuts is empty.

Step 1: Selection. Select a pendant node from the b&b tree, if such a node exists, otherwise
STOP.
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Step 2: Separation. Solve the RMP at the current node. ν = ν + 1. Let (xν ,Θν
1 , . . . ,Θ

ν
K)

be the current optimal solution, Θν =
∑
k∈K pkΘν

k.
(2.1) If ctxν + Θν > UB fathom the current node and goto Step 1.
(2.2) Search for violated L-shaped cuts:
For all k ∈ K, compute the LP-relaxation value R(xν , k) of RSPk. If R(xν , k) > Θν

k:
insert L-shaped cut (20) into RMP .
If at least one L-shaped cut was inserted goto Step 2.
(2.3) If x is binary, search for violated integer L-shaped cuts:

(2.3.1) For all k ∈ K s.t. zk is not binary in the previously computed LP-relaxation,
solve RSPk to integer optimality. Let Q(xν , k) be the optimal RSPk value.
If
∑
k∈K pkQ(xν , k) > Θν insert integer L-shaped cut (21) into RMP . Goto Step 2.

(2.3.2) UB = min(UB , ctxν + Θν). Fathom the current node and goto Step 1.

Step 3: Branching. Using a branching criterion, create two nodes, append them to the list
of pendant nodes, goto Step 1.

Integer L-shaped cuts. Let xν be a binary first stage solution with its corresponding optimal
second stage value Q(xν) =

∑
k∈K pkQ(xν , k). Let Iν := {e ∈ E : xνe = 1} be the index set of

the edge variables chosen in the first stage, and the constant L be a known lower bound of the
recourse function (before branching: L = 0). We want to explicitly cut off the solution (xν ,Θν)
by inserting the general integer optimality cuts of the L-shaped scheme [12]:

Θ ≥ (Q(xν)− L)

(∑
e∈Iν

xe −
∑

e∈E\Iν
xe − |Iν |+ 1

)
+ L. (21)

4 Strengthening L-shaped cuts

Notice that the number of master iterations of our decomposition approach —and hence, the
overall running time—is highly influenced by the strength of the generated L-shaped cuts. In
this paper we propose a new and fast way of generating strengthened L-shaped cuts. In contrast
to the previously proposed strengthening approaches (cf. [5, 14, 16, 17, 20]), we do not require
solving an auxiliary LP in order to generate a stronger cut, but rather, we are able to find it in
linear time.

Instead of solving additional LPs, the L-shaped cuts for the formulation (SD2 ) of the SSNDP
can be strengthened as follows: If for an edge e ∈ E the first stage solution x̃0 is such that
x̃0e = 0, then the corresponding βe variable does not appear in the objective function of the
dual (SD2 ). Furthermore, variables γe and ηij do not appear in the objective function neither,
and therefore, LP-optimal solutions frequently have a positive slack in constraints (18). Our
idea is to reduce this slack to zero, and to thereby increase the value of βe as follows:
Let (α̃, β̃, γ̃, η̃, τ̃) be an optimal solution to (D:SD2 ) as before. Let

β̂e := γ̃e − max
a∈{(i,j),(j,i)}

{
∑

W :a∈δ−(W )

α̃W − η̃a}, ∀e = {i, j} ∈ E s.t. x̃0e = 0.

If β̂e > β̃e holds for at least one e ∈ E the strengthened L-shaped cut is given as:

Θk +
∑

e∈E
x0e(c

k
e − β̂e) ≥

∑
W :W∈Wk

1∪Ŵk
fk(W )α̃W −

∑
e∈E

τ̃e. (22)
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Lemma 5. The strengthened L-shaped (22) cuts are valid and strictly stronger than the standard
L-shaped cuts (21).

Proof. Consider two L-shaped cuts: the standard one, implied by the dual solution (α̃, β̃, γ̃, η̃, τ̃)

and the strengthened one (α̃, β̂, γ̃, η̃, τ̃) with β̂ being set as described above. Obviously, (α̃, β̂,

γ̃, η̃, τ̃) is a feasible (and LP-optimal) solution to the dual subproblem (D:SD2 ) since β̂ is set

without violating the dual constraints. Furthermore, notice that β̂e ≥ β̃e, for all e ∈ E. The
right-hand-side of both cuts is identical and since there exist e′ ∈ E such that β̂e′ > β̃e′ , the
coefficient of x0e′ is strictly smaller for the strengthened L-shaped cut than for the standard
one.

5 Computational Results

We implemented the decomposition of model (SD2 ) using Abacus 3.0 as a generic branch&cut
framework. We use IBM CPLEX (version 12.1) via the interface COIN-Osi 0.102 as LP solver.
All experiments were performed on an Intel Core-i7 2.67 GHz Quad Core machine with 12 GB
RAM under Ubuntu 11.4. Each run was performed on a single core.

Deterministic instances were generated by adopting the idea of Johnson, Minkoff, and
Phillips [10], which is frequently used as benchmark in the network design community. After
randomly distributing n ∈ {20, 30, 40, 50, 75} points in the unit square, a minimum spanning
tree is computed using the points as vertices and the Euclidean distances between all vertex
pairs as edge costs. This MST is extended by adding all edges for which the Euclidean length
is less than or equal to 1.6α/

√
n. We have introduced α in order to control the density of the

graph1. In our experiments we use α = 0.9 which leads to graphs with average density 2.77.
The edge connectivity requirements are set as follows. We have randomly drawn ρ% of the
vertices as R1 and R2 customers each with edge connectivity requirement 1 and 2, respectively.
Then, for two vertices i and j let rij = 2 if both i and j are in R2, rij = 1 if one of them is in
R1 and the other in R1 ∪R2, and rij = 0, otherwise. Here, we use ρ = 40 and we additionally
introduce a random root node that is contained in R2.

To transform these instances into stochastic ones we randomly and independently generate
k̄ scenarios. The probabilities are set by randomly distributing 10, 000 points over the scenarios,
where each point corresponds to a probability of 0.01%. Edge costs c0 in the first stage are
Euclidean distances and in the second stage for each edge e and scenario k ∈ K randomly drawn
from [1.1c0e, 1.3c

0
e]. Edge connectivities are generated by randomly drawing ρk% from the vertex

sets R1 and R2 each as Rk1 and Rk2 customers, respectively, for scenario k. Here, we use ρk = 30
for all scenarios k. The special root node was set to be an Rk2 node in each scenario k.

For each deterministic instance we generated a stochastic instance with k̄ = 40 scenarios
and take the first k to obtain an SSNDP instance, k ∈ {5, 10, 20, 30, 40}; probabilities for
the scenarios of the instances with k < 40 are scaled appropriately. Overall, we generated 5
instances for each pair of n and k2.

To analyze the benefit of using strengthened L-shaped cuts we compare the computation
time as well as the number of master iterations. Figure 2 depicts the computation time of the
two-stage branch&cut algorithm with standard and strengthened L-shaped cuts, respectively.
Each data point is the average over 5 runs and 5 instances per k scenarios, k ∈ {5, 10, 20, 30, 40}
for each number of nodes n ∈ {20, 30, 40, 50, 75}. We considered only feasible SSNDP instances
which are solved with the standard L-shaped cuts in less than 1 hour computation time.

1The original parameter used by [10] was 1.6 and corresponds to α = 1 in our setting
2These 125 instances can be downloaded from our SSNDP webpage, see [18]
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Figure 2: Comparison of the runtime (grouped by the number of nodes) and number of master
iterations between two-stage branch&cut with standard and with strengthened L-shaped cuts,
respectively.
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Figure 3: Comparison of the runtime (grouped by the number of scenarios) between the two-
stage branch&cut with strengthened L-shaped cuts and the extended formulation of the deter-
ministic equivalent, respectively for the graphs with n = 75 nodes. Only running times less
than the time limit of 2 hours are considered.

The gained speedup in running time by using the strengthened L-shaped cuts is significant:
It is about 4 (for n ∈ {20, 30, 40}), 6 (n = 50), and over 9 (n = 75) times, respectively. For
example, instances with 75 vertices are solved in approx. 12 minutes without and in 1:30 minutes
with the strengthening (on average). The number of master iterations also decreases rapidly,
e.g., for n = 75 from 288 to 58 on average.

Table 1 shows detailed results for instances of size n = 75. The first three columns give
a description of the instance (number of edges e, scenarios K and optimum solution value
OPT*). The 4th to 19th column give the main results of the two-stage branch&cut algorithm
with standard and strengthened L-shaped cuts, respectively, and the extended formulation of
the deterministic equivalent (DE): the running time in seconds (t[s]) with a time-limit of two
hours (2h), the number of branch&bound nodes (b&b), the number of iterations of the master
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problem (iter), the number of inserted L-shaped cuts (cuts), the value of the relaxed LP in the
root LP root, and the gap between the optimum solution and the LP root.

It can be observed that the number of iterations, required L-shaped cuts, and the running
time decreases drastically when the strengthened cuts are used in comparison to the standard
cuts. Furthermore, the number of branch&bound nodes (b&b) is mostly only decreasing slightly
and the relaxed solution in the root node is almost identical.

The benefit of using the decomposition over the extended formulation (EF) is similar to the
results presented for the stochastic Steiner tree problem [4]. For small instances (k ≤ 20 or
n ≤ 40) the EF has a faster computation time. But with an increasing number of scenarios or
graph size the decomposition clearly outperforms the EF which, e.g., was not able to solve all
of the instances with n ≥ 75 in two hours, c.f. Figure 3.
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