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Abstract
Since 1971, numerous parameterized algorithms for the Steiner tree problem
have been published, first of which was introduced by Dreyfus and Wagner.
However, up to today there is not a single parameterized algorithm for the
two-stage stochastic Steiner tree problem. This problem is still practically
important and deserves more attention. This document first presents an al-
gorithm that has a worst-case running time of O((Kn)23t

∗
), where K is the

number of scenarios, n is the number of vertices of the input graph and t∗ is
the total number of terminals. Therefore, it places the two-stage stochastic
Steiner tree problem as well as its prize-collecting variant in the complexity
class FPT. Afterwards, a framework and some possible implementations are
presented that might be suitable to parameterize the problem with the number
of non-terminals.

Zusammenfassung
Der erste parametrisierte Algorithmus für das Steinerbaumproblem wurde im
Jahr 1971 von Dreyfus und Wagner vorgestellt. Seitdem haben auch zahlreiche
andere an derartigen Algorithmen gearbeitet. Obwohl auch das stochastis-
che Steinerbaumproblem bekannt und praktisch relevant ist, wurde bisher kein
einziger parametrisierter Algorithmus dafür veröffentlicht. Diese Arbeit hat
das Ziel, die Lücke zu schließen. Es wird ein Algorithmus für das stochastische
Steinerbaumproblem sowie dessen Prize-Collecting-Variante mit einer Laufzeit
von O((Kn)23t

∗
) vorgestellt, wobei K die Anzahl der Szenarien und t∗ die

Summe der Terminalanzahl über alle Szenarien bezeichnet. Damit wird
das Problem erstmals in der Komplexitätsklasse FPT der parametrisierbaren
Entscheidungsprobleme platziert. Anschließend werden erfolgversprechende
Ideen erläutert, die eine Parametrisierung mit der Anzahl der Nicht-Terminale
zulassen könnte.
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Chapter 1

Introduction

In the 17th century, Pierre de Fermat wrote a letter to Evangelista Torricelli in which he formulated
the following problem, see e.g. [12].

Given the coordinates of three points in the plane, find the coordinates of a fourth point such
that the sum of distances of the original three points to the fourth point is minimal.

The fourth point is called the Fermat point or Torricelli point today. The problem of finding it
is still relevant. Imagine a supermarket chain that intends to establish a new store serving three
villages: The Fermat point of the three villages might be a good position to start with.

Both Fermat and Torricelli proposed a construction of the Fermat point. The problem was
later generalized to what is known today as the Euclidean Steiner tree problem:

Given a set of points in the plane, interconnect the points with line segments while minimizing
the total length of the line segments. The crossing points do not have to be points of the original
point set.

The given points that we have to connect are called terminals.
In this setting, we may choose how many crossing points we add to connect the terminals. For

example, if the terminals are collinear, a single line segment between the outermost two terminals
interconnects them all without the need of any additional crossing points. Non-terminal crossing
points are called Steiner points.

There may still be reasons why we would consider the Euclidean Steiner tree problem. We
might want to connect some cities with a new system of streets. Of course, we are interested in
minimizing the total cost. A set of street segments that represents a Euclidean Steiner tree might
be a good basis. Probably, it would have to be refined because minimizing the total cost may not
be the only objective.

The Euclidean Steiner tree problem has some restrictions that keep us from modeling problems
that we encounter in practice as Euclidean Steiner tree problems. It only allows for one measure-
ment, i.e., the Euclidean edge length. Furthermore, we cannot control the possible crossing points.
Both drawbacks are fixed by the Steiner tree problem on weighted graphs.

A graph is a data structure that can be used to model relations between objects. In the case
of Steiner tree problems, the objects are locations and the relations are candidates for connections
between two locations. Weighted graphs allow us to assign arbitrary lengths or weights to such
relations.

Given a weighted graph and some terminals in that graph, find a lightest connected subgraph
that spans the terminals.

Consider an Internet Service Provider (ISP) that plans to install fiber optic cables to improve
the Internet performance for a set of households. A connection has to be established between a
central gateway and each of the households. Crossing cables are connected with each other by
switches that are only allowed in some predetermined positions. The graph for this problem would
contain the gateway, the households and the switch position candidates as nodes. Two nodes are
connected if a cable may run directly between them. The edge weight is the cost for the installation
of the corresponding cable. A minimum Steiner tree is the cheapest way for the ISP to achieve its
goal.

1



2 Chapter 1. Introduction

This kind of modelling forces us to interconnect every pair of terminals. Perhaps, the ISP does
not know in advance which of the households he wants to include in his new network. Including
household A might be more profitable than including household B. This leads to the concept of
prize-collecting Steiner trees:

Given a weighted graph and some terminals in that graph, each associated with a profit, find
a connected subgraph such that the total weight of its edges minus the total profit of its nodes is
minimal.

We are now allowed to spare some households if—economically speaking—connecting them
would be a bad idea.

On the other hand, some of the data might be uncertain, i.e., the ISP might not even know
which of the households have to be connected because its inhabitants may not be interested in the
new product at all. Even the costs of connections between different households may differ. The
ISP issues surveys among the inhabitants. These surveys lead to a set of scenarios that might
possibly arise. Each scenario has its own set of households that have to be connected.

Because cables are cheaper the earlier they are bought, the ISP wants to install some them
before the actual scenario is revealed. The cables that are installed in this early stage should
minimize the overall costs, i.e., the costs of the edges themselves plus the expected costs of edges
that have to be added afterwards to connect the households of the actual scenario. This problem
is called the two-stage stochastic Steiner tree problem.

Given a weighted graph and a set of scenarios, find a set of first stage edges and a set of second
stage edges for each scenario such that the terminals of each scenario are connected by its second
stage and the first stage edges and the overall expected costs are minimal.

Of course, the prize-collecting and the two-stage stochastic Steiner tree problem can be com-
bined. In this case, the ISP would not only deduce costs of connections and the interested house-
holds, but also the profit such a household would yield, should it be connected.

Then, we want to find a set of first and second stage edges such that the overall revenue is
maximized. The overall revenue is the expected sum of edge costs minus the expected sum of
profits yielded by the connected households. This last problem is called the two-stage stochastic
prize-collecting Steiner tree problem.

1.1 Previous Work

In 1971, Dreyfus and Wagner [7] introduced the first parameterized algorithm for the Steiner
tree problem. The algorithm was later improved to run in time O∗(2|T |) by Björklund et al. [1].
Independently, Fuchs et al. [9] proposed another parameterized algorithm that requires time (2 +

δ)|T |nO(1/(δ/ ln(1/δ))ζ) for any 0 < δ < 1 and 1
2 < ζ < 1.

There are no publications concerning parameterized algorithm for the stochastic Steiner tree
problem so far. The problem has been studied with respect to approximation algorithms. In
2004, Gupta et al. [11] proposed a 3.55-approximation for the rooted two-stage stochastic Steiner
tree problem under certain cost sharing conditions. In 2005, Gupta and Pál [10] presented a
constant-factor approximation for the unrooted version. For an overview of two-stage stochastic
optimization problems, see Shmoys and Swany [17].

Recently, Bomze et al. [3] improved on the previously best-known ILP formulation for the
stochastic Steiner tree problem. This might allow for better approximation algorithms.

1.2 Our Contribution

This document is dedicated to parameterized algorithms for the two-stage stochastic Steiner tree
problem and its prize-collecting variant. As far as we know, we are the first to write about this
aspect.

In Chapter 2 we provide the definitions and notation that are used throughout the document.
Chapter 3 gives an introduction to the basic, deterministic Steiner tree problem on graphs. We

describe an algorithm that solves the problem if the underlying graph is a tree. We prove that
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every variant of the Steiner tree problem discussed in this document is NP-complete on arbitrary
graphs.

Chapter 4 covers the basics on stochastic Steiner trees. We present an algorithm that solves the
two-stage stochastic Steiner tree problem on trees using the algorithm introduced in Chapter 3.

Chapter 5 deals with algorithms that are parameterized by the number of terminals. We
describe a parameterized algorithm for the Steiner tree problem that was introduced by Dreyfus
and Wagner [7] in 1971. This algorithm is expanded to solve the directed and the prize-collecting
Steiner tree problem as well. Finally, the stochastic variants are solved by reducing them to their
directed, deterministic counterparts.

In Chapter 6 we discuss ideas for parameterized algorithms that use the number of non-terminals
as parameter. We show how to solve the Steiner tree problem and try to carry the results over to
the stochastic Steiner tree problem.

Chapter 7 gives an overview of the results of this document and points out some open problems
in the area of parameterized algorithms for SSTP.
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Chapter 2

Definitions

This chapter provides all definitions that are used throughout the document. Definitions of basic
concepts about graph problems are given in Section 2.1. The following Section 2.2 introduces com-
binatorial optimization problems and decision problems as well as complexity classes to categorize
them. At last, we define the Steiner tree problem and those variations that are relevant in this
document in Section 2.3.

2.1 Graphs
For an arbitrary set M , we denote by P(M) := {M ′ | M ′ ⊆ M} the power set of M , i.e., the set
of all subsets of M . The cardinality |M | of a set M is the number of its elements. Furthermore,
Pk(M) := {M ′ ∈ P(M) | |M ′| = k} refers to the set of all subsets of M whose cardinality are
exactly k.

Definition 2.1.1 (Undirected Graph). An undirected graph G = (V,E) is a pair consisting of
an arbitrary set V of vertices and an irreflexive, symmetric relation E ⊆ V × V of edges over
V . Every edge is identified with its symmetric counterpart, yielding (v1, v2) = (v2, v1) for each
v1, v2 ∈ V .

Let G = (V,E) be an undirected graph with v1, v2, v3 ∈ V and e1 = (v1, v2), e2 = (v2, v3) ∈ E.
The edge e1 is said to be incident both to v1 and v2, while v1 is adjacent to v2 because of e1 and
vice versa. The two edges e1, e2 are also adjacent, as they both are incident to the same vertex
v2. The neighborhood NG(v) of a vertex v is the set of vertices that are adjacent to v in G, i.e.,
NG(v) = {w ∈ V | (v, w) ∈ E}. The degree degG(v) of a vertex v is the number of its neighbors
|NG(v)|

Definition 2.1.2 (Directed Graph). A directed graph G = (V,E) is a pair consisting of an arbi-
trary set V of vertices and an irreflexive binary relation E ⊆ V × V of edges over V .

All terms defined for undirected graphs above can also be applied for directed graphs. In
directed graphs, edges are considered to have an orientation. The edge (v1, v2) runs from its tail
v1 to its head v2, but not from v2 to v1.

A node v is a predecessor of w if there is an edge (v, w). In this case, w is a successor of v. The
indegree deg−G(v) of a vertex v in a graph G is the number of predecessors of v in G. Accordingly,
deg+

G(v) denotes the number of successors of v in G and is called outdegree.

Definition 2.1.3 (Subgraph). A graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E) iff
V ′ ⊆ V and E′ ⊆ E.

Let G = (V,E) be a graph and V ′ ⊆ V a vertex subset. G[V ′] denotes the subgraph of G
that is induced by V ′, i.e., G[V ′] = (V ′, E′) with E′ = {(v1, v2) ∈ E | v1, v2 ∈ V ′}. Note that
every graph is a subgraph of itself induced by its whole vertex set. We also use the expressions
G− V ′ := G[V − V ′] and G− F := (V,E \ F ) for F ⊆ E.

5



6 Chapter 2. Definitions

Definition 2.1.4 (Weighted Graph). A weighted graph G = (V,E, c) is a triple that consists of
a vertex set V , an irreflexive binary relation E ⊆ V × V of edges and an edge weight function
c : E → R+

0 . Weighted graphs may be undirected, in which case the edge relation is symmetric and
edges are identified with their reverse edges.

Note that for an undirected graph, the edges (v, w) and (w, v) for any adjacent vertices v, w have
to be associated with the same weight due to identification of those two edges. For convenience we
also write c(E′) :=

∑
e∈E′ c(e) to denote the weight of a subset E′ ⊆ E of a graph’s edge set E.

Definition 2.1.5 (Reachability). The binary reachability relation  G of a graph G = (V,E) is
the reflexive, transitive closure of E. The node v2 is reachable from the node v1 iff v1  G v2.

The reachability relation is always symmetric for undirected graphs. It can be either symmetric
or asymmetric for directed graphs. The relation!G, defined by v1!G v2 :⇔ v1  G v2∧v2  G

v1, is called mutual reachability . Mutual reachability is an equivalence relation and identical to
reachability in undirected graphs.

Definition 2.1.6 (Connected Component). A connected component is an equivalence class of!G

in an undirected graph G. A strongly connected component is an equivalence class of !G in a
directed graph G. The number of distinct (strongly) connected components of a graph G is denoted
by #(G).

A graph is (strongly) connected if the number of its (strongly) connected components equals 1.
An undirected cycle is a connected undirected graph G = (V,E) with

min
v∈V

degG(v) = max
v∈V

degG(v) = 2.

A directed cycle is a strongly connected directed graph G = (V,E) with

max
v∈V

deg−G(v) = max
v∈V

deg+
G(v) = 1.

An undirected or directed path is obtained by removing one edge from an undirected or directed
cycle, respectively. Vertices of a path that are incident to only one edge are called endpoints of the
path. In directed paths, the vertices without predecessors or successors may also be called head or
tail of the path, respectively. Cycles and paths may be weighted. The length c(P ) of a weighted
path P is the sum of weights of its edge set.

For a graph G = (V,E) with v1, v2 ∈ V and v1  G v2 there exists a subgraph P of G that is a
path whose endpoints are v1 and v2. Furthermore, if G is directed, there exists a path such that
v1 is the tail and v2 is the head of this path. Subgraphs of this type are called paths from v1 to v2
in G regardless of whether G is directed or undirected. The path P is called shortest path from
v1 to v2 if there exists no path P ′ from v1 to v2 in G with c(P ) > c(P ′). The length of a shortest
path is called the distance dG(v1, v2) from v1 to v2 in G.

A tree is a connected undirected graph that does not contain a cycle as a subgraph. An
arborescence is a directed graph G = (V,E) with designated root r such that for every vertex
w ∈ V there is exactly one directed path from r to w. Vertices of trees and arborescences may be
called nodes. Nodes with degree 1 are called leafs.

Let H be a subgraph of G. H is said to span G if the two graphs share the same node set. If
H is a tree, it is called spanning tree of G. A minimum spanning tree of G is a spanning tree with
minimum edge weight, assuming unit weight for unweighted graphs.

Every symbol defined above where a graph is used as a subscript argument may also be used
without this argument if the graph is evident.

2.2 Combinatorial Problems
The computational problems explored in this document are combinatorial optimization and deci-
sion problems. The definition of combinatorial optimization problems is based on [5] and [15].
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Definition 2.2.1 (Combinatorial optimization problem). An instance of a combinatorial opti-
mization problem consists of a finite set Ω, a subset S ⊆ P(Ω) of feasible solutions and a value
function v : Ω 7→ R+

0 . A combinatorial optimization problem P is a set of instances and either a
minimization or a maximization problem. For a solution y ∈ S we denote the sum of values of the
elements of y by v(y) :=

∑
ω∈y v(ω). The objective is to find a solution y∗ ∈ S with

∀y ∈ S : v(y) ≥ v(y∗)

if P is a minimization problem, and

∀y ∈ S : v(y) ≤ v(y∗)

if P is a maximization problem.

A solution that meets the conditions of y∗ in the definition above is called an optimal solution.
Its value v(y∗) is denoted by OPT(Ω,S, v), or OPT if Ω, S and v are evident.

Definition 2.2.2 (Decision problem). A decision problem is a language L, which is a subset of
an underlying set Ω. An instance of a decision problem is an element ω of Ω. The objective is to
decide whether or not ω ∈ L.

Elements of Ω may be called the input of the decision problem. We occasionally identify the
problem with its language and thus speak of the input for L.

Combinatorial optimization problems yield canonical decision variants by supplementing an
instance (Ω′,S, v) with a positive real number k ∈ R+

0 . The underlying set Ω of our newly formed
decision problem contains every such enhanced instance. Its subset L is then defined to contain
every such instance whose optimal solution has a better value than k, i.e.,

L := {(Ω′,S, v, k) | OPT(Ω,S, v) ≤ k}

for minimization problems and

L := {(Ω′,S, v, k) | OPT(Ω,S, v) ≥ k}

for maximization problems. Given an instance (Ω′,S, v) of a combinatorial optimization problem
and a positive real number k, the canonical decision problem can be interpreted as the question of
whether or not OPT(Ω,S, v) ≤ k.

Optimization and other computational problems are categorized using a range of different
properties, most notably the running time needed for algorithms to solve them. This categorization
often helps to decide whether a problem is practically tractable. The following definitions are
mostly adopted from [18].

Definition 2.2.3 (Complexity class P). A computational problem belongs to the complexity class
P iff there exists an algorithm that solves the problem and has a worst case running time that is
polynomial in the input length.

This class P covers the problems that are usually considered practically tractable.

Definition 2.2.4 (Complexity class NP). A decision problem L belongs to the complexity class NP
iff there exists a decision problem L′ ∈ P and a polynomial p such that L = {x | ∃y ∈ {0, 1}p(|x|) :
(x, y) ∈ L′}.

The class NP can thus be described as the class of decision problems that can be verified in
polynomial time, given a certificate y. The certificate can be thought of as a proof that x ∈ L,
encoded as a binary string. For a combinatorial problem (Ω,S, v), the certificate for its canonical
decision problem can be interpreted as an encoded solution I with v(I) ≤ k. If there is no solution
with better value than k, no such certificate exists.

Obviously, P ⊆ NP because we may just ignore any certificates and solve the problem itself in
polynomial time.
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Definition 2.2.5 (Polynomial-time reducibility). Let D1, D2 be decision problems. D1 is polynomial-
time reducible to D2 (D1 ≤p D2) iff there exists a polynomial time computable function f that
transforms every input x for D1 into an input f(x) for D2 such that x ∈ D1 ⇔ f(x) ∈ D2.

Polynomial-time reductions can be used to compare problems with each other.

Definition 2.2.6 (NP-Completeness). A decision problem D ∈ NP is NP-complete (D ∈ NPC)
iff every problem D′ ∈ NP is polynomial-time reducible to D.

If there is a problem L ∈ NPC ∩ P, we would be able to reduce every problem in NP to this
problem L, yielding a polynomial-time algorithm for every problem in NP and P = NP. However,
today we assume that P 6= NP. If this assumption is correct, NP-complete problems cannot be
solved in polynomial time.

Due to the transitivity of polynomial-time reductions we only need to reduce one NP-complete
problem to another problem R in NP to show that R is NP-complete, too.

As the title of this document suggests, we are interested in the parameterized complexity of
stochastic Steiner tree problems. The following definitions are based on [6] and [14].

Definition 2.2.7 (Parameterized language). Let L ⊆ Ω be a language. A parameterized language
L′ is a subset of L × N. A corresponding decision problem requires to determine whether a pair
(ω, k) ∈ Ω×N belongs to L′. For an instance (ω, k), ω is called the main part and k the parameter
part of the instance.

The length of a pair (ω, k) ∈ Ω×N is denoted by |(ω, k)|. We denote by LPar a modification of
L that is parameterized by a parameter described by Par.

Definition 2.2.8 (Complexity class FPT). The complexity class FPT contains the decision prob-
lem of every parameterized language L×N, L ⊆ Ω, that can be solved in time O(|(ω, k)|α f(k)) for
each (ω, k) ∈ Ω× N, some α ∈ R+ and a computable function f .

For decision problems that are not known to be in P there may still be an algorithm that has
polynomial worst-case running time under certain conditions. There might be a parameter p(x)
of inputs x such that the running time is polynomial except for a non-polynomial term that only
depends on p(x). Parameterized languages in P can also be found in FPT because the conditions
are identical if we use f(x) = 1, x ∈ N0.

2.3 Steiner Tree Problems
This section defines the several Steiner tree problems that are treated in later chapters. All of
them search for variations of a concept called Steiner tree.

Definition 2.3.1 (Steiner tree). Let G = (V,E, c) be an undirected, weighted graph and T ⊆ V a
set of terminal nodes. An edge subset F ⊆ E is called a Steiner tree for T in G iff there exists
F ′ ⊆ F and V ′ ⊇ T such that (V ′, F ′) is a connected subgraph of G.

The term Steiner tree is also used for the the connected subgraph (V ′, F ′). Note that the graph
(V ′, F ′) is always connected while (V ′′, F ), V ′′ = {v ∈ V | ∃w ∈ V : (v, w) ∈ F ∨ (w, v) ∈ F} may
have more than one connected component. We point out what we mean by the term Steiner tree
whenever the distinction between those two variants is necessary but not immediately obvious. We
also say that F and (V ′, F ′) connect T in G, respectively.

By definition, the vertices in V ′\T and their incident edges are not strictly required for (V ′, F ′)
to be a Steiner tree. They may, however, allow for smaller Steiner trees by introducing shortcuts.
In some cases they may even be necessary to make the connection of T possible. In either case,
these vertices are called Steiner nodes.

Each of the following Steiner tree problems is a minimization problem.

Definition 2.3.2 (Steiner tree problem). Let G = (V,E, c) be an undirected, weighted graph with
strictly positive edge weights and T ⊆ V a set of terminals. The triple (Ω,S, v) is an instance of
the Steiner tree problem (STP), where Ω = E, v = c, and S contains every Steiner tree for T in
G.
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An algorithm solving the Steiner tree problem receives a representation of (Ω,S, v) as input.
The representation used for the algorithms in this document is (G,T ).

The value of an optimal solution OPT(Ω,S, c) to the Steiner tree problem for the weighted,
undirected graph G and the terminal set T is denoted by SMT (G,T ).

Definition 2.3.3 (Directed Steiner tree problem). Let G = (V,E, c) be a directed, weighted graph,
T ⊆ V a set of terminals and r ∈ T a designated root. The triple (Ω,S, v) is an instance of the
directed Steiner tree problem (DSTP), where Ω = E, v = c and F ∈ S iff there exists V ′ ⊇ T such
that (V ′, F ) is an arborescence rooted at r.

This directed variant of the Steiner tree problem asks for a directed subgraph S of G such that
every terminal is reachable from r. We use the DSTP to deduce some results regarding the SSTP.

A common generalization of the Steiner tree problem is its prize-collecting variant:

Definition 2.3.4 (Prize-collecting Steiner tree problem). Let G = (V,E, c) be an undirected,
weighted graph and P : E 7→ R+

0 a node profit function. The triple (Ω,S, v) is an instance of the
prize-collecting Steiner tree problem (PCSTP), where Ω = V ∪ E, v(w) = P (w) for w ∈ V and
v(e) = c(e) for e ∈ E, and F ∈ S iff (V \ F,E ∩ F ) is a connected graph.

In contrast to the STP, there are no terminals that we have to connect. Instead, some of the
nodes of G are assigned a profit. A node’s profit is paid out if the node is part of the Steiner
tree. The value of a solution involves the sum of costs of the selected edges. Intuitively, the profit
of every node that is covered by the selected edges is then subtracted. However, our definition
of combinatorial optimization problems does not allow for subtracting, nor does it allow negative
element weights.

To avoid this problem, we do not think of the included nodes as part of the solution, but the
excluded ones. Thus, the value of a solution gets worse with every node with positive profit that
is not covered by the selected edges. The value of a solution V ′ ∪ F , V ′ ⊆ V , F ⊆ E, where V’
consists of the vertices that are not included in the Steiner tree, is

v(V ′ ∪ F ) =
∑
e∈F

c(e) +
∑
w∈V ′

P (w).

Since
∑
v∈V p(v) is independent of a specific solution, we can subtract this from the value of each

solution without changing the semantics of the problem or the set of optimal solutions. Therefore,
it is safe to use the alternative measurement

v′(V ∗ ∪ F ) =
∑
e∈F

c(e)−
∑
w∈V ∗

P (w)

to look for optimal solutions, where V ∗ is the set of vertices that are included in the Steiner tree.
This measurement better suits our idea of profits that are paid out for vertices that are connected,
though, technically speaking, it does not meet the conditions for measurements of combinatorial
optimization problems.

The prize-collecting Steiner tree can also be considered for directed graphs:

Definition 2.3.5 (Directed prize-collecting Steiner tree problem). Let G = (V,E, c) be a directed,
weighted graph, P : V 7→ R+

0 a node profit function and r ∈ V a designated root. The triple
(Ω,S, v) is an instance of the directed prize-collecting Steiner tree problem (DPCSTP), where
Ω = V ∪ E, v(w) = P (w) for w ∈ V and v(e) = c(e) for e ∈ E, and S = {F ⊆ Ω | (V \ F,E ∩
F ) is an arborescence rooted at r}.

We utilize Cartesian products for our next definition, which requires some additional notation.
Let E be an edge set and n ∈ N. The elements of E×{0, . . . , n} are pairs of an edge and an integer.
For e ∈ E, i ∈ {0, . . . , n}, we use the symbol ei as shorthand for (e, i). For a subset F ⊆ E, F i
refers to the set {e | e0 ∈ F ∨ ei ∈ F}.

Definition 2.3.6 (Two-stage stochastic Steiner tree problem). Let G = (V,E, c0) be an undirected,
weighted graph with strictly positive edge weights, K ∈ N and T = {(T i, ci, pi) | 1 ≤ i ≤ K} a set
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of scenarios, where T i ⊆ V is a terminal set, ci : E 7→ R+
0 a weight function and pi ∈ (0, 1) for

1 ≤ i ≤ K, and
∑K
i=1 p

i = 1. The triple (Ω,S, v) is an instance of the two-stage stochastic Steiner
tree problem (SSTP), where Ω = E × {0, . . . ,K},

v(ei) =

{
c0(e) i = 0

pici(e) else
,

and F ∈ S :⇔ F 0 is the edge set of a connected subgraph of G and ∀i ∈ {1, . . . ,K} : F i is a
connected Steiner tree for T i in G.

We assume a two-stage approach in our terminology, hence the name two-stage stochastic
Steiner tree problem. Edges in F 0 are considered to be first stage edges. We have to pay their first
stage price c0. In this stage, we do not know which scenario will eventually occur in the second
stage, and thus which terminal set to interconnect. For the i-th scenario, pi denotes its probability
of occurrence, T i its terminal set, and ci its specific edge cost function.

In the second stage, the actual scenario i is revealed and we might need to choose some addi-
tional edges F i \F 0 to augment the already bought edges to a Steiner tree for the terminal set T i.
The cost caused by edges bought in the second stage is their second stage price, which depends on
the actual scenario.

A solution to an SSTP instance (G, T ) is called stochastic Steiner tree for T in G.
The value of a solution F is the sum of expected costs of all selected edges. For every second

stage edge, we need to charge its second stage cost weighted by the probability that this edge is
actually bought in the second stage. The value can thus be calculated as

v(F ) =
∑
e∈F 0

c0(e) +

K∑
i=1

pi
∑

e∈(F i\F 0)

ci(e).

The definition of S requires us to connect the second stage edges of each scenario to the first
stage edges, because F i has to be the edge set of a connected subgraph. If F 0 is empty, this
requirement can be dropped as there are no first stage edges to connect to. In this case, the edges
bought in each scenario have to be the edge set of a connected graph for itself.

The idea of stochastic Steiner trees can be combined with prize-collecting Steiner trees. It
requires to extend the shorthand notation ei for pairs (e, i) ∈ E × {0, . . . ,K} to pairs (v, i) ∈
V × {1, . . . ,K}.

Definition 2.3.7 (Two-stage stochastic prize-collecting Steiner tree problem). Let G = (V,E, c0)
be an undirected, weighted graph with strictly positive edge weights, K ∈ N, T = {(T i, ci, pi) | 1 ≤
i ≤ K} a set of scenarios as above and P : V × {1, . . . ,K} 7→ R+

0 a node profit function that
additionally depends on a scenario. The triple (Ω,S, v) is an instance of the two-stage stochastic
prize-collecting Steiner tree problem (SPCSTP), where Ω = (V × {1, . . . ,K}) ∪ (E × {0, . . . ,K}),

v(x) =


c0(e) x = e0, e ∈ E
pici(e) x = ei, e ∈ E
piP (v, i) x = (v, i), v ∈ V

,

and V ′ ∪ E′ belongs to S iff (V \ V ′i, E′i) is a connected graph for each scenario, V ′ ⊆ (V ×
{1, . . . ,K}), E′ ⊆ (E × {0, . . . ,K}).

Again, there are no terminal nodes that have to be connected. The vertices are assigned a
profit that depends on the scenario. A solution to SPCSTP consists of the selected edges E′ and,
for each scenario i, the vertices that are not covered by E′i.

Note that the only variants that allow us to assign edge weights that are not strictly positive
are DSTP and DPCSTP. The other variants require edge weights not to be 0 to avoid cycles
that contain unnecessary edges with cost 0. Solutions for directed Steiner tree problems are
arborescences and, thus, cannot contain cycles at all.



Chapter 3

The Steiner Tree Problem

This chapter is dedicated to the deterministic variant of the Steiner tree problem. The algorithms
for the SSTP introduced in later chapters are derived from algorithms for the STP. Basic insight
into STP is helpful to understand the observations and algorithms concerning its variants.

In Section 1.1 we give an overview of the already existing work regarding parameterized algo-
rithms for STP. Section 3.1 provides the reader with some basic insights on the STP. The points
made in this section are not necessary for the understanding of the rest of this document. Readers
that are new to the field of Steiner trees are, nevertheless, encouraged to read through this section,
as well as the next one. A simple algorithm is introduced in Section 3.2. It solves STP in linear
time if the input graph is a tree. At last, NP-completeness proofs for STP and its variants are
given in Section 3.3.

3.1 Preliminary Observations

This section provides the reader with some basic intuition on the subject of Steiner trees. It
provides statements that are not strictly needed for the rest of the document. They may, however,
help the reader understand some of the difficulties and fundamentals of Steiner tree problems.

Proposition 3.1.1. Minimum Steiner trees are trees.

Proof. Let G = (V,E, c) be a graph, T ⊆ V a terminal set and S = (V ′, E′) a minimum Steiner
tree for T in G. Assume that S has k distinct connected components C1, . . . , Ck, k > 1 with
Ci = (V ′i , E

′
i). Assume without loss of generality that C1 contains at least one terminal. If there

was another component Ci, i 6= 1, that also contained terminals, S would not provide paths from
terminals in C1 to terminals in Ci. In this case, S would not be a Steiner tree. Thus, C1 contains
every terminal.

As C1 is a connected subgraph of G and contains every terminal, it is a Steiner tree for itself.
Because of

∑
e∈E′

c(e) =

k∑
i=1

∑
e∈E′i

c(e) >
∑
e∈E′1

c(e)

we are able to find a smaller Steiner tree C1 for T in G, contradicting our assumption that S is
not connected.

Now assume that S contains a cycle C = (e1, . . . , er) as a subgraph for r > 2. For every pair
t1, t2 of terminals we find a path from t1 to t2 in G′−ei, 1 ≤ i ≤ r as follows. Paths in G′ that do not
utilize ei also exist in G′ − ei. Consider a path P = (ej1 , . . . , ejs) from t1 to t2 in G′ that contains
ei. One connected component of the symmetric sum C ⊗ P = {e ∈ E′ | e ∈ C ∪ P ∧ e /∈ C ∩ P} is
a tree and contains both t1, t2 but not ei, yielding a unique path not containing ei.

A minimum Steiner tree is connected and does not contain cycles and is therefore a tree.

11
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Proposition 3.1.2. Let G = (V,E, c) be an undirected, weighted graph and T ⊆ V a terminal set.
The leafs of a minimum Steiner tree S for T in G are terminals.

Proof. Let S be a Steiner tree for T in G that contains a node v ∈ V \ T with degS(v) = 1, i.e., a
Steiner node that is also a leaf of S. The only vertices of a path with degree 1 are its endpoints.
Thus, a path P from one terminal t1 to another terminal t2 may only contain leafs of S as its
endpoints. Obviously, the endpoints of P are terminals. The Steiner leaf v is not part of the path
P for any selection of t1, t2, and is thus not needed to make S a Steiner tree. As we assume positive
edge weights, we obtain a solution with smaller value by removing v and its incident edges from
S, which is a contradiction to our assumption that S is a minimum Steiner tree.

Proposition 3.1.3. Let G = (V,E, c) be an undirected, weighted graph and T ⊆ V a terminal set
with T = {v1, . . . , vt}. For vi, wj ∈ T, i < j, let Pi,j = (Vi,j , Ei,j) denote one shortest path from vi

to vj. The graph G∗1 := (
t−1⋃
i=1

t⋃
j=i+1

Vi,j ,
t−1⋃
i=1

t⋃
j=i+1

Ei,j) is a Steiner tree for T in G.

Proof. For every terminal pair vi, vj ∈ T , Pi,j is a subgraph ofG∗1. Thus, every terminal is reachable
from every other terminal within G∗1. For a vertex v of G∗1 let n(v) denote one of the terminals
that are reachable from v. As every vertex of G∗1 lies on a shortest path between terminals, n(v)
exists for every such v. For vertex pairs v, w of G∗1, a path from v to w can now be constructed
by combining one path from v to n(v), one path from n(v) to n(w) and one path from n(w) to w
and removing every cycle that may be formed by this union. Thus, G∗1 is connected. Its vertex set
contains T .

In most cases we are able to get much better results by exploiting the following result.

Proposition 3.1.4. Let G = (V,E, c) be an undirected, weighted graph with terminal set T =
(v1, . . . , vt), v ∈ V and Pv(i) = (Vv(i), Ev(i)) be a shortest path from v to vi. The graph G∗2(v) :=

(
t⋃
i=1

Vv(i),
t⋃
i=1

Ev(i)) is a Steiner tree for T in G.

Proof. As above, G∗2 is connected because paths can be joined at the central node v. Every terminal
vi is included in the vertex set of G∗2 as one endpoint of Pv(i).

3.2 Algorithm for STP on Trees
In this section we present a simple algorithm that solves the STP on trees, assuming strictly
positive edge costs. Given a weighted tree G = (V,E, c) and a terminal set T ⊂ V , we want to find
a minimum Steiner tree for T in G. We do this by computing the edge set of a minimum Steiner
tree. We assume that every edge of G has strictly positive edge costs.

First of all, it is important to notice that for each Steiner tree instance on trees there is exactly
one minimum Steiner tree.

Lemma 3.2.1. If G is a tree, G∗1 is the only minimum Steiner tree connecting T in G.

Proof. A Steiner tree S has to provide for every terminal pair vi, vj a path from vi to vj to make
sure that S is connected. If G is a tree, there is exactly one path from vi to vj . There does not
even exist a path that is longer than dG(vi, vj). Therefore, S must contain every single Pi,j for
1 ≤ i < j ≤ k. As a consequence, G∗1 must be a subgraph of S. Additional edges would increase
the weight of S, making the solution worse, and additional vertices without additional edges would
destroy the connectivity, yielding an infeasible solution.

Note that for v ∈ T , G∗2(v) is a subgraph of G∗1 for an appropriate selection of paths. As G∗1 is
optimal and G∗2(v) a subgraph and a Steiner tree, G∗2(v) is also optimal.

Now, we only need to decide for every edge whether or not it lies on a path between two
terminals. This can be done by a simple depth first search starting in an arbitrary terminal.
Eventually, the search reaches the leafs of the input tree and traverses the path from the selected
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Algorithm 3.2.1 Compute the edge set of a minimum Steiner tree in a tree

Input: undirected, weighted tree G = (V,E, c), terminal set T ⊆ V
Output: edge set of a minimum Steiner tree for T in G
1: function FindSteinerTreeEdges(G,T )
2: for e ∈ E do
3: selected(e) = False
4: for v ∈ V do
5: visited(v) = False
6: r ← any terminal in T
7: FindEdgesRec(G,T, r)
8: return selected edges
9: end function

root terminal to the leafs in reverse. After we pass the first terminal, every following edge on the
way back to the root is selected for inclusion for our desired edge set.

To compute the edge set of a minimum Steiner tree for an undirected, weighted tree G and
a terminal set T in G, we call the function FindSteinerTreeEdges (Algorithm 3.2.1) with
parameters G and T . This function marks every edge unselected and every node unvisited and
starts a depth first search in an arbitrary terminal r—called the root henceforth—by invoking the
recursive function FindEdgesRec with the parameters G, T and r. The edges that are selected
in one of the recursive calls to FindEdgesRec are then returned by FindSteinerTreeEdges.

Algorithm 3.2.2 Recursive part of the algorithm used to compute the edge set of a minimum
Steiner tree in a tree
Input: undirected, weighted tree G = (V,E, c), terminal set T ⊆ V , v ∈ V
Output: edge set of a minimum Steiner tree for every terminal in the subtree of G under v
1: function FindEdgesRec(G,T, v)
2: if visited(v) is False then
3: visited(v) ← True
4: if v ∈ T then
5: result ← True
6: else
7: result ← False
8: for (v, s) ∈ E do . s for “successor”
9: descHasTerminal ← FindEdgesRec(G,T, s)

10: result ← result ∨ descHasTerminal
11: if descHasTerimal is True then
12: selected((v, s)) = True
13: return result
14: else
15: return False
16: end function

A call to the function FindEdgesRec(G,T, v) (Algorithm 3.2.2) returns True iff v or at least
one of its successors (nodes that have to pass v to reach the root r) is a terminal.

Theorem 3.2.1. The above algorithm computes the edge set of a minimum Steiner tree for T in
a tree G correctly in time O(|V |).

Proof. Consider an edge e = (v, s) ∈ E with dG(r, v) < dG(r, s). The input tree G can be divided
into two smaller trees G1 = (V1, E1), G1 = (V2, E2) with r ∈ V1, s ∈ V2 by removing the edge e
from G. If and only if V2 ∩ T 6= ∅, a call to FindEdgesRec(G,T, s) returns True and (v, s) is
selected. Thus, for every terminal t ∈ T the edge set of the only path from r to t is part of the
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algorithm’s result. The result corresponds to the edge set of G∗2(r) and is thus a minimum Steiner
tree for G.

The running time of the function FindSteinerTreeEdges(G,T ) is O(|V | + |E|) (lines 2–6)
plus the total running time for all invocations of FindEdgesRec, whose outer If block is entered
once per vertex. Its lines 3–13 are thus executed once per vertex. Lines 3–7 require total running
time O(|V |) when v ∈ T can be checked inO(1). For each edge (v, w), lines 8–12 are executed twice:
Once in FindEdgesRec(G,T, v) and once in FindEdgesRec(G,T,w), requiring total running
time O(|E|). Because trees have |V | − 1 edges, we have an overall running time of O(|V |).

3.3 NP-completeness of Steiner tree problems
As we pointed out in the definitions of the complexity class FPT, we are interested in parameterized
algorithms only for problems that are at least NP-complete. In this section we show that Steiner
tree problems are therefore candidates for such algorithms. We provide an NP-completeness proof
for the decision variant of STP by placing it in NP and then reducing SAT to it. We refer to the
decision variant of STP as STP in the following text for convenience.

Lemma 3.3.1. STP ∈ NP

Proof. Let F be the edge set of a solution to the graph G = (V,E, c) of the STP instance (G,T, k).
We can compute the sum

∑
e∈F c(e) in time O(|E|) and compare it in constant time to k.

A literal of a boolean variable x is either x or ¬x. Let X = {x1, . . . , xn} be a set of variables.
A clause over literals of variables in X is a set of these literals. An assignment for X is a function
a : X 7→ {True, False}. A clause {y1, . . . , yr}, where each yi is a literal of a variable in X,
evaluates to True given an assignment a for X if there is 1 ≤ i ≤ r such that a(yi) = True. A
clause is satisfiable if there is an assignment to its variables such that the clause evaluates to True.

Definition 3.3.1 (Satisfiability problem). The satisfiability problem (SAT) receives a set of vari-
ables x1, . . . , xn and a set of clauses C1, . . . , Cm over literals of x1, . . . , xn as input. The output is
True iff there is an assignment to the variables x1, . . . , xn such that every clause evaluates to True.

Let X = {x1, . . . , xn}, C = {C1, . . . , Cm} be an input for SAT. The function f transforms an
input (X, C) for SAT into an input (G = (V,E, c), T, k) for STP with

• V = {v0} ∪ {zji | 1 ≤ i ≤ n ∧ j ∈ {0,−,+}} ∪ {Dj | Cj ∈ C}

• E = E1 ∪ E2 ∪ E3

– E1 = {(v0, zji ) | 1 ≤ i ≤ n ∧ j ∈ {−,+}}

– E2 = {(z0i , z
j
i ) | 1 ≤ i ≤ n ∧ j ∈ {−,+}}

– E3 = {(z−i , Dj) | ¬xi ∈ Cj} ∪ {(z+i , Dj) | xi ∈ Cj}

• c(e) = 1 for each e ∈ E

• T = {v0} ∪ {z0i | 1 ≤ i ≤ n} ∪ {Dj | Cj ∈ C}

• k = m+ 2n

We first provide a lower bound for minimum Steiner trees for graphs that originate from this
transformation.

Lemma 3.3.2. Let (X = {x1, . . . , xn}, C) be an instance for SAT and (G,T, k) := f(X, C) with
G = (V,E, c). Then, SMT(G,T ) ≥ k.

Proof. Paths from v0 to terminals z0i , 1 ≤ i ≤ n, require using corresponding non-terminal node
z−i or z+i . Thus, a Steiner tree for T in G has at least n Steiner nodes and exactly m + n + 1
terminal nodes. We need at least (n+m+ n+ 1)− 1 = m+ 2n edges to connect those nodes.
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The following lemma helps to recognize Steiner trees with no satisfying assignments.

Lemma 3.3.3. Let (X = {x1, . . . , xn}, C) be an instance for SAT and (G,T, k) := f(X, C) with
G = (V,E, c). Let S = (V ′, E′) be a Steiner tree for T in G with z−i , z

+
i ∈ V ′ for some 1 ≤ i ≤ n.

Then, v(S) ≥ k + 1.

Proof. We still need to choose at least n − 1 other Steiner nodes to connect v0 to zj , j 6= i.
Then, we require n + 1 Steiner nodes in addition to the n + m + 1 terminal nodes, yielding
|V ′| ≥ n+ 1 + n+m+ 1 = m+ 2n+ 2 and |E′| ≥ m+ 2n+ 1 = k + 1.
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Figure 3.1: Example transformation of a satisfiable SAT instance including every optimal solution

Figures 3.1 and 3.2 depict transformations. Both are transformations from a SAT instance
with variables x1, x2 and clauses C1, C2, C3 with C2 = {¬x1}. Figure 3.1 shows the graph of a
satisfiable instance, where C1 = {¬x1, x2} and C3 = {x2}. The SAT instance used for Figure 3.2
is not satisfiable. Its clauses are C1 = {x1, x2} and C3 = {¬x2}. Some minimum Steiner trees are
highlighted in both examples.

Proposition 3.3.1. STP ∈ NPC

Proof. As stated above, STP ∈ NP. Furthermore, SAT is reducible to STP by using f to transform
SAT instances into STP instances. We need to prove the following equivalence:

∀SAT instance (X, C) : (X, C) ∈ SAT⇔ (G = (V,E, c), T, k) := f(X, C) ∈ STP
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Figure 3.2: Example transformation of an unsatisfiable SAT instance and some of its optimal
solutions

“⇒”: Assume that (X, C) ∈ SAT, i.e., there exists an assignment a that satisfies every clause
in C. Let s : {1, . . . ,m} 7→ {1, . . . , n} be a mapping from clause to variable indices such that
(a(xs(j)) = True ∧ xs(j) ∈ Cj) ∨ (a(xs(j)) = False ∧ ¬xs(j) ∈ Cj), i.e., s maps a clause index to
the index of a variable that satisfies it. As a satisfies C, such a mapping clearly exists.

The graph S = (V ′, F ) is a Steiner tree for T in G with v(S) = k, where

R := {z−i | a(xi) = False} ∪ {z+i | a(xi) = True},
V ′ := T ∪R,

F0 := {(v0, u) | u ∈ R},
Fv := {(zji , z

0
i ) | zji ∈ R},

F− := {(z−i , Dj) | a(xs(j)) = False} and
F+ := {(z+i , Dj) | a(xs(j)) = True},

F := F0 ∪ Fv ∪ F− ∪ F+.

Every z0i is connected to v0 by the first two edge sets F0 and Fv. The latter two edge sets F− and
F+ make sure that the clause vertices Dj are connected to one Steiner node in R. The number of
edges in F is exactly k.
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“⇐”: Assume that there is a Steiner tree S = (V ′, F ) for T in G with
∑
e∈F c(e) ≤ k. For every

1 ≤ i ≤ n we have
∣∣{z−i , z+i } ∩ F ∣∣ = 1. If there were an i such that this intersection was empty,

S would not be connected or the corresponding z0i would not be part of S, because we can only
reach z0i by passing z−i or z+i . If there were an i such that z−i , z

+
i ∈ F , the value of S would be at

least k + 1 as stated in Lemma 3.3.3.
Consider the assignment

a(xi) =

{
True z+i ∈ F
False z−i ∈ F

for X. This assignment is well-defined as stated above. Moreover, it satisfies every clause in C. To
see this, we consider a clause Cj ∈ C. Because of Dj ∈ T , it has to be part of S and thus connected
to at least one other node in V . The only edges incident to Dj lead to the non-terminals z−i , z

+
i

for some i. Let zli be a neighbor of Dj in S. By construction, the corresponding xi satisfies Cj .

Proposition 3.3.2. DSTP ∈ NPC

Proof. An undirected graph can be interpreted as a directed one where every edge falls into two
edges, one for each direction. Instances of STP are thus also instances for DSTP, if we choose one
of the terminals as root node, which is required for DSTP instances. Solutions to STP instances
are not necessarily also solutions to the corresponding DSTP instances, because STP solutions are
not required to be connected. Optimal solutions to STP instances, however, are connected and
thus also DSTP solutions. The measurement of solutions is the same for both problems.

Proposition 3.3.3. PCSTP ∈ NPC

Proof. Let (G = (V,E, c), T, k) be an instance for STP. We can use the same graph G and upper
bound k to construct an equivalent PCSTP instance. The profit p of every non-terminal has to be
0 because we do not want to be forced to include one of these in our solutions. If we now make sure
that every terminal in T is included in every feasible solution, we can present an optimal solution
to the generated PCSTP instance as a solutions for the original STP instance without changing its
value. We achieve this by setting the profit of terminal nodes to a value that is high enough, e.g.,

p(v) =
∑
e∈E

c(e) + 1

for each v ∈ T . We can always avoid penalties p(v) for omitted nodes v by selecting every single
edge for a solution. Therefore, the value of an optimal solution is less than or equal to the sum of
all edge weights. The value of a solution that skips at least one terminal is at least the sum of all
edge weights plus one. Thus, optimal solutions for this kind of PCSTP instances are also optimal
solutions for the original STP instance.

Theorem 3.3.1. SSTP ∈ NPC

Proof. An STP instance can be extended to an SSTP instance by replacing T with a single scenario
whose terminal set is T and whose edge weights are c. Let F be an optimal solution to the extended
SSTP instance. Then F 1 is an optimal solution to the STP instance. On the other hand, a solution
F for the STP instance can be expanded to F × {0}, which is an optimal solution to the SSTP
instance.

The observations can easily be applied to DPCSTP and SPCSTP.

Corollary 3.3.1. DPCSTP ∈ NP and SPCSTP ∈ NPC.
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Chapter 4

The Two-Stage Stochastic Steiner
Tree Problem

This chapter addresses basics of the two-stage stochastic Steiner tree problem. We introduce the
problem without discussing parameterized algorithms, which are presented in Chapters 5 and 6.

Section 4.1 provides insight to the problem itself; its main purpose is to familiarize the reader
with it. Nevertheless, some of the points made in this section are referenced in later sections.
Finally, an algorithm for SSTP on tree graphs is suggested in Section 4.2 which uses the algorithm
and statements explained in Sections 3.2 and 3.1.

4.1 Preliminary Observations

As in the chapter on Steiner trees, this section helps building up some better understanding of
the SSTP. We make some general statements about stochastic Steiner trees that lead to shorter
explanations in the following sections.

The Steiner trees that are computed after the actual scenario is revealed are required to be
connected by definition of the stochastic Steiner tree problem. Let F be a solution to the SSTP.
There are two cases that can possibly arise: Either F 0 is empty or it is not. In the latter case, the
edges selected in the second stage in each scenario i, i.e., F i \ F 0, have to maintain connection to
the edges in F 0.

In the former case, the second stage edges of different scenarios may be completely disjoint and
spread over the entire graph without even touching each other in one vertex, as long as F i is the
edge set of a connected subgraph of the input graph for itself. If this is the case, we can find an
optimal solution by computing minimum Steiner trees for each scenario independently, using an
appropriate algorithm introduced in the chapter about Steiner trees.

It is, therefore, sufficient to outline algorithms for the computation of optimal solutions under
the condition that we have to buy at least one edge in the first stage. We can utilize these algorithms
in a framework algorithm that first computes optimal solutions of the first type mentioned above
using algorithms introduced in this chapter, then computes optimal solutions of the second type
using algorithms of the previous chapter, and then finally selects the overall optimal solution.

First of all, we show that we actually deal with trees when discussing stochastic Steiner trees,
just as the name suggests.

Proposition 4.1.1. Let (G, T ) be an instance of SSTP and F an optimal solution to this instance.
F i is a tree for each 0 ≤ i ≤ K.

Proof. Consider an F i, 1 ≤ i ≤ K that is not a tree. By definition of stochastic Steiner trees, F i
is connected. Therefore, it contains a cycle. Otherwise it would be a tree.

Two cases can arise in this situation. First, the cycle consists of edges in F 0 exclusively. Second,
the cycle contains at least one second stage edge, i.e., an edge of F i \ F 0.
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Figure 4.1: Example SSTP instance with completely disjoint STP and SSTP solutions

In the first case, it is safe to remove one of the first stage edges. Removing an edge e from F 0

does not affect the connectivity of F j , 1 ≤ j ≤ K. F \ {(e, 0)} is a feasible solution whose value is
better than that of F itself. This contradicts our assumption that F is optimal.

In the second case, the removal of a first stage edge might cause F j , j 6= i, not to be connected
any more. The value can, nevertheless, be reduced by removing one second stage edge e from F i

that is part of a cycle. This edge does not affect the edges of the other scenarios. Its removal leaves
the connectivity of F i unchanged. Again, F \ {(e, i)} is a better solution than F itself.

Hence, each F i, 1 ≤ i ≤ K, is a tree. F 0 is a connected subgraph of F 1 and thus a tree.

Some proofs of later statements make a distinction depending on the stage an edge is bought
in. We only consider the case that an edge is bought in the first stage or in the second stage, but
not in both. The following proposition states that this is no restriction.

Proposition 4.1.2. Let (G, T ) be an SSTP instance with G = (V,E, c0), T = {(T i, ci, pi) | 1 ≤
i ≤ K}, and F ⊆ E×{1, . . . ,K} an optimal solution to this instance. There is no edge e ∈ E with
e0 ∈ F ∧ ei ∈ F for some i ∈ {1, . . . ,K}.

Proof. Assume the contrary. The removal of ei from F does not have any effect on the connectivity
of F j for j 6= i. In fact, it does not even have an effect on F i. As we did not remove e0, e still
remains in F 0, which is a subset of F i by definition. Since ci(e) > 0, the removal of ei leads us to
another feasible solution whose value is less than the value of F , which in turn cannot have been
an optimal solution.

One might think that SSTP can be solved by computing Steiner trees for the individual scenarios
with their respective cost function and then combining these Steiner trees in some clever way to
obtain an optimal selection of first stage edges. The following proposition suggests that this
approach is not very promising.

Proposition 4.1.3. There exist undirected, weighted graphs G = (V,E, c) and scenario sets T =
{(T i, ci, pi) | 1 ≤ i ≤ K} such that the optimal solution to the SSTP on this input and the optimal
solutions to the STP on G and T i with their respective cost function ci, 1 ≤ i ≤ K, are disjoint.

Proof. We prove this statement by giving an example graph that meets the conditions. The under-
lying graph G = (V,E, c0) for this example resembles a diamond shape as illustrated in Figure 4.1.
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Its nodes v0, v1, v2, v3 are connected by the edges (v0, v1), (v0, v2), (v0, v3), (v1, v3), (v2, v3) with
c((v0, v1)) = c((v0, v2)) = 2, c((v0, v3)) = 4, and c((v1, v3)) = c((v2, v3)) = 3.

We have two scenarios in this example. The first one requires T 1 = {v1, v3} to be connected,
the second one T 2 = {v2, v3}. We assume that the cost of an edge increases in the second stage
independently of the actual scenario and edge. This can be expressed by a global inflation factor.
We use the factor 2, i.e., c1(e) = c2(e) = 2·c0(e) for each e ∈ E. The two scenarios are equiprobable,
i.e., p1 = p2 = 1

2 .
The optimal solution to the STP instance ((V,E, c1), T 1) consists of the single edge (v1, v3).

Accordingly, the solution to ((V,E, c2), T 2) only utilizes (v2, v3). The value of these solutions is 3,
each. We need to buy (v0, v3) in the first stage and (v0, v1), (v0, v2) in the second stage to achieve
optimal results for SSTP. It is easy to see that no two of these solutions share edges.

4.2 Algorithm for SSTP on Trees
In this section we describe one method to compute the edge set of an optimal stochastic Steiner
tree for SSTP instances with trees as underlying graphs. For this purpose, we make use of the
function FindSteinerTreeEdges that was introduced in Section 3.2.

In contrast to the Steiner tree problem on trees, SSTP instances on trees do not necessarily
have a unique optimal solution. The variations between different solutions, however, are small.
Differences can only occur in first stage edges F 0, but not in F i for a scenario i, because the
solutions to each scenario have to incorporate the unique optimal Steiner tree for the corresponding
terminal set and be minimal under this condition.

As we learned in the section about the STP on trees, there is exactly one minimum Steiner
tree for a given tree G and terminal set T , which, in fact, is independent of the edge cost function
of G. For an optimal solution F to an SSTP instance (G, T ), T = {(T i, ci, pi) | 1 ≤ i ≤ K}, the
minimum Steiner tree for T i in G has to be included in F i for each scenario i.

The idea of the following algorithm is to compute the minimum Steiner tree for each scenario
and decide afterwards which edge should be bought in the first stage based on the expected cost
we pay for each edge in the second stage.

We have to make sure that the second stage edges are connected to the first stage edges, if we
buy first stage edges at all. To achieve this, we guess a node that is incident to a first stage edge
by repeating the computation for every node in V .

Algorithm 4.2.1 Compute the edge set of a minimum stochastic Steiner tree in a tree

Input: undirected, weighted graphG = (V,E, c0), set ofK scenarios T = {(T i, ci, pi) | 1 ≤ i ≤ K}
Output: edge set of a minimum stochastic Steiner tree for T in G
1: function FindStochSteinerTreeEdges(G, T )
2: S ← FindDisconnectedSSTEdges(G, T )
3: for r ∈ V do
4: S′ ← FindRootedSSTEdges(G, T , r)
5: if c(S′) < c(S) then
6: S ← S′

7: return A
8: end function

The function FindStochSteinerTreeEdges (Algorithm 4.2.1) first computes the optimal
solution under the condition that we do not buy any edges in the first stage by calling FindDis-
connectedSSTEdges. It then iterates over V : For each r ∈ V it computes the optimal solution
under the condition that r is incident to one edge of an optimal first stage by calling FindRoot-
edSSTEdges. If we do buy edges in the first stage, calling FindRootedSSTEdges results in
optimal solutions for at least two nodes. At the end of the algorithm, the best solution is returned.

The function FindDisconnectedSSTEdges (Algorithm 4.2.2) simply computes the STP
solution to T i on G for each scenario. As this function assumes an empty first stage, all edges have
to be bought in the second stage. In this case, the solutions for the different scenarios do not have
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Algorithm 4.2.2 Compute the edge set of a minimum stochastic Steiner tree without first stage
edges in a tree

Input: weighted graph G = (V,E, c0), set of scenarios T = {(T i, ci, pi) | 1 ≤ i ≤ K}
Output: edge set of a minimum stochastic Steiner tree without first stage edges
1: function FindDisconnectedSSTEdges(G, T )
2: for i ∈ {1, . . . ,K} do
3: Ei ← FindSteinerTreeEdges(G,T i)
4: return {(e, i) | e ∈ Ei}
5: end function

an effect on each other and can thus be computed independently. We do not need to consider the
scenario specific edge weight function because STP solutions on trees are unique anyway.

Algorithm 4.2.3 Compute an optimal solution to the SSTP instance (G, T ) whose first stage
covers a given node r

Input: weighted graph G = (V,E, c0), set of scenarios T = {(T i, ci, pi) | 1 ≤ i ≤ K}, root r ∈ V
Output: stochastic Steiner tree for T in G whose first stage covers r
1: function FindRootedSSTEdges(G, T , r)
2: for e ∈ E do
3: f(e)← 0

4: for i ∈ {1, . . . ,K} do
5: Ei ← FindSteinerTreeEdges(G,T i ∪ {r})
6: for e ∈ Ei do
7: f(e)← f(e) + pici(e)

8: E0 ← SelectFirstStageEdges(G, f, r, r)
9: return E0 ∪ {(e, i) | e ∈ (Ei \ E0)}

10: end function

The function FindRootedSSTEdges (Algorithm 4.2.3) assumes that a node r is incident to
at least one edge that is bought in the first stage, and thus to at least one edge in F i for each
scenario i and an optimal solution F . The idea of FindRootedSSTEdges is to compute the
Steiner tree for T i ∪ {r}, 1 ≤ i ≤ K, assuming that these edges are bought in the second stage
of the corresponding scenario, and deciding afterwards which edge should be bought in the first
stage.

To achieve this, we first add r to the terminal set and compute the optimal STP solution to
(G,T i ∪ {r}) as above, again assuming that those solutions correspond to the edges bought in the
second stage of each scenario. The function f keeps track of the expected costs caused by each
edge. We increase f(e) by pici(e) if the edge e is bought in scenario i. This information is—in
conjunction with the first stage costs of each edge—all we need to be able to decide which edge
should be transferred into the first stage.

If the edges bought in the first stage were not required to be the edge set of a connected subgraph
of G, we might simply use the edges e that meet c0(e) < f(e) as first stage edges. Instead, we call
SelectFirstStageEdges to ensure that the selected edges are connected to each other.

The function SelectFirstStageEdges (Algorithm 4.2.4) starts a depth-first search in r to
determine which subtrees have to be included in the solution. It returns the set of edges that
provide the lowest total weight under all subtrees of G rooted at r. The measurement used here to
tell whether the transfer of an edge from the second to the first stage is c0 − f , i.e., the difference
of the first stage cost of an edge subtracted by the expected cost that we have to pay for this edge
in the second stage if it is not bought in the first stage. For an edge set E′, this difference can be
computed as

(c0 − f)(E′) =
∑
e∈E′

(c0(e)− f(e)).
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Algorithm 4.2.4 Compute an optimal selection of first stage edges for the subtree under v

Input: weighted graph G = (V,E, c0), expected second stage costs f , current node v and its
predecessor pre

Output: set of first stage edges
1: function SelectFirstStageEdges(G, f, v, pre)
2: F ← ∅
3: for (v, s) ∈ E do
4: if s 6= pre then
5: F ′ ← SelectFirstStageEdges(G, f, s, v)
6: if (c0 − f)(F ′ ∪ {(v, s)}) > 0 then
7: F ← F ∪ (F ′ ∪ {(v, s)})
8: return F
9: end function

We calculate some kind of profit to decide whether or not we should include edges of the subtree
beneath (r, s). First, we sum up c0− f of edges that belong to the optimal solution to the subtree
under s. This edge set can be obtained with a recursive call to SelectFirstStageEdges. Second,
we add (c0− f)((r− s)). If the resulting profit is positive, all these edges are included. Otherwise,
the subtree beneath (r, s) is ignored completely.

We pass r—or in general, the predecessor of s—to SelectFirstStageEdges to avoid explo-
ration of already visited nodes.

Consider a call to SelectFirstStageEdges with parameters G, c, v, pre. If v is a leaf of
G, the only edge in E incident to v is (v, p). This edge is ignored by the above algorithm. The
for-loop is skipped and the algorithm returns the empty set, which clearly is the optimal (and only)
selection of edges for the empty subtree under v.

If v is an inner node of G, an optimal selection of first stage edges for G in the subtree that
is rooted at v can be further decomposed. For a successor s of v, we denote by Rs the connected
component containing v after removing p and every successor of v except for s. The optimal
selection of edges of Rs rooted at s is empty if every non-empty solution has negative value, which
would correspond to subtrees for which the transfer from the second to the first stage would be
unprofitable. Otherwise, the solution has to contain the edge (v, s) and the edges of an optimal
solution to the subtree beneath s, which is returned by SelectFirstStageEdges(G, f, s, v).

The solutions of different subtrees Rs do not affect each other. We can, therefore, solve
these subproblems independently and compose their results to the solution of SelectFirst-
StageEdges(G, f, v, p).

Theorem 4.2.1. The above algorithm solves the two-stage stochastic Steiner tree problem in time
O(|V |3 +K · |V |).

Proof. Our preliminary considerations illustrate that the algorithm works correctly. We only have
to provide an upper bound for the algorithm’s running time.

The function FindStochSteinerTreeEdges calls FindRootedSSTEdges once for each
r ∈ V , and FindDisconnectedSSTEdges once. The latter computes K independent Steiner
trees on the tree G, resulting in a running time of O(K(|V |+ |E|)). The former sets f(e) = 0 for
each e ∈ E in time O(|E|), and computes for each 1 ≤ i ≤ K the STP solution to (G,T i ∪ {r})
and an updated version of f in time O(|V | + |E| + |Ei|) = O(|V | + |E|), resulting in an overall
running time O(K(|V |+ |E|)) for lines 2–7. The following lines 8–9 are dominated by the call to
SelectFirstStageEdges.

This function basically works like a depth-first search. Additionally, it computes (c0 − f)(F ′ ∪
{(v, s)}) for every edge (v, s) that has not been explored before, where F ′ is part of the subtree of
G beneath s. We can precompute the function c0 − f in time O(|E|) before starting the depth-
first search, allowing us to compute (c0 − f)(M) in time |M |. Altogether, the computation of
SelectFirstStageEdges requires time O(|E|+ (|V |+ |E| · |E|)) = O(|V |+ |E|2).
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This results in a running time of O((|V | + |E|) + |V | (|V | + |E|2)) = O(|V | (|V | + |E|2)) for
FindStochSteinerTreeEdges. Because of |E| = |V | − 1 in trees, this can be simplified to
O(|V |3).



Chapter 5

Parameter: Number of Terminals

This chapter is dedicated to algorithms with running times that are super-polynomial only in the
number of terminals. The algorithms described here are suitable for solving every variant of the
Steiner tree problem defined above. As a result, the problems STP|T |,DSTP|T | etc. are placed in
FPT.

In Section 5.1 we introduce the classical algorithm of Dreyfus and Wagner. It solves the STP
in time O(n23|T |). The central theorem of this section—the Optimal Decomposition Property—is
adapted to DSTP and PCSTP in Section 5.2. In Section 5.3 we finally present a way to solve the
two-stage stochastic Steiner tree problem in time O((Kn)23|T

∗|) with T ∗ =
⋃K
i=1 T

i.

5.1 Algorithm of Dreyfus and Wagner
Up to today, the best-known parameterized algorithm for the STP is the one Dreyfus and Wagner
introduced in [7]. It uses the dynamic programming approach by basically exploiting their central
theorem, the so-called Optimal Decomposition Property. It states the following:

Theorem 5.1.1. Let G = (V,E, c) be an undirected, weighted graph, T ⊆ V a set of terminals in
G with |T | ≥ 3 and p ∈ T . Let S be a minimum Steiner tree for T in G. There exist a joining node
q ∈ V and two terminal subsets T1, T2, T3 ⊂ T ∪ {q} with T1 ∩ T2 = {q}, T1 ∪ T2 = (T \ {p}) ∪ {q}
and T3 = {p, q} such that S can be split into three subgraphs S1, S2, S3, where Si is a minimum
Steiner tree for Ti for each 1 ≤ i ≤ 3.

Proof. The following proof is borrowed from [7].
We first show that special subtrees of a minimum Steiner tree are minimum Steiner trees itself,

but for a smaller set of terminals. Afterwards, we show that they can be decomposed into one
shortest path and two minimum Steiner trees as the theorem suggests.

Given a minimum Steiner tree S and a node v of S, such subtrees Si as above consist of all
nodes that are reachable in S from v by only leaving v via a subset M ⊆ NS(v) of its neighbors.
They can be constructed by removing NS(v) \M from S and then only keeping the connected
component of the resulting tree that contains v, i.e.,

V ′(v,M) := {w ∈ V | v  S−M w} and
S(v,M) = (V ′, E′) := S[V ′].

Subtrees of this kind are candidates for S1, S2 as those two can be obtained like this, i.e., given
S1, S2 as above, there are M1,M2 ⊆ V such that Si = S(q,Mi), i = 1, 2.

Let T ′ := V ′ ∩ T . We need to show that S(v,M) is a minimum Steiner tree for T ′ in G; so
let us assume the opposite. It is obvious that S(v,M) is a Steiner tree, so it is sufficient to prove
that it is also minimal. If there exists a Steiner tree for T ′ in G with a smaller total weight than
S(v,M) we would be able to construct a Steiner tree for T in G by replacing S(v,M) with the
smaller Steiner tree for T ′ in S. However, S is an optimal solution. The construction of a smaller
solution contradicts our assumption that S(v,M) is not a minimum Steiner tree for T ′.

25
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Figure 5.1: Example STP instance to illustrate the different cases covered by the Optimal Decom-
position Property

We now prove that the tree decomposition suggested above is always possible by case differenti-
ation. We need to provide a vertex q ∈ V and a partition of (T \{p})∪{q} into two nonempty sets
T1, T2 as defined above for any choice of p ∈ T . The different cases are illustrated in Figure 5.1. In
this figure, terminal nodes are filled black and the edges of an optimal Steiner tree are highlighted.

The first case assumes that degS(p) > 1. In this case, we have to choose q = p and S3 is empty.
ForM ⊆ NS(p) and (V ′, E′) := S(v,M) as above, we may use T1 := V ′∩T and T2 := (T \T1)∪{p}
to obtain a valid decomposition. Note that T1 ∪ T2 = T = (T \ {p}) ∪ {q} for q = p.

The first case can be found in the example by setting p = q = v6, T1 = {v5, v6} and T2 =
{v1, v2, v4, v6, v7}, or p = q = v4, T1 = {v1, v4, v5, v6} and T2 = {v2, v4, v7}. In fact, there are two
other possible assignments to T1, T2 if p = q = v4.

The second case, degS(p) = 1, must be divided into two sub-cases. In the first sub-case, none
of the terminals in T \ {p} can be reached from p without passing an intermediate node v with
degS(v) > 2. Let w be the neighbor of v that has to be passed to reach p, M ⊆ (NS(v) \ {w})
and (V ′, E′) = S(v,M). We set q = v, T1 = (T ∩ V ′) and T2 = ((T \ (T1 ∪ {p})) ∪ {q}). Again,
T1 ∪ T2 = (T1 ∪ (T \ T1)) \ {p} = T \ {p} because of p /∈ (T ∩ V ′). An example for this sub-case
is p = v1, q = v3, T1 = {v3, v5, v6} and T2 = {v2, v3, v4, v7}. Note that p = v2 or p = v7 are
also considered examples of this sub-case with q = v4 and T1 = {v1, v4, v5, v6} and T2 = {v4, v7}
T2 = {v2}, respectively.

In the second sub-case, we have degS(p) = 1 and there is a v ∈ T, v 6= p, such that the path
from p to v in S does not contain any other terminal. Let w be the neighbor of v that has to be
passed to reach p, M ⊆ (NS(v) \ {w}) and (V ′, E′) = S(v,M). It is now save to choose the same
setting for q, T1 and T2 as we did in the last sub-case. An example for this is p = v5, q = v6,
T1 = {v1, v2, v4, v6, v7} and T2 = {v6}.

A simple way to compute the value of a minimum Steiner tree using this result is shown in
Algorithm 5.1.1.

Algorithm 5.1.1 Algorithm for STP that exploits the Optimal Decomposition Property

Input: undirected, weighted graph G = (V,E, c), terminal set T = {t1, . . . , tk} ⊆ V
Output: edge set of a minimum Steiner tree for T in G
1: function MinSteinerTreeODP(G,T )
2: return DecompRec(G, t1, {t2, . . . , tk})
3: end function

To compute the value of an optimal Steiner tree, we call the function MinSteinerTreeODP
(Optimal Decomposition Property) with parameters G = (V,E, c) and T ⊆ V . This function just
calls the recursive part of the algorithm by selecting an arbitrary terminal t1 and passing it to
DecompRec(G, t1, T \ {t1}).

The function DecompRec first checks in lines 2–5 whether the solution is trivial, in which case
it just returns an appropriate result. It then tries to find the best joining node q ∈ V and the best
decomposition of T ′ into T1, T2 by simple enumeration. As we do not want to compute the value
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Algorithm 5.1.2 Recursive part of the STP algorithm that exploits the Optimal Decomposition
Property

Input: undirected, weighted graph G = (V,E, c), vertex p ∈ V , terminal set T ′ ⊆ V
Output: edge set of a minimum Steiner tree for T ′ ∪ {p} in G
1: function DecompRec(G, p, T ′)
2: if T ′ = {p} then
3: return 0
4: if T ′ ∪ {p} = {p, w} then
5: return dG(p, w)

6: min ←∞
7: v1 ← arbitrary terminal in T ′
8: for q ∈ V do . |V |
9: d← dG(p, q)

10: if d < min then
11: for {v1} ⊆ T1 ⊂ T ′ do . O(2|T

′|)
12: T2 ← T ′ \ T1
13: m← DecompRec(G, q, T1) + DecompRec(G, q, T2) + d
14: if m < min then
15: min ← m
16: return min
17: end function

of a solution to a given decomposition twice because of commutation of T1 and T2, we require T1
to always contain one selected terminal v1.

The outer For loop spanning lines 9–15 requires |V | iterations. Now consider line 11. There are
2|T | subsets of T , one of which is T itself. Furthermore, there are 2|T\{v1}| subset of T \{v1}. Thus,
ignoring T itself and every subset of T that does not contain v1, there are 2|T | − 2|T\{v1}| − 1 =
2|T | − 2|T |−1 − 1 = 2|T |−1 − 1 configurations for T1.

The function then calls itself for every combination of q and T1, T2 twice, computing recursively
the best solution to an instance with a smaller terminal set in the same graph. The main problem
of this simple approach is the repeated computation of smaller solutions. The smaller the terminal
set, the more often its optimal solution is computed.

Dreyfus and Wagner introduced the following algorithm that avoids some shortcomings of the
above one by utilizing the dynamic programming approach. The variablesM(v, T ′) for v ∈ V, T ′ ⊆
T , are considered globally available.

The array M stores the value of the minimum Steiner tree for every terminal subset and one
node of V . The symbol M(v, T ′) thus holds the value of the minimum Steiner tree connecting
T ′ ∪ {v} on condition that v is the node mentioned as p in the Optimal Decomposition Property.

The function DreyfusWagner first initializes the arrayM to contain the value of a minimum
Steiner tree for the terminals v ∈ V and t ∈ T , which corresponds to the distance from v to t in
G. It then chooses one terminal node p that plays the role of the node that is also called p in the
Optimal Decomposition Property. According to this theorem, p is only contained in the solution
as part of the path from p to our yet unknown joining node q, so we can ignore it for now.

The function then computes for every T ′ ∈ P(T \ {p}) and q ∈ V the value of a minimum
Steiner tree for T ′∪{p} in G assuming that p and q are the nodes mentioned in the above theorem,
i.e., we only take into account those solutions that are composed of a shortest path from p to q,
a minimum Steiner tree connecting one subset T1 of T ′ with q, and one minimum Steiner tree
connecting another subset T2 of T ′, where T1 ∪ T2 = T ′ and T1 ∩ T2 = ∅. This task is fulfilled by
the procedure UpdateValueOfMinSteinerTree.

After computing the values of optimal solutions for the subproblems mentioned above, the
function DreyfusWagner combines some of these to form a minimum Steiner tree for T . For
every possible joining node q it computes the optimal decomposition of T \ {p} by calling Opt-
Decomp(q, T \ {p}), and adds to the value of the two sub-solutions yielded by this decomposition
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Algorithm 5.1.3 Algorithm of Dreyfus and Wagner

Input: undirected, weighted graph G = (V,E, c), terminal set T ⊆ V
Output: edge set of a minimum Steiner tree for T in G
1: function DreyfusWagner(G,T )
2: for v ∈ V do . Initialization: O(n2)
3: for t ∈ T do
4: M(v, {t})← dG(v, t)

5: p← arbitrary terminal in T
6: for i ∈ {3, . . . , |T | − 2} do
7: for T ′ ∈ Pi(T \ {p}) do .

(|T\{p}|
i

)
8: for v ∈ V do . |V |
9: M(v, T ′)←∞

10: for q ∈ V do . |V |
11: UpdateValueOfMinSteinerTree(G, q, T ′)
12: v ←∞
13: for q ∈ V do . |V |
14: u← OptDecomp(q, T \ {p})
15: if u+ dG(p, q) < v then
16: v ← u+ dG(p, q)

17: return v
18: end function

Algorithm 5.1.4 Dreyfus-Wagner: Update the value of M(p, T ) for each p using the joining node
q

Input: undirected, weighted graph G = (V,E, c), joining node q ∈ V , terminal set T ′ ⊆ V
1: procedure UpdateValueOfMinSteinerTree(G, q, T ′)
2: u← OptDecomp(q, T ′)
3: for p ∈ V do . |V |
4: if u+ dG(p, q) < M(p, T ′) then
5: M(p, T )← u+ dG(p, q)

the length of a shortest path from p to q. The smallest value found in this process is the value of
a minimum Steiner tree for T in G, and thus the algorithm’s output.

The statements not involving procedure or function calls require constant time, assuming that
the distance graph for G is given. If the distance graph is unknown, it can be computed in a
preprocessing step in O(n3). For details on the all-pairs shortest path see [8] or [15]. To estimate
the time complexity it is therefore sufficient to count the iterations of every For statement.

Note that some of the For loops are nested and that the number of iterations is annotated
in comments next to each For statement except for the outermost. The function DreyfusWag-
ner calls UpdateValueOfMinSteinerTree from inside a loop, which itself calls OptDecomp
from inside a loop, yielding the most complex nesting of this algorithm. Its innermost block in
OptDecomp is executed

|T |−2∑
i=3

(
|T \ {p}|

i

)
|V |2 (2i−1 − 1)

= O

|V |2 |T |−2∑
i=3

2i
(
|T | − 1

i

)
times.
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Algorithm 5.1.5 Dreyfus-Wagner: Compute the minimum costs for two Steiner trees connecting
q with one subset of T ′ each

Input: joining node q, terminal set T ′
Output: minimum weight SMT(G,T1)+SMT(G,T2) of two Steiner trees connecting q with T1, T2,

respectively; T1 ∪ T2 = T ′

1: function OptDecomp(q, T ′)
2: u←∞
3: v ← arbitrary terminal in T ′

4: for {v} ⊆ T1 ⊂ T do . 2|T
′|−1 − 1 = O(2|T

′|)
5: T2 ← T ′ \ T1
6: u′ ←M(q, T1) +M(q, T2)
7: if u′ < u then
8: u← u′

9: return u
10: end function

The binomial theorem states that

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i

for a semi-ring M and x, y ∈M .
For n = |T | − 1, x = 2 and y = 1 we obtain

3|T |−1

= (2 + 1)|T |−1

=

|T |−1∑
i=0

(
|T | − 1

i

)
2i1|T |−1−i

=

|T |−1∑
i=0

(
|T | − 1

i

)
2i.

We can thus simplify the running time term to

O
(
|V |2

(
3|T |−1 −

(
1 · 1 + 2 (|T | − 1) + 4

(
|T | − 1

2

)
+ 2|T |−1 · 1

)))
= O

(
|V |2 3|T |

)
.

The canonical decision problem of STP can be solved by computing the value of a minimum
Steiner tree and comparing this value against some upper bound k.

Corollary 5.1.1. STP|T | ∈ FPT.

5.2 Adjusting Dreyfus-Wagner to DSTP and PCSTP
The original algorithm of Dreyfus and Wagner solves the undirected, deterministic Steiner tree
problem STP. The main ingredient of this algorithm is the Optimal Decomposition Property for
Steiner trees in undirected graphs. This central theorem can be expanded to directed graphs as
follows:

Corollary 5.2.1. Let G = (V,E, c) be a directed, weighted graph, T ⊆ V a set of terminals in
G with |T | ≥ 3 and r ∈ T a designated root. Let S be a minimum Steiner tree for (G,T, r).
There exist a joining node q ∈ V and two terminal subsets T1, T2 ⊂ T ∪ {q} with T1 ∩ T2 = {q},
T1 ∪ T2 = (T \ {r}) ∪ {q} and T3 = {p, q} such that S can be split into three subgraphs S1, S2, S3,
where Si is a minimum directed Steiner tree for Ti rooted at q for each 1 ≤ i ≤ 3.
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This statement can be proven in exactly the same way as the original Optimal Decomposition
Property above.

Every terminal of a directed Steiner tree has to be reachable from its root r. Every terminal
except for r can be found in either S1 or S2 (or both, if q ∈ T ), which are itself directed Steiner
trees rooted at q. A directed path from r to another terminal node s can be found by concatenating
a path from r to q—e.g., the subgraph S3, which is part of S by construction—and a path from q
to s in the corresponding subgraph S1 or S2, which has to provide such a path by definition of a
directed Steiner tree because s is a terminal of this sub-solution.

While the Optimal Decomposition Property is almost the same for STP and DSTP, it requires
some more adjustments to fit it to PCSTP.

Proposition 5.2.1. Let G = (V,E, c) be an undirected, weighted graph, p : V 7→ R+
0 a node profit

function, T = {v ∈ V | p(v) > 0} and r ∈ T . Let S be a minimum prize-collecting Steiner tree for
p in G. There exist a joining node q ∈ V and subsets T1, T2, T3 of (T \S)∪{q} with T1∪T2 = {q},
T1 ∪ T2 = ((T \S) \ {r})∪ {q} and T3 = {r, q} such that S = (V ∩

⋂3
i=1 Si)∪ (E ∪

⋂3
i=1 Si), where

Si is a minimum prize-collecting Steiner tree for pi in G for each 1 ≤ i ≤ 3, with

pi(v) =


W v = q

p(v) v ∈ Ti
0 otherwise

for v ∈ V and W =
∑
e∈E c(e).

Proof. Setting pi(q) to W forces us to cover q by minimum prize-collecting Steiner trees and thus
excluding it from the sub-solutions, because solutions for PCSTP instances contain those nodes
that the tree does not cover by definition. For the same reason, T \ S contains exactly the nodes
of T that are covered by the edges in S and thus by the actual Steiner tree.

Vertices that are excluded from the optimal prize-collecting Steiner tree for p are those that
are excluded by all three sub-solutions for p1, p2, p3. The solution contains an edge iff there is one
sub-solution that contains it. This leads to exactly the composition described above.

The rest of the statement can be shown analogously to the proof of the original Optimal
Decomposition Property.

The algorithm of Dreyfus and Wagner solving the undirected STP can be used to solve DSTP
in the above form. Even the distance graph can be computed using the same algorithm as above,
namely [8].

Corollary 5.2.2. DSTP|T | ∈ FPT.

Again, the algorithms introduced above need some adjustments before we can use them to solve
PCSTP. We assume here that profits of nodes that are covered by the selected edges of a solution
are subtracted from the value of a solution, although the definition of PCSTP would require us to
add the profit of every node that is not included. The resulting problem is equivalent to PCSTP.
For details, see Definition 2.3.4.

First, it is not sufficient to remove one of the terminals r and solve the problem for every proper
subset of T \ {r}. Since there is no vertex that we are forced to include in a feasible solution, we
have to compute the solution for every single subset of T and return the best of them.

For another thing, after the execution of the algorithm the value of an optimal solution is not
necessarily stored in M(v, T ) for some v ∈ V because it may be more profitable to ignore some
of the vertices with positive profit. Therefore, we have to store the value of the most profitable
sub-solution we have seen so far. This value can be initialized with∞ and has to be updated every
time line 5 of UpdateValueOfMinSteinerTree is executed. The new value isM(r, T )−p(r)−∑
v∈T p(v) if M(r, T ) is updated.

Corollary 5.2.3. PCSTP|T | ∈ FPT.
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The thoughts on DSTP and PCSTP can be combined to obtain an algorithm for DPCSTP.
The Optimal Decomposition Property for DPCSTP resembles Proposition 5.2.1. It differs only in
the input graph and the solution, which both have to be connected for DPCSTP.

Corollary 5.2.4. DPCSTP|T | ∈ FPT.

5.3 Reduction to the Directed Steiner Tree Problem
In this section we describe a method to solve the two-stage stochastic Steiner tree problem by
transforming its instances to instances of the directed Steiner tree problem that we are already
able to solve using the algorithm of Dreyfus and Wagner.

Let (G, T ) be an instance of the SSTP, where G = (V,E, c0) and T = {(T i, ci, pi) | 1 ≤ i ≤ K}.
Our goal is to generate an instance (G′, T ), G′ = (V ′, E′, c′), for DSTP such that an optimal
solution to the transformed DSTP instance leads back to an optimal solution to the original SSTP
instance.

The directed graph G′ that results from our transformation contains one copy of G for each
scenario, and one for the first stage. The graph that corresponds to scenario i is denoted by G′i.
The node in G′i that corresponds to v ∈ V is denoted by vi. In the same manner, G′0 and v0 refer
to the copy of G and v ∈ V in the first stage copy, respectively. We also need an independent root
node r that does not correspond to any node in V . The node set of the transformed graph is

V ′ = {vi | v ∈ V ∧ 0 ≤ i ≤ K} ∪ {r}.

The edge set E′ of G′ includes the edges (vi, wi) for 0 ≤ i ≤ K and (v, w) ∈ E that originate
from the (K+1)-fold replication of G. Note that these edges are interpreted as directed edges—one
for each direction—in G′, while they were interpreted as one undirected edge in G. The weight of
an edge (v0, w0) in the first stage copy is set to the first stage cost c0 of (v, w). The weight of an
edge (vi, wi), i > 0, is the scenario’s second stage cost of the corresponding edge (v, w) multiplied
with the scenario’s probability pi.

The graph G′ is disconnected in its current state. The different copies of G have to be inter-
connected with edges (v0, vi) for each v ∈ E, 1 ≤ i ≤ K, i.e., the node that corresponds to v in
the first stage copy is connected to the node corresponding to v in each scenario copy. All of these
edges receive an edge weight of 0. Note that these edges only lead from the first stage copy to
the scenario copies, but not in the opposite direction. There is no path from vi to w0 in G′ for
v, w ∈ V , i > 0.

At last, the newly created root node r is connected to each node in the first stage copy of
G. These edges are unidirectional, too; also adding them in the opposite direction still would not
change the set of optimal solutions, nor would it change their values. The weight of these edges
has to be high enough to make sure that only one of them is chosen in an optimal solution. The
sum of first stage costs of the SSTP instance,

W =
∑
e∈E

c0(e),

is sufficient for this purpose.
The edge set E′ of G′ can be written as

E′1 = {(r, v0) | v ∈ V },
E′2 = {(v0, vi) | v ∈ V, 1 ≤ i ≤ K},

E′3 = {(vi, wi) | (v, w) ∈ E, 1 ≤ i ≤ K},
E′ = E′1 ∪ E′2 ∪ E′3,

and are weighted by

c(e) =


W e = (r, v0)

c0(e) e = (v0, w0)

0 e = (v0, vi)

pici(e) otherwise

.
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Figure 5.2: Example transformation of an SSTP instance into an equivalent DSTP instance. Bidi-
rected edges are drawn as undirected ones for simplicity.

The terminal set of the DSTP instance consists of the root r and the terminal nodes of each
scenario in the corresponding copy of G, i.e., T = {vji | vi ∈ T j} ∪ {r}.

An example transformation is illustrated in Figure 5.2. Consider the SSTP instance (G, T ),
where G is an undirected, weighted path with nodes {v1, v2, v3} and edge weights c0((v1, v2)) = 3
and c0((v2, v3)) = 4.

The first of two equiprobable scenarios has edge weights c1((v1, v2)) = 4 and c2((v2, v3)) = 6
and terminal set T 1 = {v2, v3}. The terminals of the second scenario are T 2 = {v1, v3}, while its
edge weights are c((v1, v2)) = c((v2, v3)) = 5.

In the course of the transformation, the graph is replicated three times: Once for each scenario
and once for the first stage. The first stage copy in the middle of the figure, involving nodes
v01 , v

0
2 , v

0
3 , is connected node-wise to the copy symbolizing the first scenario on the left side and

the copy symbolizing the second scenario on the right side with edge weights 0. While the first
stage costs are carried over to the transformed graph, the second stage costs are weighted with 1

2 ,
resulting in c((v11 , v12)) = c((v12 , v

1
1)) = 2, c((v12 , v13)) = c((v13 , v

1
2)) = 3 and c((v21 , v22)) = c((v22 , v

2
1)) =

c((v22 , v
2
3)) = c((v23 , v

2
2)) = 5

2 .
At last, the additional node r is connected to v01 , v02 , v03 with edge cost W = 7 and acts as the

root node for the DSTP instance.
An optimal solution for the DSTP instance is highlighted in the figure. It is important to

note that the edges (v03 , v
0
2) and (v21 , v

2
2) are not part of the solutions. These edges are highlighted

because their directed counterparts (v02 , v
0
3) and (v22 , v

2
1), respectively, belong to the solution.

The optimal solution to the SSTP instance consists of the first stage edge (v2, v3, 0) and the
first stage edge (v1, v2, 2), yielding costs 4 + 1

2 · 5 = 13
2 . The value of the highlighted solution above

is W + 4 + 5
2 = W + 13

2 , which is the value of an optimal solution to the original SSTP instance
plus W .

The following proposition makes a statement about SSTP solutions whose first stages are not
empty. The other solutions can be computed separately as stated in Section 4.1.
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Proposition 5.3.1. Let (G, T ) be an instance of SSTP with G = (V,E, c0) and T = {(T i, ci, pi) |
1 ≤ i ≤ K}, and W =

∑
e∈E c

0(e). Let (G′, T ) be the instance of DSTP that results from the
transformation of (G, T ) described above. A solution F to (G, T ) with F 0 6= ∅ can be transformed
into a solution F ′ to (G′, T ) with v(F ) = v(F ′) +W and vice versa.

Proof. Let F be a solution to the SSTP instance, V 0 ⊆ V the set of nodes that are incident to at
least one edge in F 0, and r′ ∈ V 0. For 1 ≤ i ≤ K, V i denotes the set of nodes that are incident to
at least one edge in F i \ F 0. Note that V i might be empty for some 1 ≤ i ≤ K. We discussed in
Proposition 4.1.1 that F i is the edge set of a tree for each 1 ≤ i ≤ K. We denote by Bi the subtree
of G with edge set F i, assuming that r′ is the root of these trees. Clearly, each tree contains r′
because of F 0 ⊆ F i for each scenario i.

As the copies of G are interpreted as directed graphs in G′, we define a mapping l that assigns
a directed edge in E′ to every element of F . Consider an edge (v, r′) and i ∈ {1, . . . ,K} with
(v, w, i) ∈ F . Assume that the path from v to r in Bi passes the node r′. In this case, we denote
by l(v, w, i) the edge (w, v). If the path from v to r does not pass w, it can be enhanced to a path
from w to r by appending the edge (w, v). In this case, l(v, w, i) denotes the edge (v, w).

Consider the edge set

F ′ = {(r, r′0)} ∪ {(v0, vi) | v ∈ V 0 ∩ (V i ∪ T i)} ∪ {l(v, w, i) | (v, w) ∈ F i}

and a node vi ∈ T . By construction, v is a terminal node of the i-th scenario of T , i.e., v ∈ T i. If
v = r′, the edges (r, r′0), (r′0, vi) ∈ F ′ form a path from r to vi. Otherwise, we need to find a path
from r to vi by utilizing first and second stage edges.

Because Bi is a Steiner tree for this terminal set, there exists a path from r′ to v in Bi. Let
(r′ = v0, v1, . . . , vλ = v) be the nodes of this path in the order they are passed by the path from
r′ to v. If there is a node vj on this path such that (vj−1, vj) is bought in the first and (vj , vj+1)
is bought in the second stage, we obtain a path from r to vi by concatenating the paths from r to
r′, from r′ to v0j , from v0j to vij and from vij to vi. All these paths exist by construction of F ′. The
function l makes sure that the edges of these paths are oriented the right way.

If no such vj exists, vi is either covered by first stage edges or the transition to the second stage
edges occurs in r′. In the first case, a path from r to vi can be found in a similar way as above
by starting in r and passing r′0 and v0 to reach vi directly. In the latter case, the path starts by
using the edges (r, r′0), (r′0, r′i) and then following the path that corresponds to the edges of the
path from r′ to v in the second stage copy we just reached.

Thus, there exists a path from r to each terminal in T that only uses edges in F ′ without using
redundant edges, and F ′ is therefore a solution for the DSTP instance. Its value is exactly W plus
the value of F .

Now let F ′ be a solution to the DSTP instance (G′, T ). The set F = {(v, w, i) | (v, w) ∈ F ′i}
is a solution to the SSTP instance with v(F ′) = v(F ) +W , which can be shown analogously.

For an optimal SSTP solution F we find a DSTP solution F ′ with v(F ) = v(F ′) −W . On
the other hand, an DSTP solution F ′ can be used to construct an optimal SSTP solution F with
v(F ′) = v(F ) + W . Thus, the value of an optimal solution to the SSTP instance is exactly W
plus the value of an optimal solution of a corresponding DSTP instance and optimal solutions for
SSTP and DSTP can be transformed into each others.

We can, therefore, solve SSTP by transforming its instances into DSTP instances and solving
them using the extended algorithm of Dreyfus and Wagner. The graph G′ has (K+1) ·n+1 nodes
and t∗ :=

∑K
i=1

∣∣T i∣∣ terminals. Solving SSTP with the described method requires running time
O(((K + 1) · n+ 1)23t

∗
) = O((Kn)23t

∗
), qualifying it as parameterized algorithm for SSTP.

In a very similar way, SPCSTP instances can be transformed into DPCSTP instances. We
start with an SPCSTP instance (G, T , P ). First, we apply the graph transformation as above to
obtain a directed, weighted graph G′ = (V ′, E′, c′) without terminals. The resulting graph is again
rooted at r, which will also act as the root of the DPCSTP instance. Second, we need to apply
node profits for each v ∈ V ′. The root and every node of the first stage copy of G are assigned a
profit 0. Node vi in the second stage copy G′i is assigned profit piP (v, i).
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Solutions to the original SPCSTP instance and the resulting DPCSTP instance can be trans-
formed into each others in the same way as we did with solutions to SSTP and DSTP.

This places the parameterized languages SSTP|T
∗| and SPCSTP|T

∗| in FPT, where T ∗ denotes
the total number of terminals

∑K
i=1

∣∣T i∣∣ for SSTP, or the total number of vertices with posi-
tive profit

∑K
i=1 |{v ∈ V | P (v, i) > 0}| for SPCSTP. We summarize the results in the following

theorem.

Theorem 5.3.1. SSTP|T
∗| ∈ FPT and SPCSTP|T

∗| ∈ FPT.



Chapter 6

Parameter: Number of
Non-Terminals

In this chapter we investigate an algorithm for different Steiner tree problems parameterized by
the number of non-terminals. A simple idea for STP is provided in Section 6.1, which is also
applicable for its non-stochastic variants. We then try to carry this simple idea over to SSTP. We
first describe a framework that is suitable for this task in Section 6.2. Some simple implementations
of the framework are given in Section 6.3. This section also defines some notation that is also used
in the final part. Section 6.4 provides more promising approaches that are inspired by Kruskal and
Prim.

6.1 Algorithm for STP
The actual SSTP algorithm that we want to describe in this chapter is derived from a simple
algorithm for STP. The algorithm exploits the fact that minimum Steiner trees in G are minimum
spanning trees for a subgraph of G induced by a node subset, which is established by the following
lemma.

Lemma 6.1.1. Let G = (V,E, c) be an undirected, weighted graph and T ⊆ V a terminal set of
G. Let S = (V ′, E′) be a minimum Steiner tree for T in G. S is a minimum spanning tree for
G[V ′].

Proof. According to Proposition 3.1.1, S is a tree and thus a spanning tree for G[V ′]. Now assume
that S is not a minimum spanning tree, i.e., there is a tree S′ that spans V ′ and is cheaper than
S. S′ is also a Steiner tree for T in G. This contradicts our assumption that S is minimal.

The set V ′ can be partitioned into the set of terminals T and the set of Steiner nodes. The
terminal set is part of the input; only the set of non-terminals that are used as Steiner nodes is
unknown. The set of Steiner nodes is always a subset of N := V \ T . Algorithm 6.1.1 is suitable
for solving STP.

The function EnumerateNonTerminalSets simply enumerates the power set of N . It as-
sumes that the current set of non-terminals V ′ is the set of Steiner nodes of a minimum Steiner
tree. This is not possible if G limited to V ′ is not connected, so that it is safe to skip such subsets.

If G[V ′] is yet connected, the function computes a minimum spanning tree for it. The value of
this minimum spanning tree is compared to the value of the best edge set encountered so far. If it
is lesser than the former minimum, the old edge set is replaced by the current one.

Theorem 6.1.1. The above algorithm solves STP in running time O((|E| + |V | log |V |)2|N |),
N = V \ T .

Proof. A minimum spanning tree for G[V ′ ∪ T ], V ′ ⊆ N , is a tree that contains every terminal.
It is thus a Steiner tree. We showed above that the computation of a minimum spanning tree for

35
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Algorithm 6.1.1 Algorithm for STP parameterized by the number of non-terminals

Input: undirected, weighted graph G = (V,E, c) and terminal set T ⊆ V
Output: edge set of a minimum Steiner tree for T in G
1: function EnumerateNonTerminalSets(G,T )
2: result ← E
3: for subset V ′ of N do
4: if G[V ′] is connected then
5: F ← minimum spanning tree for G[V ′ ∪ T ]
6: if v(F ) < v(result) then
7: result ← F
8: return result
9: end function

the correct set of non-terminals yields a minimum Steiner tree. An optimal selection of Steiner
nodes is tested because we enumerate the power set of N , which contains every selection of Steiner
nodes. In lines 6–7, a worse Steiner tree is always substituted by such a minimum Steiner tree.
Therefore, the algorithm works correctly.

There are 2|N | subsets of N . In a worst case scenario, a minimum spanning tree has to be
computed for each of them. The computation of a minimum spanning tree for a graph with n
nodes and m edges can be done in O(m+ n log n). G[V ′ ∪ T ] has at most |V | nodes and at most
|E| edges. This yields an overall running time of O((|E|+ |V | log |V |)2|N |).

This algorithm places STP parameterized by the number of non-terminals in FPT. The ap-
proach is also applicable for DSTP, yielding STP|N | and DSTP|N | ∈ FPT.

Note that it does not work for PCSTP because we do not know which vertices with positive
profit are included in the optimal solution. Further enumeration of the nodes with positive profit
would result in an algorithm whose running time cannot be parameterized solely by the number
of non-terminals or, in this case, the number of vertices with zero profit.

6.2 Framework for SSTP Algorithms

The simple idea of enumerating the power set of V \ T to solve the STP is now carried over to the
SSTP. For this purpose, we first describe a simple framework that is shared among all algorithms
proposed in the next sections.

Let (G, T ) be an SSTP instance with G = (V,E, c0) and T = {(T i, ci, pi) | 1 ≤ i ≤ K}. The
set of non-terminals (V \ T 1)× · · · × (V \ TK) is denoted by N .

Algorithm 6.2.1 Framework for SSTP algorithms parameterized by the number of non-terminals

Input: undirected, weighted graph G = (V,E, c0), set of scenarios T = {(T i, ci, pi) | 1 ≤ i ≤ K}
Output: minimum stochastic Steiner tree for T in G
1: function EnumerateScenarioNonTerminals(G, T )
2: result ← E × {0}
3: for N ⊆ N do
4: F ← FindEdgesBySteinerNodes(G, T , N)
5: if v(F ) < v(result) then
6: result ← F
7: return result
8: end function

The function FindEdgesBySteinerNodes is called for every selection of non-terminals for
each scenario. It computes an optimal solution to the SSTP instance (G, T ) under the condition
that the passed set of non-terminals is exactly the set of Steiner nodes.
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The running time of EnumerateScenarioNonTerminals can be expressed as the product
of the number of subsets of (V \T1)×· · ·×(V \TK) and the running time of FindEdgesByStein-
erNodes. The former can be formulated in terms of non-terminal counts, which is the desired
parameter in this chapter. If there is an implementation of FindEdgesBySteinerNodes whose
worst-case running time is polynomial in the length of the main part of the input, this algorithm
places SSTP parameterized by the number of non-terminals in FPT.

Unfortunately, we did not find a concrete implementation for FindEdgesBySteinerNodes
that we were able to prove correct with acceptable running time. In the following sections, however,
we propose some implementations that might still be promising and lead to efficient algorithms.

We assume in the description of the different approaches that we already know an optimal
selection of Steiner nodes for each scenario. For selections that do not qualify for optimal solutions,
the result of suggested implementations of FindEdgesBySteinerNodes has non-optimal value
or is not a valid solution at all. In the former case, the result is discarded immediately or at a
later time as we only keep optimal solutions. In the latter case, the result can just be ignored. We
can test whether the result is a valid solution in time O(K(|V | + |E|)) with a depth first search
per scenario.

6.3 Pure minimum spanning tree approach

We present some ideas that might be suitable to determine the edge set of a minimum stochastic
Steiner tree when an optimal selection of Steiner trees for each scenario is given.

Let F be an optimal stochastic Steiner tree for the SSTP instance (G, T ) with G = (V,E, c0)
and T = {(T i, ci, pi) | 1 ≤ i ≤ K}. Let F be a minimum stochastic Steiner tree for T in G and
N = (N1, . . . , NK) the selection of Steiner nodes for each scenario with respect to F , i.e., (V i, F i),
V i = N i ∪ T i, is a Steiner tree for T i in G. V ∗ denotes the set of nodes that are covered by every
Steiner tree, i.e.,

V ∗ =

K⋂
i=1

V i.

Now consider the first stage edges F 0 of F . The edges are part of every Steiner tree (V i, F i),
1 ≤ i ≤ K, because of F 0 ⊆ F i. Thus, the nodes covered by F 0 are also part of every Steiner
tree. Let V 0 denote the set of nodes that are covered by first stage edges of a minimum stochastic
Steiner tree. Then clearly V 0 ⊆ V ∗.

We showed in Lemma 6.1.1 that minimum Steiner trees in G are minimum spanning trees for
an appropriate subgraph of G. The result can be carried over to the first stage edges of a minimum
stochastic Steiner tree in G. Assume F 0 is not a minimum spanning tree for G[V 0] with respect to
its weight function c0. Replacing F 0 with a minimum spanning tree of G[V 0] would yield a better
SSTP solution than F . Since F is optimal, the assumption that F 0 is not a minimum spanning
tree must have been wrong.

Assume that not only an optimal N is given, but also an optimal V 0. We are now able to
compute a minimum stochastic Steiner tree in three steps. First, we compute the edges F 0 of a
minimum spanning tree for G[V 0] with respect to c0. Second, we set ci(e) = 0 for each e ∈ F 0.
Last, we compute the edges of a minimum spanning tree for G[V i] with respect to ci, remove every
edge that also belongs to F 0 and call the result F i for each 1 ≤ i ≤ K. The resulting F is a
minimum stochastic Steiner tree for T in G.

A naive algorithm can try to guess V 0. Because of V 0 ⊆ V ∗, enumerating the power set of V ∗
is the easiest way to find a suitable V 0. Unfortunately, V ∗ can be as big as V itself. This yields
a running time of Ω(2|V |) for each call to FindEdgesBySteinerNodes. The naive algorithm is
not suitable to place SSTP|N | in FPT.

Another naive approach computes a minimum spanning forest for G[V ∗], i.e., a set of minimum
spanning trees for each connected component of G[V ∗]. The approach very optimistically assumes
that one of the trees of the computed forest is the desired first stage tree. For each tree F 0 of the
spanning forest, the second stage edges for scenario i are computed as minimum spanning trees for
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G[V i] with respect to ci|E\F 0 . For an edge weight function c : E 7→ R+
0 and E′ ⊆ E, we denote by

c|E′ the function that results from f when re-mapping each element of E \ E′ to 0, i.e.,

c|E′(e) =

{
f(e) e ∈ E′

0 otherwise

for e ∈ E.
The weakness of this approach is that it considers the first stage costs of the edges in G[V ∗]. In

fact, we are not interested in the cheapest first stage edges, but rather in the edges that are most
rewarding when buying them in the first instead of the second stage. A cheap first stage edge may
be of no interest because there are only few scenarios that would profit from this edge.

The profit that may result from an edge that is added to the first stage cannot be computed
without knowledge about the second stage edges. This drawback indicates that the decision about
first stage edges has to be delayed until the second stage edges have been computed.

All of the following approaches assume that we start by computing the minimum spanning
trees for the second stage of each scenario, i.e., for G[V i], 1 ≤ i ≤ K. We only have to deal with
the selection of appropriate first stage edges. For this purpose, we describe an operation on SSTP
solutions that adds edges to, or removes edges from, the first stage edge set F 0.

Another approach is to select those edges for the first stage that are shared among several
second stage edge sets F i. If the first stage cost of an edge e is less then the aggregate cost of all
scenarios that contain e, i.e.,

c0(e) <
∑
ei∈F

pici(e),

the value of F can be reduced by removing the second stage edges ei, 1 ≤ i ≤ K from F and
instead adding the first stage edge e0 to it. Repeated application of this operation might result in
an F 0 that is not connected any more.

Perhaps, this problem can be circumvented by adjusting the edge weights such that minimum
spanning trees are unique for each scenario. Dictating inflationary second stage costs, i.e.,

ci(e) = aic0(e)

for 1 ≤ i ≤ K, e ∈ E and some ai ∈ R+ may further reduce the problem. That is because
inflationary second stage costs may lead to minimum spanning trees of G[V i] that are equal—or
at least look similar—on G[V 0].

6.4 Learning from Kruskal and Prim
The last two approaches are inspired by algorithms that are commonly used to compute minimum
spanning trees, namely Kruskal’s algorithm [13] and Prim’s algorithm [16].

Let F be a solution to the SSTP instance (G, T ) such that every F i is a tree. The function
a(·), which is an abbreviation for "add first stage edge", receives G, the set of nodes V i that
each F i has to cover, F itself and an edge e as arguments. It first adds the first stage edge e0
to F . This produces one redundant edge per scenario. For each scenario i, the edge e has either
been bought before, or the edge set F i contains exactly one cycle after adding e because F i is a
tree. In the former case, we remove the edge ei from F . In the latter case, we remove the most
expensive second stage edge that lies on the cycle. The SSTP solution we obtain is the result of
a(G, (V i)1≤i≤K , F, e). Note that a(G, T , F, e) contains one first stage edge more than F itself.

Algorithm 6.4.1 can be used to compute a(G, T , F, e). Its running time is O(K(|V | + |E|)) =
O(K · |E|) if F is represented as a two-dimensional, boolean array that allows adding and removing
elements in O(1).

In a similar fashion, the function d(·) removes a first stage edge e from F . If F i was free of
cycles before the removal of e from the first stage, the resulting Steiner tree for scenario i is not
connected any longer. Therefore, we need to add a second stage edge that re-connects the two
connected components. Since we are interested in minimal solutions, we add the cheapest second
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Algorithm 6.4.1 Add an edge as first stage edge to a given SSTP solution and remove redundant
edges

Input: undirected, weighted graph G = (V,E, c0), set of scenarios T = {(T i, ci, pi) | 1 ≤ i ≤ K},
stochastic Steiner tree F for T in G, e ∈ E

Output: stochastic Steiner tree that results from adding e0 to F and removing redundant edges
1: function AddFirstStageEdge(G, T , F, e)
2: F ← F ∪ {e0}
3: for i = 1, . . . ,K do
4: if ei ∈ F then
5: F ← F \ {ei}
6: else
7: C ← cycle in F i
8: e′ ← most expensive edge of C with respect to ci
9: F ← F ∪ {e′i}

10: return F
11: end function

stage edge for this purpose. Doing so for every scenario gives us the result of d. It has one first
stage edge less than the solution F we started with.

We abbreviate a(G, (V i)1≤i≤K , F, e) and d(G, (V i)1≤i≤K , F, e) to a(F, e) and d(F, e), respec-
tively, if G and V i, 1 ≤ i ≤ K are evident.

Kruskal’s algorithm finds minimum spanning trees by sorting the edges of a graph in ascending
order and then successively adding the cheapest edge to the solution that does not introduce cycles.
We try to re-use the idea in Algorithm 6.4.2 to find an optimal selection of first stage edges after
minimum spanning trees for the second stages have been computed.

We start by sorting the edges of G[V ∗]. The key used to sort them is the profit c∗(e) yielded
by moving an edge e into the first stage, i.e.,

c∗(e) = v(a(F, e))− v(F ).

While there are edges with positive value with respect to c∗, the most profitable edge e of them
is added to the first stage by replacing F with a(F, e).

Algorithm 6.4.2 Deduce first stage edges by traversing the edges ordered by ascending profit
c∗(·)

Input: undirected, weighted graph G = (V,E, c0), V i ⊆ V , stochastic Steiner tree F such that
(V i, F i) is a connected graph for 1 ≤ i ≤ K

Output: refinement of F
1: function DeduceFirstStageKruskal(G, (V i)1≤i≤K , F )
2: for edge e of G[V ∗] do
3: F ′ ← AddFirstStageEdge(F, e)
4: c∗(e)← v(F ′)− v(F )

5: for edge e of G[V ∗], ordered by c∗(·) do
6: F ′ ← AddFirstStageEdge(F, e)
7: if v(F ′) < v(F ) then
8: F ← F ′

9: return F
10: end function

An example implementation is given in Algorithm 6.4.2. The comparison in line 7 evaluates to
true for the edge that is considered first if there is at least one edge e with positive profit c∗(e).

Unfortunately, the profit an edge produces depends on the edges that have been moved to the
first stage before. Therefore, the algorithm listed above requires some modification. We need to
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re-calculate the value of c∗(·) for each edge after F has been modified. This renders the sorting
step redundant, as the order potentially changes after each execution of line 8. Instead of ordering,
we simply look for the currently most profitable edge in an unordered edge set.

The loop is repeated until there is no edge with positive profit left. This method lets us skip
the comparison in line 7.

Line 8 is executed at most |V | times. Thus, we need to re-calculate c∗(·) at most |V | times.
The value of a solution F can be calculated in time O(K · |E|). This yields an overall running time
of O(|V | (|V |+K · (|V |+ |E|) +K · |E|)) = O(K · |V | · |E|).

We were not able to prove the connectivity of the first stage of a solution found with this method.
Nor are we able to give reasons why the algorithm does not get caught in a local minimum, even
if it is connected.

The second problem can perhaps be alleviated by trying different edge orderings. Instead of
traversing them in ascending order, traversing them in descending order may also lead to good
results if we allow the function a(·) to remove previously added first stage edges. Another alter-
native is to start with G[V ∗] and then selectively removing first stage edges by replacing F with
d(F, e), where e is the currently most unprofitable edge.

The first problem can be avoided completely by allowing the first stage to consist of more than
one connected component. A stochastic Steiner tree F of this kind would only have to provide
paths between every pair of terminals t1, t2 ∈ T i that only use edges of F i.

Another way to circumvent the first problem is to make sure that the first stage edges are
connected all the time. While the algorithm above in its original form may remind the reader
of Kruskal’s algorithm to find a minimum spanning tree, the next one, i.e., Algorithm 6.4.3, is
inspired by Prim’s algorithm.

Algorithm 6.4.3 Deduce first stage edges by simulating Prim’s algorithm; edge profit is re-
calculated after each alteration of the solution
Input: undirected, weighted graph G = (V,E, c0), V i ⊆ V , stochastic Steiner tree F such that

(V i, F i) is a connected graph for 1 ≤ i ≤ K, node r of G[V ∗]
Output: refinement of F
1: function DeduceFirstStagePrim(G, (V i)1≤i≤K , F, r)
2: e← edge (r, w) such that c∗((r, w)) is minimal
3: while c∗(e) > 0 do
4: F ← AddFirstStageEdge(F, e)
5: e← edge e′ such that F 0 ∪ {e′} is a tree and c∗(e′) is minimal
6: return F
7: end function

Again, we start with the computation of the minimum spanning trees for G[V i] with respect to
ci for each scenario i before the call to DeduceFirstStagePrim. We choose an arbitrary node
r ∈ V ∗ that serves as a virtual root for the first stage tree F 0 that we are about to compute.
If there is no profitable edge with respect to c∗ that is incident to r, the solution is returned.
Otherwise, we add the edge e that is most profitable with respect to c∗ to F 0 using a(F, e).

Then, as long as there are profitable edges adjacent to an edge in F 0, we add the most profitable
of them that does not induce a cycle to the first stage. As soon as there are no such edges left, the
computation is aborted and the current F is returned. Like above, c∗(·) has to be re-computed
after every modification of F 0.

Algorithm 6.4.3 has to be called for each r ∈ V ∗ as long as we do not know which vertices
are covered by first stage edges. After each execution of line 4, c∗(·) has to be re-calculated. The
loop spanning lines 3–5 is exited if there is no edge left in G[V ∗] that can be added to F 0 without
introducing cycles or new connected components.

Lines 4 and 5 are executed at most O(|V |) times. Otherwise, F 0 would not be a tree any more.
Line 4 requires time O(K · |E|). Line 5 can be executed in time O(K · |E|2). Thus, the overall
running time is O(K · |V | · |E|2).
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This approach might get stuck in solutions that are locally optimal, because connecting several
profitable first stage edges that are not adjacent might require selecting unprofitable edges first.
One possible way to avoid this problem is the adjustment of the exit condition in line 3. Adding
edges that are not profitable by themselves causes re-calculation of c∗(·). This may result in
profitable edges that have not been profitable before.

We could dictate inflationary second stage costs. This could possibly lead to optimal SSTP
solutions F whose first stages F 0 only consist of edges that are profitable by themselves. They
would not have to be connected by unprofitable edges to escape local optima.

If all this does not help, we might allow the function AddFirstStageEdge to remove first
stage edges that have been added previously. The definition of this operation given above forces
us to remove second stage edges that lie on cycles.

Although we are not able to prove the correctness of one of the approaches above, we believe
that it is possible. This leads us to the following conjecture.

Conjecture 6.4.1. SSTP|N | ∈ FPT
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Chapter 7

Conclusion and Outlook

7.1 Parameter: Number of Terminals

In Chapter 5 we described how to exploit the ideas of Dreyfus and Wagner to solve the variants of
STP. The original form of this early STP algorithm requires running time O(n23|T |), if n is the
number of vertices and T the terminal set. We showed how these results can be used to solve the
DSTP and PCSTP. We are also able to solve SSTP and SPCSTP by reducing them to DSTP and
DPCSTP, respectively.

In 2007, Björklund et al. [1] showed that this algorithm can be enhanced to compute a
solution in time O(n22|T |). This is achieved by using a method called fast subset convolution.
Further investigation might show that these results are also applicable for PCSTP and DSTP. An
application for DSTP would also result in a faster algorithm for SSTP. We conjecture that this is
the case.

If this fails, the work of Fuchs et al. [9] might be able to solve the discussed problems in less
time. The paper introduced an algorithm solving STP and DSTP in time (2+δ)|T |nO(1/(δ/ ln(1/δ))ζ)

for any 0 < δ < 1 and 1
2 < ζ < 1. It can be used for SSTP by reducing it to DSTP first and may

also be applicable to PCSTP.

7.2 Parameter: Number of Non-Terminals

In Chapter 6 we discussed an algorithm for STP with running time O((n+m)2n−|T |), if n is the
number of vertices, m the number of edges and T the terminal set. This algorithm is probably
eligible to solve SSTP with minor modifications. We also proposed a framework for this purpose,
as well as some implementations. Because of time restrictions, we were not able to prove the
correctness.

7.3 More parameters

So far, the number of terminals and the number of non-terminals have been used as parameters
to place SSTP in FPT. There are other parameterizations that might be of interest. In practice,
parameterizing SSTP with the number of first stage edges might be of interest. Other possible
parameters include the sum of weights of first stage edges, the overall size of an optimal solution
expressed in edge number or weight, and the number of scenarios. If we define the terminal core
as the cut of all terminal sets, the size of the core or the number of terminals per scenario that are
not part of the core might also be an interesting candidate.

The original STP can be solved in linear time if the tree width is very small, i.e., at most 2.
However, Boekler [2] suggested a proof that the decision variant of SSTP is NP-hard on graphs
with treewidths of at most 3. Chimani, Mutzel and Zey [4] proposed an algorithm that solves STP
in time O(B2

tw+2 · tw · n), where n is the number of vertices and tw the treewidth of the input
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graph. This algorithm places STPtw in FPT. SSTP algorithms with the treewidth of the input
graph are also imaginable.
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