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Theoretical Analysis of Continuous Evolutionary

Algorithms

Alexandru Agapie∗ Günter Rudolph†

1 The Continuous EA is a Renewal Process

For each t = 0, 1, 2, . . ., let Pt be the random variable ’(best individual from) EA
population at iteration t’. Then {Pt}t≥0 is a stochastic process on <n. We also
define a distance d : <n ← <+

0 , accounting for the (one-dimensional) distance
to optimum, that is, to 0 := (0, . . . , 0) since we are minimising. Distance d
will also stand for our drift function. As generally the case with probabilistic
algorithms on continuous space, we say convergence is achieved at iteration t if
the algorithm has entered an ε-vicinity of 0 for some fixed ε, 0 ≤ d(Pt) < ε. We
also define the stochastic process {Xt}t≥1 given by

Xt = d(Pt−1)− d(Pt) t = 1, 2, . . . .

In our EA framework, Xt will stand for the (relative) progress of the algorithm
in one step, namely from the (t− 1)st iteration to the tth. Due to EA’s elitism
{Xt}t≥1 are non-negative random variables (r.v.s), and we shall also assume
they are independent. Each Xt is composed of a point mass (singular, or Dirac
measure) in zero accounting for the event where there is no improvement from
Pt−1 to Pt, and a continuous part accounting for the real progress toward the
optimum - a truncated uniform or normal distribution, e.g.. A second natural
assumption is that P{Xt = 0} < 1, or equivalently P{Xt > 0} > 0, for all
t, otherwise convergence of the algorithm would be precluded. That does not
require a progress at each iteration, but only a strictly positive probability to
that event, which is different. However, in order for the stochastic analysis to
be consistent, the fulfilment of either one of the following hypotheses will be
required.
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010552, Romania, agapie@clicknet.ro

†Computer Science XI, Technical University Dortmund 44227, Germany,
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H1: {Xt}t≥1 are non-negative, independent, identically distributed
r.v.s with finite mean µ.

H2: {Xt}t≥1 are non-negative, independent r.v.s and there exist
constants µ1, µ2, σ > 0 such that µ1 ≤ E(Xt) ≤ µ2 and

V ar(Xt) ≤ σ2, for all t.

H1 is well-known within the theory of stochastic processes, yet cumbersome
to achieve when modelling continuous EAs on practical problems. H2 is more
flexible, allowing for different mutation rates and different success probabili-
ties at different algorithmic iterations. For example, H2 describes a family of
distributions that are all normal, or all uniform, with the parameters ranging
within certain positive bounds. One can easily see that, under supplementary
assumption ’Xt has finite variance’, the following implication holds:

H1 ⇒ H2

but not vice-versa.
It is shown below that both hypothesis yield a stronger confinement on the

progress probabilities, than the already stated ’P{Xt > 0} > 0 for all t’. We
need first some general results from probability theory.

Lemma 1.1 If X is a positive random variable and α > 0 s.t. P{X ≥ α} = 0,
then E(X) ≤ α · P{X < α} .

Proof.
Let M > α and define the r.v.s

Xα =

{
X if X ≥ α

α if X < α
XM =

{
inf{X, M} if X ≥ α

α if X < α
.

Then Xα, XM are positive and

E(XM ) ≤ M · P{X ≥ α}+ α · P{X < α} = α · P{X < α}.

Moreover, since {XM}M is monotone increasing and XM → Xα as M→∞,
Lebesque’s Monotone Convergence theorem1 - see e.g. [24] p.59 - ensures that
E(XM ) → E(Xα) as M→∞, thus

E(Xα) ≤ α · P{X < α}

and conclusion yields after transporting X ≤ Xα to expected values. ¤

Lemma 1.2 H2 ⇒ there exist α, β > 0 such that P{Xt ≥ α} ≥ β for all t.

1If 0 ≤ X1 ≤ X2 ≤ . . . and Xn → X with probability 1, then E(Xn) → E(X).
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Proof.
We show first that H2 implies P{Xt ≥ α} > 0 for all α < µ1 and all t. Let us fix
0 < α < µ1 arbitrarily. Suppose, ad absurdum, there is a t with P{Xt ≥ α} = 0.
Then lemma 1.1 implies

E(Xt) ≤ α · P{Xt < α} = α · 1 < µ1

which contradicts H2. So P{Xt ≥ α} > 0 holds for all t. We show next that
the same inequality holds if we intercalate some β > 0. Actually, we are going
to prove that for any non-negative r.v. X with E(X) = µ and V ar(X) = σ2,

P (X > α) ≥ (µ− α)2

σ2 + µ2
for any α < µ. (1)

The proof involves conditional expectations - see e.g. [24] p.83.

µ =E(X · IX≤α) + E(X · IX>α) =
=E(X|X ≤ α) · P{X ≤ α}+ E(X|X > α) · P{X > α}

where IX≤α is the indicator function, IX≤α = 1 if X ≤ α and zero otherwise.
We have next

E(X|X > α) · P{X > α} ≥ µ− αP{X ≤ α} ⇒

E(X|X > α) ≥ µ− αP{X ≤ α}
P{X > α}

and if we apply the same decomposition to E(X2),

σ2 + µ2 =E(X2) = E(X2 · IX≤α) + E(X2 · IX>α) =

=E(X2|X ≤ α) · P{X ≤ α}+ E(X2|X > α) · P{X > α} ≥
≥E(X2|X > α) · P{X > α} ≥ E(X|X > α)2 · P{X > α} ≥

≥ (µ− αP{X ≤ α})2
P{X > α} ≥ (µ− α)2

P{X > α}
which proves (1). Now, if we have a family of non-negative r.v.s {Xt}t≥1 such
that µ1 ≤ E(Xt) ≤ µ2 and V ar(Xt) ≤ σ2 for all t (hypothesis H2), the same
reasoning yields, for an arbitrarily fixed α with 0 < α < µ1,

P (Xt > α) ≥ (µ1 − α)2

σ2 + µ2
2

=: β.

¤
A somehow different2 proof is given in Appendix A for the case of normal mu-
tations with uniformly bounded mean and variance.

One can easily see that, under H1, the conclusion of lemma 1.2 is a direct
consequence of P{Xt > 0} > 0 for all t. Note that lemma 1.2 holds also for a
different version of hypothesis H2, namely:

2Actually, the proof for normal mutations relies on the operation of truncation, which is a
particular version of conditional expectation.
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H ′
2: {Xt}t≥1 non-negative, independent, and there is r.v. Z with E(Z) < ∞

and Xt ≤ Z for all t, and constant µ1 with 0 < µ1 ≤ E(Xt) for all t.

Remark 1.3 Hypothesis H ′
2 does not imply H2, nor vice-versa. H ′

2 applies,
e.g., to a familly of uniform r.v.s that are uniformly bounded.

However, we preferred version H2 over H ′
2 having in mind the typical normal

mutation used in continuous EAs.

Lemma 1.4 H ′
2 ⇒ there exist α, β > 0 such that P{Xt ≥ α} ≥ β > 0 for all t.

Proof.
The inequality in lemma 1.4 can be also written with a single constant, α

P{Xt ≥ α} ≥ α > 0 for all t. (2)

Assume, ad absurdum, (2) does not stand. Then for any α > 0, say α := 1/n,
there is an index tn such that

P

{
Xtn ≥

1
n

}
<

1
n

.

If we let n → ∞, we obtain that Xtn → 0 in probability, as n→∞. Than
Lebesque’s Dominated Convergence theorem3 - see e.g. [24] p.59 - implies
E(Xtn) → 0, which contradicts 0 < µ1 ≤ E(Xt) from H ′

2.
¤

Let us return to defining the renewal process in case of the continuous EA
optimisation. By summing up the relative progress at each iteration we obtain
St, the (overall) progress in t iterations:

St =
t∑

k=1

Xk =d(P0)− d(P1) + d(P1)− d(P2) + . . . + d(Pt−1)− d(Pt) =

=d(P0)− d(Pt) t = 1, 2, . . . .

Remark 1.5 By definition, St is bounded within the closed interval [0, d(P0)],
for all t ≥ 1. If we fix at the start of the algorithm a positive δ to designate the
’maximal distance to optimum’, then we have

0 ≤ St ≤ d(P0) ≤ δ.

Let us now introduce another r.v., accounting for the EA’s first hitting time of
the area [0, d(P0)− d), or equivalently, for the overall progress to go beyond d
- a certain positive threshold4:

Td = inf{t | d(Pt) < d(P0)− d} = inf{t | St > d}.
3If |Xn| ≤ Z such that E(Z) < ∞ and Xn → X in probability, then E(Xn) → E(X).
4In order to keep the notation simple, we shall use the same letter ’d’ for denoting the

distance function d(·), and a scalar d > 0.
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According to [8, 17], the process {Td}d>0 will be called a renewal process5 with
the following interpretation: We say a renewal occurs at distance d(P0)−d from
the optimum if St = d for some iteration t. A renewal is actually a ’successful
iteration’, that is, an iteration that produced a strictly positive progress towards
the optimum. After each renewal the process (the algorithm) starts over again.

2 First Hitting Time

From this point further, all results concerning the convergence of the renewal
process associated to the continuous EA will be stated ’under hypotheses H1/H2’,
meaning ’either under hypothesis H1, or under H2’. Accordingly, we shall split
each proof in two parts; as H1 corresponds to the classical definition of a renewal
process, the first part will be in general a simple adaptation of the corresponding
result from [17].

Proposition 2.1 Under hypothesis H1/H2, the first hitting time of the contin-
uous EA is finite with probability 1.

Proof.
The Strong Law of Large Numbers yields St/t → µ with probability 1. Hence
for any positive d, St ≤ d only finitely often and thus Td < ∞ with probability
1.

Assuming now H2, the Strong Law of Large Numbers for independent non-
identical r.v.s6 yields

µ1 ≤ St

t
≤ µ2 with probability 1.

Using the left hand side of the inequality for a fixed d yields St ≤ d only finitely
often, and Td < ∞ with probability 1. ¤

Definition 2.2 An integer valued positive random variable T is called a stop-
ping time for the sequence {Xt}t≥1 if the event {T = t} is independent of
Xt+1, Xt+2, . . . for all t ≥ 1.

We have the following simple result.

Lemma 2.3 Td defined as above is a stopping time for {Xt}t≥1, for any d > 0.

Proof.

{Td = t} = {St > d, St−1 ≤ d} = {
t∑

k=1

Xk > d,

t−1∑

k=1

Xk ≤ d}

5The continuous-time index t of a classical renewal process {Nt}t≥0 in queueing theory is
replaced in our paradigm by a continuous-distance index d.

6{Xt}t≥1 independent s.t.
∞∑
1

V ar(Xi)

i2
< ∞, then

t∑
1

[Xi−E(Xi)]

t
→ 0 with probability 1.
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which is obviously independent of Xt+1, Xt+2, . . . . ¤
We also have the relationship that the first hitting time of a distance d from
the starting point is greater than t if and only if the tth iteration yields a point
situated at distance less than or equal d. Formally,

Td > t ⇔ St ≤ d.

According to [17], E(Td), the mean/expected value of Td is called the renewal
function, and much of classical renewal theory is concerned with determining
its properties. In our EA framework, if we set d := d(P0) − ε with some
fixed positive ε defining the target-zone of the continuous space algorithm, then
Td = inf{t | d(Pt) < ε} is the first hitting time of the target-zone, and E(Td)
the expected (first) hitting time. So determining the properties of the renewal
function seems to be the principal goal of EA theory as well.

Table below summarises the intuitive interpretation of the random variables
Xt, St and Td under the continuous EA setting.

Random Variable Interpretation
Xt (one-dimensional) progress between

the (t− 1)st and the tth iteration

St overall progress up to the tth iteration

Td (no. of iterations) first hitting time of
a distance d from the starting point

The following theorem is crucial to the stochastic analysis of continuous EAs.
Note that this result was also used in [12], yet outside the context of renewal
processes.

Theorem 2.4 (Wald’s Equation, [17] p.38) If {Xt}t≥1 are independent and
identically distributed random variables having finite expectations E(X), and T
is a stopping time for {Xt}t≥1 such that E(T ) < ∞, then

E

(
T∑

t=1

Xt

)
= E(T ) · E(X).

¤
When applied to the continuous EA paradigm, Wald’s equation provides only
a lower bound on the expected hitting time. In order to obtain both upper
and lower bounds, the application of limit theorems from renewal processes is
necessary.

A reformulation in terms of inequalities of Wald’s equation is first required.

Theorem 2.5 (Wald’s Inequation) If {Xt}t≥1 are independent, non-negative,
µ1 ≤ E(Xt) ≤ µ2 for all t and T is a stopping time for {Xt}t≥1, then

µ1E(T ) ≤ E

(
T∑

t=1

Xt

)
≤ µ2E(T ).
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Proof.
Letting

Yt =

{
1 if T ≥ t

0 if T < t

we have that
T∑

t=1

Xt =
∞∑

t=1

XtYt.

Due to Lebesque’s Monotone Convergence theorem (see proof of lemma 1.1)
since all products XtYt are positive, one can interchange expectation and sum-
mation

E

(
T∑

t=1

Xt

)
=

∞∑
t=1

E(XtYt). (3)

Note that Yt = 1 if and only if we have not stopped after succesively observing
X1, . . . , Xt−1, therefore Xt is independent of Yt for all t. Then

E

(
T∑

t=1

Xt

)
=
∞∑

t=1

E(Xt)E(Yt)

µ1

∞∑
t=1

E(Yt) ≤E

(
T∑

t=1

Xt

)
≤ µ2

∞∑
t=1

E(Yt)

µ1

∞∑
t=1

P{T ≥ t} ≤E

(
T∑

t=1

Xt

)
≤ µ2

∞∑
t=1

P{T ≥ t}

µ1E(T ) ≤E

(
T∑

t=1

Xt

)
≤ µ2E(T ).

That E(T ) =
∑∞

t=1 P{T ≥ t} can be seen - for any non-negative integer r.v. T
- as follows:

∞∑
t=1

P{T ≥ t} =
∞∑

t=1

∞∑

k=t

P{T = k} =
∞∑

k=1

P{T = k} ·
k∑

t=1

1 =

=
∞∑

k=1

k · P{T = k} = E(T ).

¤
Note that the only confinements on {Xt}t≥1 required by theorem 2.5 were
’Xt ≥ 0’, and ’µ1 ≤ E(Xt) ≤ µ2’, for all t - hence a simplified version of
H2. Condition ’E(T ) < ∞’, which appeared in Wald’s equation, was no longer
used in the inequation. Actually, if one follows the proof of theorem 2.5, she/he
will observe that the only point where such condition could apply would be at
interchanging expectation and summation in equation (3). Instead, we have
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used Lebesque’s Monotone Convergence theorem, which does not require a con-
dition like ’E(T ) < ∞’ but only monotony of the partial sums - ensured by
’Xt ≥ 0 for all t’.

So, apparently, one could conclude that whenever Wald’s inequation is ap-
plied, H2 may be replaced by that simplified hypothesis. That is not the case,
since E(T ) will designate the expected hitting time of an area at certain dis-
tance from the starting point of the algorithm, and if E(T ) = ∞ there is no
convergence at all. Hence we need also E(T ) < ∞ for our analysis, and that
is proved under the continuous EA paradigm in proposition 2.7 below, relying
strongly on lemma 1.2, which in turn does not work unless all requirements in
H2 are fulfilled!

We show next that the result of proposition 2.1 holds also for the expected
hitting time of the renewal process modelling the continuous EA. That is not
trivial, since finiteness with probability 1 of a positive random variable does not
imply finiteness of its expected value, see e.g. the Cauchy distribution.

First we need a simple result.

Lemma 2.6 Let us consider a discrete random variable Z =
(

0 1
1− p p

)

and Z1, Z2, . . . be independent, identically distributed as Z. Let also consider
the stopping time M = inf{m | Z1 + . . . + Zm = 1}. Then E(M) = 1/p.

Proof.
For each positive integer k

P{M = k} = P{Z1 = 0, . . . , Zk−1 = 0, Zk = 1} = p(1− p)k

and thus the mean of discrete r.v. M ,

M =
(

1 2 . . . k . . .
p p(1− p) . . . p(1− p)k . . .

)

is computed as

E(M) =
∞∑

k=1

kp(1− p)k−1 = p

∞∑

k=1

kp(1− p)k−1 → 1
p

where convergence comes from both-side derivation of the geometrical series∑∞
k=1(1− p)k. ¤

Proposition 2.7 Under hypotheses H1/H2, the expected hitting time of the
continuous EA is finite.

Proof.
We need to prove that E(Td) < ∞ for all d > 0. Under H1, since P{Xt > 0} > 0,
one can easily prove - ad absurdum - the existence of constants α, β > 0 s.t.

P{Xt > α} ≥ β > 0 for all t. (4)
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Under H2, the existence of α and β is guaranteed by lemma 1.2. Define a related
renewal process {Xt}t≥1 by truncating each Xt to

Xt =
(

0 α
1− β β

)
.

Note that Xt does not depend on t anymore. Also, under hypothesis H1, Xt is
the same with

X
′
t =

{
0 if Xt < α

α if Xt ≥ α

but not under H2, where we have only Xt ≤ X
′
t.

Let now define T d = inf{t | X1 + . . . + Xt > d}. For the related process,
succesive iterations can move the algorithm only along the lattice d = tα, t =
0, 1, 2 . . .. Also, the number of iterations required for a success (a real jump of
length α) are independent random variables with mean 1/β.

To see that, apply lemma 2.6 for the r.v. Zt = Xt/α which registers 1 for
a success and 0 for a stagnation of the EA from iteration (t− 1) to iteration t.
Thus,

E(T d) ≤ [d/α] + 1
β

< ∞

and the rest follows since Xt ≤ Xt holds under either H1 or H2, and that implies
T d ≥ Td.

¤

3 Main Result

The expression 1/E(Xt) is often called the progress rate between the (t − 1)st
and the tth iteration. Following the general theory of renewal processes [8, 17],
we prove next the highly intuitive result that the (expected) average number of
iterations required per distance unit converges to the progress rate. As E(Td)
represents the expected hitting time of an area situated at distance d from the
starting point of the algorithm, the result below will provide estimates of the
convergence time for continuous EAs.

We stress again that the estimates given below are meaningless without the
assertion ’E(Td) < ∞ for all d > 0’, ensured under H1/H2 through proposition
2.7 .

Theorem 3.1 Under hypotheses H1/H2 we have, as d→∞
E(Td)

d
→ 1

µ
,

respectively
1
µ2

≤ E(Td)
d

≤ 1
µ1

.
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Proof.
Assume first hypothesis H1. As E(Td) is finite due to proposition 2.7, Wald’s
equation applied on {Xt}t≥1 and Td yields

E(STd
) = E(Td) · µ. (5)

Since STd
> d we also have E(Td) · µ ≥ d which yields

lim inf
d→∞

E(Td)
d

≥ 1
µ

. (6)

To go the other way, let us fix a constant M and define a new renewal process
{Xt}t≥1 by letting for each t = 1, 2, . . .

Xt =

{
Xt if Xt ≤ M

M if Xt > M
(7)

Let St = X1 + . . . + Xt and T d = inf{t | St > d}. Since Xt ≤ M for all t,

STd
≤ d + M

and since {Xt}t≥1 satisfies also H1, E(T d) is finite and Wald’s equation yields

E(T d) · µM ≤ d + M

where we denoted µM := E(Xt). Thus

lim sup
d→∞

E(T d)
d

≤ 1
µM

and since Xt ≤ Xt for all t, it follows that T d ≥ Td and E(T d) ≥ E(Td), thus

lim sup
d→∞

E(Td)
d

≤ 1
µM

.

Letting now M→∞ yields

lim sup
d→∞

E(Td)
d

≤ 1
µ

which together with (6) completes the proof for this case.
Under H2, E(Td) is finite due to proposition 2.7 and Wald’s inequation yields

µ1E(Td) ≤ E(STd
) ≤ µ2E(Td). (8)

Since STd
> d we also have µ2E(Td) ≥ E(STd

) > d and thus

lim inf
d→∞

E(Td)
d

≥ 1
µ2

. (9)
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On the other hand, for each positive integer M the process Xt defined by (7)
is non-negative. Since 0 ≤ Xt ≤ Xt, we have for each M > 0

0 ≤ µ1
M ≤ E(Xt) ≤ µ2 for all t (10)

where µ1
M does not depend on t and is defined for each M by

µ1
M = min{µ1, inf

t
E(Xt)}.

We show that µ1
M → µ1 as M→∞. Assume, ad absurdum, the contrary. As

µ1
M ≤ µ1 always holds, divergence implies that for any ε > 0, there are infinitely

many Mk outside the ε-vicinity of µ1, the interval (µ1− ε, µ1]. According to the
definition of µ1

M , we have for an arbitrary ε > 0

E(Xt) < µ1 − ε for all t and all {Mk}k≥1. (11)

But if we apply Lebesque’s Dominated Convergence theorem (see proof of lemma
1.4 and note that convergence with probability 1 implies convergence in prob-
ability) to a fixed t0, 0 ≤ Xt0 ≤ Xt0 , E(Xt0) ≤ µ2 < ∞ and Xt0 → Xt0 , as
Mk→∞, it yields

E(Xt0) → E(Xt0) as Mk→∞,

and combined with µ1 ≤ E(Xt0) provides an index k0 such that

E(Xto) ≥ µ1 − ε for all Mk with k ≥ k0

which obviously contradicts (11)!
So µ1

M → µ1 from below and as 0 < µ1, one can find a positive M0 such that

0 < µ1
M ≤ E(Xt) ≤ µ2 for all t and all M ≥ M0.

It is easy to see that, for sufficiently large M

0 ≤ at ≤ α < µ1
M ≤ E(Xt) ≤ µ2 for all t

which means that {Xt}t≥1 also satisfies an H2 condition, thus E(T d) < ∞ for
all d and one can call Wald’s inequation on {Xt}t≥1 and T d, yielding

µ1
ME(T d) ≤ E(ST d

) ≤ µ2E(T d).

Return to the main proof to observe that ST d
≤ d+M together with Xt ≤ Xt

and T d ≥ Td imply

µ1
ME(Td) ≤ µ1

ME(T d) ≤ E(ST d
) < d + M.

As in the first case,

lim sup
d→∞

E(Td)
d

≤ 1
µ1

M

.
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and letting M→∞ yields

lim sup
d→∞

E(Td)
d

≤ 1
µ1

which together with (9) completes the proof.
¤

As one can see from the proof of theorem 3.1, the left hand side of the inequality
- the one giving a lower bound on E(Td) - is a simple consequence of Wald’s
inequation. Most of the effort was concentrated on validating the upper bound
of the expected hitting time - far more significant for computation time analysis.

Translated to our continuous EA paradigm, theorem 3.1 says that the ex-
pected average7 hitting time:

i converges, under hypothesis H1, to the inverse of the expected progress in
one step, respectively

ii is bounded, under hypothesis H2, by the inverse bounds of the expected
progress in one step.

The estimates for the expected hitting time hold for a general (1 + λ) EA,
optimising an arbitrary fitness function defined on n-dimensional continuous
space. The case of EA with constant parameters is obviously covered, but also
the more practical situation where parameters are adapted (are allowed to vary)
during the evolution - see section 5.

The analysis performed so far on continuous EAs regarded as renewal pro-
cesses is similar to the Markov chain analysis of discrete EAs performed in
[1, 2, 18, 20] - see [21] for an accurate state of art in stochastic convergence
for discrete EAs. It closes the theoretical discussion on convergence of the al-
gorithm, opening the door for particular estimations of local progress rates µ,
respectively µ1 and µ2. As this calculus has a long history in EA theory, we
shall use some of the previous results in the remaining sections of the paper.

But first let us digress and see how theorem 3.1 extrapolates the drift theo-
rems of discrete EAs.

4 Drift Analysis

Drift analysis is relatively old within probability optimisation theory [9], yet it
was only recently that it has been introduced as a powerful tool in studying
convergence of evolutionary algorithms [10, 11, 16]. Exclusively devoted to
discrete EAs, drift analysis made obsolete the highly technical proof given in [7]
for hitting time in case of (1 + 1) EA on linear (pseudo-Boolean) functions [6].

Following ..., we start by reviewing the definition and main drift theorem,
as introduced for a finite space Z containing all possible EA populations.

Define distance d := Z → <+ with d(P ) = 0 if and only if population P
contains the optimal solution - so we are minimizing. Let T = inf{t | d(Pt) =

7With respect to distance on the progress axis.
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0} be a random variable, and consider a maximum distance of an arbitrary
population to the optimum

M := max{d(P )|P ∈ Z}.

The fact that M < ∞ comes from the finiteness of the search space. As for each
iteration t, the current population Pt is a random variable, so will be d(Pt) and
also the so-called decrease in distance function Xt (Dt in the original approach),
given by

Xt := d(Pt−1)− d(Pt).

By definition, E(Xt|T ≥ 0) is called drift. We also introduce

∆ := min{E(Xt|T ≥ t)|t ≥ 1}.

Theorem 4.1 (Drift Theorem - Upper Bound) If ∆ > 0 then

E(T ) ≤ M

∆

¤

To see the resemblance note that, under the continuous space paradigm of Sec-
tion 1, M is replaced by d (which may later grow to infinity), T is replaced by
Td (the first hitting time of an area situated at distance d from the initial pop-
ulation), while the existence of ∆ is postulated by hypotheses H1/H2: ∆ = µ
respectively ∆ = µ1.

With this substitution in mind, drift theorem is contained in theorem 3.1,
as the right hand side (upper bound) limit:

E(Td)
d

≤ 1
µ

respectively
E(Td)

d
≤ 1

µ1
.

A similar formulation of the drift theorem comes from [10, 11].

Theorem 4.2 Let {Xt}t>0 be a Markov process over a set of states S, and
g : S → <+ a function that assigns to every state a non-negative real number.
Let the time to reach the optimum be T := min{t > 0 | g(Xt) = 0}. If there
exists δ > 0 such that at any time step t > 0 and at any state Xt with g(Xt) > 0
the following condition holds:

E[g(Xt−1)− g(Xt)|g(Xt−1) > 0] ≥ δ (12)

the

E[T |X0, g(X0) > 0] ≤ g(X0)
δ

. (13)

¤
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Or, with a slightly different conclusion in [16]:

E(T ) ≤ E[g(X0)]
δ

. (14)

To see the resemblance, notice first that as we set 0 to be the minimum of
the optimisation problem, the conditional probabilities in both (12)-(13) van-
ish. Second, g(X0) can be replaced by the (constant) maximal distance to the
optimum, d in our renewal process setting. Denoting µ1 := δ, and observing
that expected value of a constant is the constant itself, inequations (13) and
(14) read now the same as the right hand side of theorem 3.1

E(T )
d

≤ 1
µ1

.

In [6] a somehow different condition on the drift function is imposed, namely,
there is a constant δ > 0 such that for all n and all populations Pt,

E[d(Pt)] ≤
(

1− δ

n

)
d(Pt−1). (15)

But as this is a one-step condition, one can assume that Pt−1 is constant, and
only Pt is (a random) variable, which ensures Pt−1 = E(Pt−1) and after insertion
in (15) we get

E[d(Pt)− d(Pt−1)] ≤ −δ · d(Pt−1)
n

.

After introducing Xt and reversing the inequality we obtain

E(Xt) ≥ δ · d(Pt−1)
n

,

thus a more elaborated version of the lower bound in H2

E(Xt) ≥ µ1,

accounting also for the space-dimension n and for the current position Pt−1.
Summing up, drift analysis provides conditions that ensure the existence of a

strictly positive lower bound on the expected one-step progress of the algorithm
towards the optimum, yielding finite upper bounds on the expected hitting time
of the algorithm - all on the discrete case. Our renewal process analysis did the
same, but for the continuous case. Nota bene, lower bounds on the hitting time
are also available under the new paradigm, provided the existence of a finite
upper bound on the expected one-step progress.

5 Adaptive mutation

How can one apply theorem 3.1 to computing practical hitting times of con-
tinuous EAs? In general, estimates of the one-step expected progress could be
derived either

14



a. ANALITICALLY, provided the optimisation problem, fitness function and
evolutionary operators are manageable enough, or

b. NUMERICALLY, by running a single iteration of the algorithm for several
times and/or from different points in the search space and then averaging
the outcomes.

The first path resonates lauder - to a mathematical ear, at least - but so far
only the smoothest functions (linear, quadratic) and simplest algorithms ((1+1)
EA, mainly) exhibit close formulas for the expected one-step progress in the
continuous case [5, 12, 13, 19, 20]. In turn, the numerical approach is far more
general, its potential application varying from smooth to black-box optimisation
problems, from (1 + 1) EA to (µ + λ) EAs including all sort of evolutionary
operators. However, we defer the experimental study to a future paper, and
concentrate within this section on estimating analytically the hitting time of
the (1 + 1) EA with uniform mutation inside the (hyper)-sphere of radius r (r
variable), minimising the well-known SPHERE function8

f : <n → < f(x) = f(x1, . . . , xn) =
n∑

i=1

x2
i .

One can bound the uniform mutation both in mean and variance such that
it satisfies hypothesis H2. On the other hand, we claim that uniform muta-
tion inside the sphere is more tractable than normal mutation, at least from a
geometrical point of view.

To see that, note the following simple facts. First, the expected value of a
uniform variable defined inside a figure of volume 1 is the centroid (center of
mass) of the corresponding figure. If the figure of volume 1 is truncated - as
the case with elitist EAs on SPHERE, where not all of the mutation sphere is
active for next generation, the removed volume (probability) being charged to a
single point, zero, the expected value will still be the centroid of the truncated
figure. Second, if the mutation sphere is no longer of volume 1 - as it happens
when we successively decrease mutation radius r, we need to divide the uniform
’variable’ and consequently its expected value by the volume of the new sphere
- call it Vn(r) - in order for the non-unitary sphere to define a proper random
variable.

We are also going to need the following geometrical results, the proof being
deferred to Appendix B.

Proposition 5.1 Let Sn be the n-dimensional sphere of volume 1, centered in
0 = (0, . . . , 0). Consider the positive semi-sphere that is symmetric around the
x1 axis. Then the centroid An of the semi-sphere satisfies, as n →∞

An → A =
(

1
π
√

e
, 0, . . . , 0

)
.

8In order to avoid confusion, we shall use capital letters when referring to the fitness
function, and small letters when referring to the mutation operator.
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¤

Corollary 5.2 If we multiply the radius of the sphere from proposition 5.1 by
r = r(n), the coordinates of the centroid will be multiplied by the same factor.

¤
Note that the limit value obtained for the position of the centroid along the x1

axis is 1/π
√

e = 0.193, in good concordance with 1/5, the well-known threshold
value used for mutation adaptation in evolutionary strategies - see e.g. [22, 23]!

We are going to use the calculus of centroids for estimating the upper and
lower bounds on the expected one-step progress of the (1+1) EA with spherical
mutation along the ’progress axis’ Ox1

9. As usually the case in adaptive EAs,
we shall decompose the algorithm into different phases with respect to distance
to the optimum, each phase keeping a fixed mutation radius, and progressively
decrease the radius from one phase to the other. As in [12, 20], we are fixing the
initial mutation radius to some carefully chosen optimal value. The particular
mutation adaptation rule is made clear in the following.

Theorem 5.3 Assume the (1+1) EA with uniform mutation inside the sphere
of radius r minimising the n-dimensional SPHERE function starts at distance
d such that d À √

n, and let k be fixed in Θ(ln(d/
√

n)). For all t ≥ 1, phase t
of the algorithm is defined by mutation radius rt := d/2tk, maximal distance to
optimum d/2(t−1)k and minimal distance to optimum d/2tk. Then the expected
convergence time of the algorithm is in Ω(1) and in O(

√
n).

Proof.
In a single phase of the algorithm, under constant mutation radius r, expected
one-step progress increases the closer we get to the optimum. To see that,
consider two extreme positions of the current EA: far away - at distance d À r
- Figure 1, and close-by - at distance r - Figure 2, respectively.

Assume for the moment that r = R ≈
√

n/2πe, the radius of the the n-
dimensional sphere of volume 1. For large n, one can approximate the inter-
section of the two spheres in the first case by the semi-sphere of radius r, then
proposition 5.1 provides the value of the centroid as A = 1/π

√
e. In the second

case, the centroid of the intersection is R/2, due to symmetry of the figure.
Consider next the more general situation where r 6= R. The centroids will

change, according to corollary 5.2, and respectively to symmetry of the figure,
into

A −→ A
r

R
=

r
√

2√
nπ

R

2
−→ r

2
.

9Because of the symmetry of the SPHERE, we can assume without loss of generality that
we rotate the axes at each iteration such that the current EA position lies on Ox1.
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x1

x2, x3, ... , xn 

O

d

Figure 1: Mutation sphere far away

Accordingly, the expected values of the one-step progress will also change into

A −→ A
r

RVn(r)
=

r
√

2√
nπ Vn(r)

R

2
−→ r

2Vn(r)
.

Comparing the two extreme cases, one can easily see that for n > 8/π ≈ 2.5, the
value of the centroid far away is less than the value of the centroid close-by. The
same holds for expected values, and hence the announced monotonic behavior -
true for each algorithmic phase with constant mutation radius r. Summing up,

r
√

2√
nπ Vn(r)

≤ E(Xt) ≤ r

2Vn(r)
.

With this inequality in mind let us return to the original setting r = rt = d/2tk

and make t = 1, thus r = r1 = d/2k, k constant to be fixed later. For large
d, we can use theorem 3.1 to estimate the expected hitting time of distance r1,
provided the algorithm starts at distance d:

2Vn(r1)
r1

≤
E

(
Td− d

2k

)

d− d
2k

≤
√

nπ Vn(r1)
r1

√
2

⇔

2dVn(r1)
r1

(
1− 1

2k

)
≤ E

(
Td− d

2k

)
≤ d

√
nπ Vn(r1)
r1

√
2

(
1− 1

2k

)

or, under the common assumption 1 À 1/dk, after removing the parentheses
and substituting the value of r1

2k+1Vn(r1) ≤ E
(
Td− d

2k

)
≤

√
nπ

2
2kVn(r1). (16)
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r/2

r

x1

x2, x3, ... , xn

r

Figure 2: Mutation sphere close-by

At this point one can fix k such that 2kVn(r1) = 1, equivalent to Cndn = 2(n−1)k

- see Appendix B. From relation (24) and Stirling’s formula (27), we obtain the
solution k of the exponential equation as

k ≈ n

(n− 1)2 ln 2
ln

(
d
√

2πe√
n

)
.

The value found for k is in Θ(ln (d/
√

n)), while the prior confinement ’2k large’ is
equivalent to d À √

n. Under fulfillment of these conditions we have 2kVn(r1) =
1, which simplifies inequality (16) to:

2 ≤ E
(
Td− d

2k

)
≤

√
nπ

2
. (17)

Let us make now t = 2. Mutation radius is r2 = d/22k and a derivation similar
to the one leading to (17) provides

2
1

2kn
≤ E

(
T d

2k− d

22k

)
≤

√
nπ

2
1

2kn
(18)

and recursively, after t steps,

2
1

2tkn
≤ E

(
T d

2tk− d

2(t+1)k

)
≤

√
nπ

2
1

2tkn
. (19)

All we have to do now is sum up relations (17)-(19) and let t→∞. The middle
term converges to E(Td), the expected hitting time of distance d from the start-
ing point of the algorithm - recall that E(Td) < ∞ according to proposition 2.7
- which is exactly the convergence time of our (1 + 1) EA. As for the left and
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right hand terms, they each sum up to the geometrical series with ratio 1/2kn,
which converges to 1/(1− 1/2kn) as t→∞ . Thus

2
1

1− 1
2kn

≤ E (Td) ≤
√

nπ

2
1

1− 1
2kn

.

By removing again the small term 1/2kn from both sides we are left with

2 ≤ E (Td) ≤
√

nπ

2

thus convergence time of the (1 + 1) EA is in Ω(1) and in O(
√

n). ¤
Compared to the main results in [12, 13], where convergence time of the

(1+1) EA minimising SPHERE using normal mutation and the 1/5 adaptation
rule is estimated to be in Ω(poly(n)), one may find the result of theorem 5.3
surprising. We claim that the substantially better convergence time obtained
in this section is not a consequence of the special mutation we used (uniform
instead of normal), but of the more accurate theoretical modelling. The proof
of this conjecture is deferred to a future paper.
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Appendix A: Direct proof of Lemma 1.2 - normal
mutation

Assume that for each t, the continuous part of Xt is a truncated normal variable,
with support (0, bt) ⊂ (0,∞) - as is the case for the (1 + 1) EA with normal
mutation acting on the SPHERE. We also assume, under hypothesis H2, the
existence of constants µ1, µ2, σ1, σ2 such that 0 < µ1 ≤ E(Xt) ≤ µ2 and 0 <
σ2

1 ≤ V ar(Xt) ≤ σ2
2 for all t. Note that the existence of σ1 was not required in

H2, yet working with mutation variance bounded from below is not atypical for
practical EAs.

According to [14] p.156, e.g., a (doubly) truncated normal variable with
support (a, b) has p.d.f.

fa,b,µ,σ(x) = f

(
x− µ

σ

)
· Ca,b · Ia,b(x), (20)

where f is the p.d.f. of the standard normal distribution, Ca,b is a scaling factor
accounting for the degree of truncation - see (21) below - and Ia,b(x) is the
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indicator function, Ia,b(x) = 1 if a < x < b and zero otherwise. This is the most
common type of truncation, but unfortunately not the type occurring in model-
ing the continuous EA. In our case the continuous part of Xt is truncated from
the normal distribution, yet not scaled up. Instead, the removed probability is
charged onto a single point, the EA position at iteration (t− 1), so the p.d.f. of
the continuous part of Xt is

f∗bt,µt,σt
(x) = f

(
x− µt

σt

)
· I0,bt(x).

Thus for any α with 0 < α < µ1

P{Xt ≥ α} =

bt∫

α

f∗bt,µt,σt
(x)dx =

bt∫

α

f

(
x− µt

σt

)
dx =

=
1

Cα,bt

bt∫

α

fα,bt,µt,σt
(x)dx =

1
Cα,bt

and all comes down to finding an upper bound for Cα,bt , independent of t.
According to [14], the scaling factor reads

Cα,bt =
1/σt

Φ
(

bt−µt

σt

)
− Φ

(
α−µt

σt

) (21)

where Φ denotes the standard normal c.d.f.. We have next
1
σt
≤ 1

σ1

Φ
(

bt − µt

σt

)
≥ Φ(0) =

1
2

Φ
(

α− µt

σt

)
= 1− Φ

(
µt − α

σt

)

and hence

Cα,bt ≤
1/σ1

1
2 − 1 + Φ

(
µt−α

σt

) ≤ 1/σ1

Φ
(

µ1−α
σ2

)
− 1

2

< ∞

which yields the constant β > 0 as the inverse upper bound of Cα,bt

β = σ1 ·
[
Φ

(
µ1 − α

σ2

)
− 1

2

]
.

Appendix B: Hypersphere Volumes and Centroids

According to Li [15], the volume of an n-dimensional hypersphere (hereafter
n-sphere) of radius r is

Vn(r) = Cnrn, (22)
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where the coefficient is given by one of two formulas:

Cn =
2

n+1
2 π

n−1
2

n!!
, when n is odd, and (23)

Cn =
π

n
2

(n
2 )!

, when n is even. (24)

The function n!! in (23) is the double factorial, defined as the product of every
other number from n down to either 2 or 1 (depending on n’s parity). The
following formulas connect the double factorial with the regular factorial:

(2k + 1)!! =
(2k + 1)!

2kk!
(25)

(2k − 1)!! =
(2k)!
2kk!

(26)

Note that a similar formula exists for the double factorial of an even number
2k, but it is clear from (23) and (24) that we only need it for odd numbers. To
capture the limiting behavior of the factorials, we use Stirling’s formula

n! ≈
√

2πn
(n

e

)n

, (27)

in the sense that the ratio of the LHS and RHS tends to 1 when n → ∞. e is
the base of the natural logarithms, e ≈ 2.718. We shall also need the stronger
form

n! =
√

2πn
(n

e

)n
[
1 + O

(
1
n

)]
, (28)

which shows that the convergence is of the order 1/n.
Without loss of generality, we take the axis Ox to pass through the centroids

of our figures, so the coordinate of the centroid of any figure is given by

XC =
∫

x dV∫
dV

=
∫

xA(x) dx∫
dV

, (29)

where dV is the infinitesimal element of (hyper)volume perpendicular to Ox,
and A(x) is the (hyper)area of the intersection between the figure and the (hy-
per)plane projecting at x.

Exact Formulas

Consider an n-sphere of radius r = 1, centered at the origin. In (29), the
intersection A(x) is an (n−1)-sphere of radius

√
1− x2, according to Pythagora’s

theorem. In the notation from (22), we have A(x) = Vn−1(
√

1− x2). We shall
need the centroid of the positive semi-sphere, so the integration limits are 0 and
1. Substituting all this into (29), we have

XC =

∫ 1

0
xVn−1(

√
1− x2)dx

1
2Vn(1)
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In the above expression, we use (22) and factor out the constant coefficients to
obtain:

XC =
2Cn−1

Cn

∫ 1

0

x (1− x2)
n−1

2 dx

Integration by parts shows that the integral is 1
n−1 , which leads to

XC =
2Cn−1

(n + 1)Cn
(30)

We now substitute into (30) the expressions for the odd/even coefficients from
(23) and (24) to obtain the following exact expressions for the centroid of the
semi-hypersphere:

XC =
n!!

2
n−1

2 (n− 1)(n−1
2 )!

, when n is odd, and (31)

XC =
2

n+2
2 (n

2 )!
π(n + 1)(n− 1)!!

, when n is even. (32)

The above formulas can be easily checked for the first three values of n: For
n = 1, (31) gives 1/2, which is indeed the centroid of the segment [0..1]. For
n = 2, (32) gives 4/3π, which is the centroid of the positive half-disc of radius
1. For n = 3, (31) gives 3/8, which is the centroid of the positive semi-sphere
of radius 1.

If we now remove the restriction r = 1, all the n-spheres are scaled by a
factor of r. It is well-known that the centroid, being the first-order moment of
the figure, also gets scaled by r, so we simply multiply (31) and (32) by r. We
also make the change of variable n = 2k + 1 in (31) and use formula (25) to
obtain

XC =
(2k + 1)!

22k+1k(k!)2
r, when n = 2k + 1 (33)

Similarly, we make the change of variable n = 2k in (32) and use formula (26)
to obtain

XC =
22k+1(k!)2

π(2k + 1)(2k)!
r, when n = 2k (34)

Limits for the Centroid of a Semi-Hypersphere

We apply Stirling’s formula (27) in (33) and (34) and find that, for n both odd
and even, the limit of the centroid is

lim
n→∞

XC = lim
n→∞

1√
πn

r = lim
n→∞

√
2

πn
r (35)

Two cases are of particular importance:

i If r is kept constant as n →∞, the centroid approaches the origin as 1/
√

n.
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ii If, on the other hand, we keep the volume of the n-sphere constant as
n →∞, the radius also changes, according to (22). If Vn(r) = 1, we have

r =
1

(Cn)
1
n

As we did in the previous section, we use the odd-even expressions for Cn (23)
and (24), we change the variable n = 2k + 1 for n odd and n = 2k for n even,
use the Stirling approximation and take the limit n →∞. After some work, we
find that, for n both odd and even, the limit of r is

lim
n→∞

r = lim
n→∞

√
n

πe
= lim

n→∞

√
n

2πe

We proved the following result:
When n → ∞, the radius of an n-sphere of constant volume also tends to ∞,
with the order of

√
n.

Substituting into (35), we obtain the result of proposition 5.1:
When n → ∞, the centroid of a semi-n-sphere of volume 1 tends to a fixed
value:

lim
n→∞

XC =
1

π
√

e
≈ 0.193 (36)

Interestingly, the assumption that V = 1 can also be dropped when n → ∞,
since the limit of V 1/n is 1. It follows that the limit 1

π
√

e
holds for any constant

(with respect to n) volume V of the n-sphere!
Since the convergence in Stirling’s formula is O(1/n), the convergence of the

centroid to the limit 1
π
√

e
is also O(1/n).
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