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Abstract. Every drawing of a non-planar graph G in the plane induces a pla-

narization, i.e., a planar graph obtained by replacing edge crossings with dummy
vertices. In this paper, we consider the relationship between the capacity of a mini-
mum st-cut in a graph G and its planarizations. We show that these capacities need
not be equal. On the other hand, we prove that every crossing minimal planariza-
tion can be efficiently transformed into another crossing minimal planarization
that preserves the capacity of a minimum st-cut in G. Furthermore, we extend the
result to general (reasonable) planarizations.
This property turns out to be a powerful tool for reducing the computational
efforts in crossing minimization algorithms. Another application is the correction
of a proof given by Širáň [8], that shows an additivity property of the crossing
number with respect to certain decompositions.

1 Introduction

A drawing of a graph G on the plane is an injection of the vertices of G to points
in the plane and a mapping of the edges to simple continuous curves between the

images of their endpoints, without containing the image of any other vertex. Any
point other then the images of the vertices may only be contained in at most two

curves. Such a point which is contained in exactly two curves is called a crossing.
The crossing minimization problem is a prominent optimization problem in

graph theory. Given a graph G, we want to find a drawing of G in the plane with

the minimum number of edge crossings. The minimum such number is called the
crossing number of G, denoted with cr(G). Garey and Johnson [6] showed that

crossing minimization is NP-hard, but the approximability status is still unclear.
A vast amount of publications deal with various aspects of the problem, including

bounds for the crossing number and heuristic solution approaches; see e.g., [9].
Only recently, exact methods based on branch-and-cut have been proposed; see

[1]. However, only small instances can be solved in reasonable time. Therefore,
recent results try to reduce the size of the graph before applying exact or heuristic

crossing minimization methods, e.g., using decomposition strategies such as in [7].
In this paper, we deal with graph theoretic properties of the planar graph

induced by a drawing of G. This graph is called planarization, and is obtained by

replacing the edge crossings in the drawing by so-called crossing vertices. Many
graph properties are trivially preserved by a planarization, e.g., connectivity and
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(b) mincuts,t(P2) = 5

Fig. 1: Two crossing minimal planarizations of a graph G with mincuts,t(G) = 4. The gray areas
represent triconnected subgraphs, and the thick lines are the cut edges of G. The dashed
lines labeled cut mark the minimum st-cut of each planarization.

biconnectivity. On the other hand, though a cut vertex is also a cut vertex in

a crossing minimal planarization, this does not hold in general for a separation
pair; see [7]. We restrict our attention to minimum st-cuts, i.e., the smallest sets
of edges whose deletion disconnects the vertices s and t. The cardinality of such

an edge set is called the capacity of the cut, denoted by mincuts,t(G). One might
take for granted that the capacity of a minimum st-cut of G is always preserved

by a crossing minimal planarization, but this is indeed not the case:

Observation 1 A crossing minimal planarization of G can have a larger mini-

mum st-cut than G.

Figure 1 shows two planarizations P1 and P2 of the same graph G, both with
exactly two crossings, which is the smallest number possible. The capacity of a

minimum st-cut in G is 4. The minimum st-cut of P1 has the same capacity,
but the minimum st-cut of P2 has capacity 5. In fact, this example reveals basic

structures occurring in planarizations with larger minimum st-cuts.

On the other hand, we can show that there is always a crossing minimal

planarization preserving the capacity of a minimum st-cut. The main results (see
Sect. 2) of this paper are the following theorems:

Theorem 1. Let G be a connected graph and s and t two distinct vertices in G.

There exists a crossing minimal planarization P of G with

mincuts,t(P ) = mincuts,t(G).

We present the proof of this theorem in Sect. 2.2. The proof is constructive in
the sense that it leads to a linear time transformation algorithm (see Sect. 2.3):
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Theorem 2. Any crossing minimal planarization of G can be transformed in
linear time into a crossing minimal planarization P ∗ of G with mincuts,t(P

∗) =

mincuts,t(G).

Furthermore, we can extend these proofs to general not-necessarily crossing

minimal planarizations, as long as they are reasonable, i.e., each pair of edges
crosses each other at most once, and no two adjacent edges cross each other. Note

that it is trivial to transform any non-reasonable planarization into a correspond-
ing reasonable planarization with at most as many crossings. We sketch the proof

of the following theorem in Section 2.4:

Theorem 3. Let G be a connected graph, s and t two distinct vertices in G, and
P a reasonable planarization of G. We can transform P in linear time into a

planarization P ′ of G with |V (P ′)| ≤ |V (P )| and mincuts,t(P
′) = mincuts,t(G).

These results turn out to be powerful tools in the context of crossing mini-
mization. In Sect. 3, we apply our results to reduce the instance size of crossing

minimization problems: in Sect. 3.1, we fix a proof given by Širáň [8] which shows
the additivity of the crossing number with respect to certain decompositions; in
Sect. 3.2, we present a novel technique for variable reduction in exact crossing min-

imization of general graphs; in Sect. 3.3 we devise a heuristic scheme to reduce
the crossing number problem to 3-connected components.

2 Main Results

2.1 Preliminaries

Let G = (V, E) be a connected graph. If W ⊆ V then G[W ] denotes the subgraph
induced by the vertices in W . The set of crossing minimal planarizations of G is
denoted with Π(G). Let P ∈ Π(G) be a planarization of G. In order to avoid

confusion, we use the term edge segment when we refer to an edge of P . If e is an
edge of G, then segP (e) gives the set of corresponding edge segments in P ; vice

versa, seg−1

P (e′) denotes the original edge in G of an edge segment e′.

Let s, t ∈ V . The function χs,t(G) gives the set of minimum st-cuts in G. Let
C ∈ χs,t(G) be one of these cuts. Removing the edges in the cut disconnects G into
two connected subgraphs: we denote with SC (TC) the vertices of the subgraph

containing s (t).

2.2 Proof of Theorem 1

Theorem 1 is a direct result of the following two lemmata.

Lemma 1. For any planarization P of G, mincuts,t(P ) ≥ mincuts,t(G).
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Proof. Let D be a minimum st-cut of P . Obviously, the set DG := {seg−1

P (d) |
d ∈ D} defines an st-cut in G, and thus mincuts,t(G) ≤ |DG| ≤ |D|. ut

Lemma 2. There exists a planarization P ∈ Π(G) such that mincuts,t(G) ≥
mincuts,t(P ) holds.

In order to prove Lemma 2, we need some more definitions and lemmata. We define
a set of cuts Ξ(P, C), dependent on a crossing minimal planarization P ∈ Π(G)

and a minimum st-cut C ∈ χs,t(G). It contains every st-cut X of P with the
following properties:

(Ξ/1) The vertex sets SX and TX induced by the cut X are supersets of SC and

TC , respectively;

(Ξ/2) for every edge g ∈ C, X contains exactly one element of segP (g); and

(Ξ/3) X is a minimal cut with the properties (Ξ/1) and (Ξ/2). Hence all elements
of Ξ(P, C) have the same cardinality.

Observation 2 The cut set Ξ(P, C) is non-empty for every planarization P ∈
Π(G) and every cut C ∈ χs,t(G).

Observation 3 For every cut X ∈ Ξ(P, C), the subgraphs P [SX ] and P [TX ]

are connected sets. (This follows from (Ξ/3) and the precondition that G, and
therefore P as well, is connected.)

We define a set of drawings Φ(P, X) of a planarization P ∈ Π(G), depending
on an st-cut X ∈ Ξ(P, C) for some C ∈ χs,t(G); it contains every drawing D of

P with the following properties:

(Φ/1) D is planar;

(Φ/2) the two vertex sets SX and TX reside in two disjoint regions RS and RT of

D, respectively, which are topologically equivalent to a disk; and

(Φ/3) the edge segments that connect vertices from SX (TX) are completely con-

tained in the region RS (RT ).

Lemma 3. The set Φ(P, X) cannot be empty.

Proof. Conceptually, we can treat a planarization P as a clustered graph CP with

two clusters exactly containing the elements of SX and TX , respectively. Since P is
planar and connected, and SX and TX are connected as well, this clustered graph

is completely connected, i.e. for each cluster ν, both ν and ν̄ — the graph without
ν and its elements — are connected. Hence, there is a cluster planar drawing of

CP ; see [2,4]. In particular, this drawing induces a drawing of P satisfying the
properties (Φ/1)–(Φ/3). ut
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g’

g
s

TX

u

u’k k’

Fig. 2: The edge g generates an arch g′ within TX . We choose I and O depending on t. (Circles
denote vertices, squares denote crossing vertices)

Proof of Lemma 2. An edge segment k of a cut X ∈ Ξ(P, C) can be of one of

the following two types. Let g be the original edge in G corresponding to k.

∈: g ∈ C. By property (Ξ/2), we have segP (g) ∩ X = {k}.

6∈: g 6∈ C. The end vertices of g belong to the same partition set induced by C,
i.e., either both end vertices are in SC or both are in TC . Therefore all such
segments k must occur pairwise, and the cardinality of segP (g)∩X is even.

Let k be an edge segment of type 6∈. There is at least one other segment k′ ∈
X corresponding to the common original edge g. Let w.l.o.g. both end vertices of

g belong to SC . We consider a drawing from Φ(P, X). We can place a hypothetical
circle u between the regions RS and RT in such a way, that u crosses each cut
segment of X exactly once, but it does not cross any other segment (cf. Fig. 2).

The aforementioned edge segments both cross u; let k′ be chosen such that the
crossings of k and k′ with u are successive crossings between u and g, such that

the part of g between those crossing points lies in RT . We call this part of g an
arch, and denote it by g′.

The following lemma shows that there always exists a planarization which
allows a cut X that satisfies the Ξ-properties but contains no arches. Hence it

does not contain any edge segment of type 6∈, which induces |X | = mincuts,t(G).
Since the minimum st-cut of the planarization cannot be larger than X , Lemma 2

follows immediately.

Lemma 4. For any non-planar graph G and any minimum st-cut C ∈ χs,t(G),
there is a crossing minimal planarization P ∗

C ∈ Π(G), such that any cut X ∈
Ξ(P ∗

C , C) contains no arches.

Proof. Let P ∗
C ∈ Π(G) be a planarization such that the capacities of the cuts

of Ξ(P ∗
C , C) are minimal among all planarizations (cf. Property (Ξ/3)). Let us

assume the existence of an arch, and let k, k′, g, and g′ be defined as above. The
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Fig. 3: Lemma 4. (a) (C1 ) nu′ < ng′ : Changing the planarization reduces the crossing
number. (b) (C2 ) nu′ = ng′ : Changing the planarization reduces the cut size. (c)
(C3 ) nu′ > ng′ : Changing the cut reduces the cut size, but may violate (Ξ/2).

arch g′ defines a bipartition of the vertices of TC . Let O ⊂ TC be the subset that

contains t, and I ⊂ TC the other one. Let Ō and Ī be the regions bordered by u
and g′, containing O and I , respectively, and partitioning RT . We assume w.l.o.g.

that g′ is an inner-most arch, i.e. Ī does not contain any other arch. Let u′ be the
part of u that is on the boundary of Ī . We count the number of crossing points

between edges incident to a vertex of I and the border of Ī: we denote the number
of crossing points on u′ by nu′ , and the number of crossing points on g′ by ng′ .

We distinguish by the relationship between these two values:

C1 : nu′ < ng′ : We could select another routing of g′ such that it crosses the same
edges as u′ (cf. Fig. 3(a)). This planarization would have a lower number of
crossings, which is a contradiction to the crossing minimality of P ∗

C .

C2 : nu′ = ng′ : We could select another routing of g′, just as in case C1. The

planarization would have the same number of crossings, but the cut would be
smaller, since the arch g′ would be in RS and therefore not part of the cut (cf.

Fig. 3(b)). This would be a contradiction to the selection of P ∗
C .

C3 : nu′ > ng′ : By changing the selection of cut segments (represented by rerout-
ing u, cf. Fig. 3(c)), we could generate a smaller cut X ′, but in general there

does not exist any cut C′ ∈ χs,t(G) for which X ′ would satisfy the property
(Ξ/2). Furthermore, the selection of cut edges alone is not sufficient to re-

trieve a cut as small as the cut through G itself (e.g., in Fig. 1; note that the
corresponding Ξ-cut for the second planarization has cardinality 8).

We know that more edges incident to I leave the region Ī over u′ than over

g′. But since the vertices of I are elements of TC , the majority of the end
vertices of these outbound edges belong to TC . (Note that there cannot exists
a balanced situation, since this would imply that all vertices of I could belong

to some SX̄).

Therefore there are at least b(nu′ − ng′)/2c + 1 arches which reside in RS,
before the according edges enter RT over u (cf. Fig. 4). All these arches fall
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Fig. 4: (C3 ) nu′ > ng′ : A chain of arches. Changing the planarization (right) reduces either
the crossing number or the cut size.

into case C3 as well, since we already showed that the cases C1 and C2 lead

to contradictions. Hence there are sets of causally connected arches:
Let K(g′) be a set of arches g′i (1 ≤ i ≤ |K(g′)|) with the original edges

gi ∈ E(G). We denote the thereby induced parts of u by u′
i. We call K(g′) a

chain, if it is the minimal set that satisfies the following properties:
– g′ is an element of K(g′).
– An arch g′j is an element of K(g′), if it touches at least one u′

i (1 ≤ i ≤

|K(g′)|).
Let mu′

i
denote the number of crossing points on u′

i induced by type ∈

segments corresponding to edges incident to vertices of I . We know for each

arch in K(g′) that ng′
i
≥ mu′

i
, due to the crossing minimality of P ∗

C .
We apply the transformation as described in case C1 simultaneously on all
arches of the chain. On each arch g′i only mu′

i
crossings will remain. We can

distinguish between two sub-cases:
C3a: ng′

i
> mu′

i
for at least one i: the crossing number would decrease, which

is a contradiction to the crossing minimality of P ∗
C , as in case C1.

C3b: ng′
i
= mu′

i
for every arch: the transformation would unveil a contradic-

tion to the minimality of X , as in case C2. ut

We showed that we can always select an appropriate P ∗
C ∈ Π(G) for any

C ∈ χs,t(G), such that each thereby induced cut X ∈ Ξ(P ∗
C , C) does not contain

any type 6∈ segments. This means that X contains exactly mincuts,t(G) elements
of type ∈, and therefore mincuts,t(P

∗
C) ≤ mincuts,t(G).

2.3 A Linear Time Transformation Algorithm

The case differentiation in the proof of Lemma 4 implies a transformation algo-

rithm for any crossing minimal planarization P of G in a straight-forward way.
Due to the crossing minimality of P , there will only be arches falling into the
categories C2 and C3b. Hence it is possible to run along the hypothetical circle

u and check the cutting segments whether they are of type ∈ or 6∈. Since this
check takes constant time, the complete testing loop takes O(m) time, where m
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is the number of edges in P . Whenever a type 6∈ segment occurs, the according
arch is transformed as stated in the proof above, i.e., it is rerouted through its

own region. Since each segment is modified at most once, all these transformations
together will take at most O(m) time. No explicit analysis of chains is required.
Hence we get Theorem 2 (see Sect. 1).

2.4 Extension to Reasonable Planarizations

The proofs in the above sections can be generalized for not-necessarily cross-

ing minimal, reasonable planarizations, obtaining Theorem 3. Due to space con-
straints, we will only outline the corresponding proof within this section. Its main

ideas and techniques are similar to the proofs above.
Let P be a reasonable planarization of G and s, t two distinct vertices in

G. Obviously, mincuts,t(P ) ≥ mincuts,t(G), hence we need to proof that we can
create P ′ in linear time, such that mincuts,t(P

′) ≤ mincuts,t(G) without increasing

the number of crossings. We extend our definitions of the set Ξ to a set Ξ ′ for
reasonable planarizations, and will use that set in the remainder of the proof,

substituting Ξ. Each X ∈ Ξ ′(P, C) is an st-cut in P satisfying the properties
defined for the set Ξ, where (Ξ/2) is substituted by the following weaker version:

(Ξ ′/2) For every edge g ∈ C, X contains at least one element of segP (g); X is

a minimal cut satisfying this property, i.e., it contains as few segments
violating the strict (Ξ/2)-property as possible.

Similar to the proof of Lemma 2, we investigate drawings of Φ(P, X) with
X ∈ Ξ ′(P, C). The weakening of property (Ξ ′/2) leads to edges connecting a

vertex of TC with a vertex of SC , but crossing the hypothetical circle u multiple
times. Let g be such an edge. Obviously g crosses u an odd number of times, and

thereby introduces a new type of arches.
The analysis of arches in Lemma 4 gave three different cases, the third of

which unfolded into two subcases. Although we now have a new type of arches

to consider, careful case distinction shows that we basically obtain the same dif-
ferentiation. Out of these four cases, two cases (C2 and C3b) induce a scheme

of shifting the arch a – i.e., generating a related planarization P ′ – such that a
is not part of any new Ξ ′-cut X ′ anymore; the number of crossings in P ′ does

not increase thereby. This transformation is identical to the one necessary for
Theorem 2. The two other cases (C1 and C3a) were shown not to exist for cross-

ing minimal planarizations. Although they can occur for non-crossing-minimal
planarizations, the described shifting scheme always guarantees the following im-

portant properties for the newly generated planarization P ′, which can be easily
verified: (a) the number of crossing vertices in P ′ is less than in P , (b) the consid-
ered arches are not part of any new Ξ ′-cut X ′, and (c) no new segments are added

to X ′ compared to X . The linear time complexity of these shifting schemata can
be argued as in Section 2.3. Hence we obtain Theorem 3.
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3 Applications

3.1 Crossing Number and st-Decomposition

Širáň [8] studied the crossing number of a graph with respect to decomposing the
graph into two subgraphs having exactly two vertices in common. Let G be a
graph with two distinct vertices s and t. We call (H, K) an st-decomposition of G

if H ∪ K = G and H ∩ K = [s, t]. Širáň showed that

cr(G) ≥ cr(H) + cr(K∗), (1)

where K∗ is obtained from K by adding mincuts,t(H) many (s, t)-edges; see

Lemma 1 in [8]. Širáň wanted to prove that equality holds if cr(H) = cr(H∪(s, t)).
However, using the results of this paper, we can show that his proof is not correct.
On the other hand, we can fix the proof showing that his result is still true. We

first state the theorem.

Theorem 4 (Theorem 1 in [8]). Let (H, K) be an st-decomposition of G such

that cr(H) = cr(H ∪ (s, t)), and let K∗ be the graph obtained from K by adding
λ := mincuts,t(H) many (s, t)-edges. Then, cr(G) = cr(H) + cr(K∗).

Širáň’s construction requires to find a crossing minimal drawing DH of H with

both s and t on the external face in which it is possible to separate s and t by a
line that only crosses λ edges. Let Π be the embedding of the planarization PH

induced by DH in which the edge est = (s, t) is inserted into the external face.
Then, we have to find a path of length λ in the dual graph of Π connecting the
two faces adjacent to est without using the dual edge of est. It has been shown

in [7] that the minimum length of such a path is the capacity of a minimum st-cut.
However, by Observation 1, mincuts,t(PH) may be larger than mincuts,t(H); cf.

Fig. 1. Širáň assumed that any crossing minimal drawing of H has a traversing
path with respect to (s, t) of length λ. Since this is not the case, his proof is not

correct. On the other hand, Theorem 1 proves the existence of such a crossing
minimal drawing with the required properties, thus fixing the proof.

3.2 Reduction of Variables in Exact Crossing Minimization

Since crossing minimization is an NP-hard problem, using exact algorithms is
expected to be feasible only for relatively small graphs. Therefore a reduction of

the involved variables can improve the practical applicability of such algorithms
dramatically. Let C be an arbitrary minimum st-cut of G for some vertices s and

t. By Lemma 4, there exists a crossing minimal planarization P ∗
C which contains

no arches, and thus no type 6∈ segments. This implies the following corollary:

Corollary 1. Let G be a graph with two distinct vertices s and t, and let C be

any minimum st-cut of G. Then, there exists a crossing minimal drawing of G
that contains no crossing between an edge of G[SC ] with an edge of G[TC].
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Hence we can search for the best-balanced minimum st-cut, i.e., a pair (s, t) ∈
V (G) × V (G) with a minimum st-cut C∗ which minimizes the balance function

b(C∗) := | |E(G[SC∗])| − |E(G[TC∗])| |, i.e., the difference in the cardinality of the
edge sets of the induced partitions. C∗ does not have to be the minimum st-cut
over all (s, t) pairs. This problem differs from the NP-hard problem known as

minimum graph bisection (see, e.g., [5]), which minimizes the cut over all perfect
partitionings.

Having the cut C∗, we can forbid that any edge of G[SC∗ ] crosses an edge of

G[TC∗ ], and still obtain an optimal solution. Note that we can apply the corollary
for any minimum st-cut; using the best-balanced one only maximizes the gain.

Consider the integer linear program to solve the crossing minimization problem
optimally, presented in [1]. It needs a 0/1 variable for each pair of edges, repre-
senting their crossing. By applying our corollary, we can – asymptotically for large

graphs and relatively small cuts – reduce the number of these variables by up to
50%. But note that we cannot guarantee such an improvement.

3.3 Merging of 3-connected Components

The computational effort for (optimal) crossing minimization can be reduced by
applying a special preprocessing technique called non-planar core reduction [7].

This method analyzes the SPQR-tree [3] of the given non-planar graph and cuts
off certain planar components attached to the rest of the graph only at some

vertices s and t. These can later be reintroduced based on their minimum st-cuts.

Due to Theorem 3 it is reasonable to calculate the minimum st-cut of a non-
planar subgraph without knowing the exact planarization, nor its crossing number.

Hence, our transformation algorithm enables us to devise a heuristic to solve the
minimization problems on each non-planar triconnected component separately,
and merge them afterwards. However, that strategy might not achieve optimality,

but we expect it to be close to the optimal solution. Furthermore, we could be able
to further simplify the core by carefully extracting special non-planar subgraphs,

and being able to reintroduce them optimally later on.
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