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Abstract—In combinatorial solution spaces Iterated Local
Search turned out to be exceptionally successful. The question
arises: is the Iterated Local Search heuristic also able to improve
the optimization process in real-valued solution spaces? This
paper introduces a hybrid meta-heuristic based on Iterated
Local Search and Powell’s optimization method combined with
elements from stochastic search in real-valued solution spaces.
The approach is analyzed experimentally. It turns out that the
Iterated Local Search Hybrid is significantly faster than state-of-
the-art evolutionary approaches and behaves more robust than
the strategy of Powell in multimodal fitness landscapes.

I. I NTRODUCTION

Recent results have shown that the hybridization between
meta-heuristics and local search techniques turn out to be
exceptionally successful – in particular in combinatorialand
discrete solution spaces [10], [18]. Interestingly, for real-
valued solution spaces not many results have been reported
so far. In this paper we introduce a hybrid meta-heuristic
that is based on Powell’s method and Iterated Local Search
(ILS). First, we will introduce the concept of hybridization
in general and the ILS concept in Section II. Section III
introduces the ILS-Powell hybrid starting with the strategy of
Powell. Section IV provides an experimental evaluation of the
proposed approach and concentrates on parameter settings.

II. H YBRID METAHEURISTICS AND ITERATED LOCAL

SEARCH

Iterated Local Search belongs to the class of hybrid meta-
heuristics. Before we introduce the ILS approach, we give a
brief overview of hybrid approaches.

A. Hybrid Meta-Heuristics

Search algorithms can be divided into two categories: exact
techniques and heuristics. Exact algorithms find local optimal
solutions with great success, but the runtime deteriorates
rapidly with the size of the problem dimension. Heuristics
and meta-heuristics usually approximate the solution on the
basis of stochastic components and do not find the optimum
in every case. But their runtime on large problem instances is
much more acceptable. A meta-heuristic is a generic design
pattern for heuristic algorithm which has to be specified.
One of the most important advantages of meta-heuristics
is their applicability to a huge number of problems. Even
if no knowledge about the problem and the solution space
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Fig. 1. Survey of hybridization strategies. Hybrids can be divided into col-
laborative approaches that run successively (relay or intertwined). Integrative
hybrids use other algorithms in each iteration, e.g. a localsearch method
embedded in an EA or vice versa.

characteristics is available, meta-heuristics can be applied with
their stochastic operators. Meta-heuristics like evolutionary
algorithms, particle swarm optimization or artificial immune
systems have proven well as successful and robust optimiza-
tion methods within the last decades.

The hybridization of meta-heuristics with local search meth-
ods is motivated by the combination of the advantages of the
exact and the heuristic techniques. The success of hybridiza-
tion is reflected by an increasing number of publications in
this research area and the foundation of international confer-
ences and workshops like theHM – Hybrid meta-heuristics
workshop or theWorkshop on Mathematical Contributions to
meta-heuristics. In the case of combinatorial solution spaces
exact methods like integer linear programming, dynamic pro-
gramming approaches [1] or branch-and-bound methods [8]
are frequently combined with evolutionary algorithms. In
numerical solution spaces direct search methods like pattern
search [6], simplex search [11], Rosenbrock’s [16] or Powell’s
method [13] can be used.

An important design decision for hybrid techniques con-
cerns the way of information interchange between its compo-
nents. In which order shall the components work together,
which information is shared, and when? Can general hy-
bridization rules be derived from theory or experiments?
Talbi [19] and Raidl [14] proposed a taxonomy of hybrid
metaheuristics, see figure 1.



1 Start
2 s← generate initial solution;
3 ŝ← localsearch (s);
4 Repeat
5 s′ ← perturbation(s);
6 ŝ′ ← localsearch(s′);
7 ŝ← ApplyAcceptanceCriterion(ŝ′, ŝ);
8 Until termination condition
9 End

Fig. 2. Pseudocode of the ILS method

In their taxonomy arelay or sequentialhybrid is a simple
successive execution of two or more algorithmic compo-
nents. The main idea is: A stochastic method might pre-
optimize coarsely while the local search performs fine-tuning
and approximation of local optima. Thecoevolutionaryor
concurrent hybrid is a nested approach. Typically, a local
search method is embedded into an evolutionary optimizer:
In each iteration the local search optimizes the offspring
solutions until a predefined termination condition is fulfilled.
Information is passed alternately between the components in
the concurrent approach. The local search method might have
an own termination condition that can be specified by the
embedding optimizer.

B. Iterated Local Search

Iterated Local Search is based on a simple, but successful
idea. Instead of simply repeating local search starting from an
initial solution like restart-approaches do, ILS optimizes solu-
tion s with local search, perturbates the local optimal solution
ŝ and applies local search again. This procedure is repeated
iteratively until a termination condition is met. Figure 2 shows
the pseudo-code of the ILS approach. Initial solutions should
employ as much information as possible to be a fairly good
starting point for local search. Most local search operators
are deterministic. Consequently, the perturbation mechanism
should introduce non-deterministic components to explorethe
solution space. The perturbation mechanism performs some
kind of global random search in the space of local optima –
that are approximated by the local search method. Blumet al.
[4] point out that the balance of the perturbation mechanism
is quite important. The perturbation must be strong enough
to allow the escape from basins of attraction, but low enough
to exploit knowledge from previous iterations. Otherwise,the
ILS will become a simple restart strategy. The acceptance
criterion of line 7 may vary fromalways acceptto only in case
of improvement. Approaches like simulated annealing may be
adopted.

III. T HE ILS-POWELL-HYBRID

Our hybrid ILS variant uses Powell’s optimization method.
Preliminary experiments revealed the efficiency of Powell’s
optimization method in comparison to real-valued stochastic
search methods. But – and we will observe this in the
experimental Section IV – Powell’s method may get stuck in

local optima in highly multimodal solution spaces. The idea
to hybridize local search with stochastic optimization methods
has already been proposed by Griewank [7] who combines
a gradient method with a deterministic perturbation term. A
hybridization with the strategy of Powell and a control of the
perturbation strength has not been proposed previously to the
best of our knowledge.

A. The Strategy of Powell

The classical non-evolutionary optimization methods for
continuous problems can mainly be classified intodirect,
gradient and Hessiansearch methods. The direct methods
determine the search direction without using a derivative
[17]. Lewis, Torczon und Trosset [9] give an overview of
direct search methods. Pattern search methods [6] examine
the objective function with a pattern of points which lie on
a rational lattice. Simplex search [11] is based on the idea
that a gradient can be estimated with a set of N+1 points,
i.e. a simplex. Direct search methods like Rosenbrock’s [16]
and Powell’s [13] collect information about the curvature of
the objective function during the course of the search. If
the derivatives of a function are available, the gradient and
Hessian methods can be applied. Gradient methods take the
first derivative of the function into account, while the Hessian
methods also compute the second derivative. A successful
example is the Quasi-Newton method [5]. It searches for the
stationary point of a function, where the gradient is 0. Quasi-
Newton estimates the Hessian matrix analyzing successive
gradient vectors.

1 Start
2 i = 0
3 Repeat
4 Setp0 = xi;
5 For k = 1 To N
6 Find γk that minimizef(pk−1 + γkuk);
7 Setpk = pk−1+γkuk

;
8 Next
9 i = i + 1;

10 For j = 1 To N − 1;
11 Update vectorsui by settinguj = uj+1;
12 Next
13 SetuN = pn − p0;
14 Findγ that minimizesf(p0 + γuN);
15 Setxi = p0 + γuN ;
16 Until termination condition
17 End

Fig. 3. Draft of Powell’s strategy

Powell’s method belongs to the direct search methods, i.e.
no first or second order derivatives are required. Here, we
only state the basic idea of Powell’s method, i.e. line search
along the coordinate axes in the first step and along estimated
conjugate gradient directions in the following steps. Letx0

be the initial guess of a minimum of functionf . At first,
Powell follows successively each standard base vector until



a minimum off is found. Hence,f becomes a one-variable
function along each base vector and performs line search to
find the minimum. Letx0 be the initial candidate solution. Let
⊓ = {u1, . . . uN} be a set of vectors that are initialized with
the standard base vectors. The optimizer generates a sequence
of points p0, . . . pN . Figure 3 shows the pseudocode of the
principle of Powell’s method. The method itself makes use
of further concepts that are left out in the pseudo-code to
improve readability. E.g. It discards the vectorum with the
largest decrease inf over all direction vectors in line 6. For a
detailed introduction to the strategy of Powell we refer to the
depiction by Schwefel [17].

B. The ILS-Powell-Hybrid

The ILS-Powell-Hybrid proposed in this paper is based on
three key concepts, each focusing on typical problems that
occur in real-valued solution spaces:

• Powell’s optimization method: Powell’s method is a fast
direct search optimization method – in particular appro-
priate for unimodal and convex fitness landscapes.

• Iterative Local Search: In order to prevent Powell’s
method from getting stuck in local optima, the ILS ap-
proach starts from perturbated local solutions. Hence, ILS
performs a global control ofλ local Powell optimizers.

• Adaptive control of mutation strengths: The strength of
the ILS-perturbation is controlled by means of an adaptive
control mechanism. In case of stagnation, the mutation
strength is increased in order to leave local optima.

In the previous Paragraphs we introduced the strategy of
Powell and the ILS principle. Figure 4 shows the pseudo-code
of the ILS-Powell hybrid. At the beginning an initial solution
µ is produced and optimized with the strategy of Powell. In an
iterative loopλ offspring solutionss′ are produced by means
of Gaussian mutation with the global mutation strengthσ, i.e.
each componentxi ∈ R of s is mutated independently

x′

i = xi + σ · N (0, 1) (1)

Afterwards,s′ is locally optimized with the strategy of Powell.
After λ solutions have been produced in this kind of way, the
µ best are selected and the arithmetic mean〈s〉 is computed.
If the search stagnates, i.e. the condition

|~s− ~st−1| < θ (2)

becomes true, the mutation strength is increased by multipli-
cation withτ > 1

σ = σ · τ. (3)

Otherwise, the mutation strengthσ is decreased by mul-
tiplication with 1/τ . The effect of an increase of mutation
strengthσ is that local optima can be left. A decrease of
mutation strength lets the algorithm converge to the local
optimum in the vicinity defined byσ. At first, this technique
seems to be in contraposition to the success rule of Rechenberg
[15]. The latter decreases the step sizes in case of failure and
increases the mutation strengths in case of success. This strat-
egy is reasonable for local approximation: Smaller changes

1 Start
2 s← generateµ initial solution;
3 ŝ← powell (s);
4 Repeat
5 For i = 1 To λ
6 s′ ← mutation(~s, σ);
7 ŝ← powell(s′);
8 ŝ −→ P ′;
9 Next

10 SelectP from P ′;
11 ~s = 〈si〉;
12 If ~s− ~st−1 < θ Then
13 σ = σ · τ ;
14 Else
15 ~σ = ~σ/τ ;
16 Until termination condition
17 End

Fig. 4. Pseudocode of the ILS-Powell-Hybrid.

to solutions will increase the probability to be successful
during approximation of local optima. But in our approach
the strategy of Powell performs the approximation of the local
optimum. The step control of the ILS part has another task:
leaving local optima when the search stagnates. Of course, the
local optimum may be the global one, but if this is the case,
the technique will find the latter again and again.

IV. EXPERIMENTAL ANALYSIS

This Section provides an experimental analysis of the ILS-
Powell-Hybrid, in particular in comparison to the strategy
of Powell and to a standard evolution strategy, the(µ, λ)-
ES [3]. The experimental analysis concentrates on typical
test problems known in literature. Table I shows the test
problems we refer to in our analysis. Furthermore, it provides
the experimental conditions, i.e. the starting points~yinit , the
initial step sizesσinit , and the termination conditionfstop.
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Fig. 5. Plot of Schwefel’s highly multi-modal function withN = 2
dimensions – a hard optimization problem for Powell’s method and evolution
strategies.



TABLE I
SURVEY OF TEST FUNCTIONS, INITIAL CONDITIONS , STAGNATION AND TERMINATION CRITERION.

name function N ~yinit σinit θ fstop

Sphere fSp(~y) =
PN

i=1
y2

i 30 [−10, 10]N 1.0 10−6 10−10

Doublesum fDou(~y) =
PN

i=1

“

Pi
j=1

(yj)
”2

30 [−10, 10]N 1.0 10−6 10−10

Rosenbrock fRos(~y) =
Pn−1

i=1

`

(100(y2
i − yi+1)2 + (yi − 1)2

´

30 (0, . . . , 0) 0.1 10−6 10−10

Rastrigin fRas(~y) =
PN

i=1

`

y2
i − 10 cos(2πyi) + 10

´

30 [−10, 10]N 1.0 10−6 10−10

Griewank fGri(~y) =
PN

i=1

y2

i

4000
−

QN
i=1

cos
“

yi√

i

”

+ 1 30 [−10, 10]N 1.0 10−6 10−10

Schwefel fSch(~y) = 418.9820 · N −
PN

i=1

“

xi sin
p

|xi|
”

10 [−10, 10]N 1.0 10−1 10−10

A. Comparison with Other Approaches

Table II shows the experimental results of the strategy
of Powell, a standard(µ, λ)-ES and our ILS-Powell-Hybrid.
The table shows the numbers of fitness functions evaluations
(ffe) until the optimum is reached with accuracyfstop. Each
technique has been run 25 times and the best, the mean value
and the corresponding standard deviation is shown. For the
control of σ, see equation 3 we use the settingτ = 2. A
further discussion ofγ provides Paragraph IV-B. For the ILS-
Hybrid and the ES we setµ = 2 andλ = 10.

On theSpheremodel, both variants show the fast capabil-
ities of Powell’s search in unimodal fitness landscapes. The
(µ, λ)-ES is able to approximate the optimum with arbitrary
accuracy, but with significantly slower speed of convergence.
The same can be observed on theDoublesumproblem. Here,
the (µ, λ)-ES is even slower while the Powell-based algo-
rithms are as fast as on the Sphere model. OnRosenbrock,
the (µ, λ)-ES turns out to be very slow while both Powell
techniques show a very fast approximation behavior again.
Nevertheless, the strategy of Powell is not able to find the
optimum in every run, but only in 19 runs of the 25 ones1. But
the strategy of Powell totally fails on the problemRastrigin,
where it does not find the optimal solution in a single run.Ras-
trigin exhibits many local optima where Powell’s method gets
stuck into. With proper mutation parameter settings (τ = 2),
the(µ, λ)-ES is capable of finding the optimal solution. Lower
settings forτ lead to much slower convergence behaviors. The
ILS-Powell-Hybrid is also able to find the optimum in every
run, but is slightly slower – in comparison to the optimized
settings of the ES. The problem ofGriewankis another good
example for the fast capabilities of Powell’s method. The ES
is clearly outperformed by both Powell-variants. While the
evolution strategy and Powell’s method completely fail to
find the optimal solution ofSchwefel’s function, the hybrid
algorithm is able to find the optimal solution in every run.

The outcome of the experiments can be summarized as
follows:

• As expected, the strategy of Powell outperforms the
(µ, λ)-ES on unimodal functions likeSphereand Dou-
blesum– so does the ILS-Powell hybrid.

• On highly multimodal functions likeSchwefelor Rastri-
gin the strategy of Powell gets stuck in local optima. But

1Consequently, the better mean of the strategy of Powell is not highlighted.

the ILS-approach is able to leave these local optima and
approximate the optimal solution.

In comparison to the results for the Covariance Matrix Adap-
tation (CMA-ES) [12] and the variant CMSA-ES – that are
considered to be the state-of-the-art methods of evolutionary
optimization - recently reported by Beyer [2], the ILS-Powell-
Hybrid turns out to be much faster. A detailed experimental
comparison will be subject to future work.

We concentrate on the behavior of the ILS-Powell-Hybrid
on the highly multimodal fitness landscape ofSchwefel’s
function. As already reported the hybrid technique is able to
leave local optima. In the upper part of figure 6 we can see the
fitness development of a single run on the functionRastrigin.
The strategy of Powell moves the candidate solutions into local
optima. The fitness development reveals that the local optima
are left and new local optima are found repeatedly. In the lower
part of figure 6 we can see the corresponding development of
mutation strengthσ. When the search gets stuck in a local
optimum, the strategy increasesσ until the local optimum is
successfully left and a better local optimum is found. The
approach moves from one local optimum to another controlling
σ – until the global optimum is found.

B. Strength of the Perturbation Mechansim

As pointed out in Section III the strength of the perturbation
mechanism plays an essential role for the ILS mechnaism.
What is the influence of parameterτ – the increase ofσ in
case of stagnation and decrease in case of an advance? We
tested various settings forτ . The results of this analysis are
presented in table III. The figures show the number of fitness
functions evaluations until the optimal solution of the problem
Rastrigin withN = 30 is found. It turns out thatτ = 2 is a
reasonable setting. Too fast increase in case of stagnation–
e.g. with τ = 10 – deteriorates the results and lets the ILS
method work like a simple restart approach.

TABLE III
ANALYSIS OF PARAMETERτ ON THE MULTIMODAL FUNCTION

RASTRIGIN.

τ best mean dev

1.2 76,574 143,005.6 27,700.7

2 42,744 75,919.1 32,673.2

5 25,478 89,465 55,303,8

10 50,037 477,398.6 312,654.7



TABLE II
EXPERIMENTAL COMPARISON OF THEILS-POWELL HYBRID TO THE STRATEGY OFPOWELL AND A (µ, λ)-ES. BEST, MEAN AND DEV SHOW THE

NUMBER OF ITERATIONS UNTIL THE TERMINATION CRITERION IS MET, # STATES THE NUMBER OF RUNS IN WHICH THE OPTIMUM IS REACHED.

(µ, λ)-ES Powell ILS-Powell-Hybrid

best mean dev # best mean dev # best mean dev #

Sphere 2,875 3,326 242.9 25 299 342.5 43.2 25 279 320.2 72.9 25

Doublesum 31,841 41,038.6 4,374.3 25 294 334.2 27.0 25 273 325.6 82.9 25

Rosenbrock > 108 > 108 > 104 25 23,109 43,699.8 9740.7 19 22,967 51,069.6 20,156.7 25

Rastrigin 56,587 59,933.9 1,769.2 25 - - - 0 44,890 78,990.08 38,957.4 25

Griewank 54,411 60,777.3 2,968.0 25 652 840.3 205.5 13 503 667.9 296.3 25

Schwefel - - - 0 - - - 0 331,954 1,269,957.2 505,545.9 25
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Fig. 6. Development of fitness (upper part) and step sizeσ (lower part)
on the highly multimodal functionSchwefelwith N = 10. When the search
gets stuck in local optima, but the perturbation mechanism increasesσ and
enables to escape from the basins of attraction.

V. CONCLUSION

Iterated Local Search is a successful hybridization technique
in combinatorial solution spaces. In this paper we have shown
that this assumption also holds true for real-valued search
domains. We proposed to combine the strategy of Powell and
elements from stochastic search in an ILS framework. It is
worth to mention that the approach significantly outperforms
the standard(µ, λ)-ES, and shows approximation behaviors
that are superior to the Covariance Matrix Adaptation Evo-
lution Strategy. The strategy of Powell is the reason for the
power of the the ILS hybrid. Nevertheless, whenever Powell
gets stuck in multimodal fitness landscapes, the adaptive
perturbation mechanism helps to move out. It seems worth

to try further ILS hybridizations with direct search methods
such as Nelder-Mead or other techniques. A hybridization with
Covariance Matrix optimizers is no reasonable undertakingas
the local search method disturbs the Gaussian based update
of the covariance matrix – and our experimental analysis
confirmed that no further improvement can be gathered in
comparison to the approach at hand.
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