technische universitat Department of Computer Science
dortmund Chair 11 / Algorithm Engineering

Dr. Carsten Gutwenger Winter 2011/12

Object-oriented Programming
Assignment Sheet No. 9

Date: December 20

Exercise 9.1 (Inheritance and Virtual Functions)

Reimplement the classes in Exercise 8.2 using virtual functions for area and circumference.
Declare these functions as pure virtual in Shape and implement them in derived classes. Use the
following print function for testing your implementations:

void print(Shape &s)
{

cout << "area " << s.area() << endl;
cout << "circumference = " << s.circumference() << endl;

Exercise 9.2 (Inheritance and Virtual Functions)

Implement classes for vehicles using inheritance:

e AVehicle has a name, a number of wheels, and a number of seats.
e A Car is a vehicle with at least 4 seats and 4 wheels; additionally cars have a color.

e AMotorbike is a vehicle with 2 wheels and 1 or 2 seats.

Make sure that all data members are only accessible vie get/set methods, which write errors to the
console when invalid parameters have been passed.

Vehicles shall also have a current position, which is initialized to 0; when they drive this position
is changed. Implement a member function int drive(int dist) which advances the current
position by dist and returns it. Cars can drive forward and backward, motorbikes only forward.
Override the drive method for motorbikes, such that an error message is printed when a negative
argument is passed for parameter dist.

Implement an output operator for vehicles that prints all information about the vehicle including
its type (vehicle, car, or motorbike). (Hint: Use a virtual print method.)



Exercise 9.3 (Inheritance, Virtual Functions and Pointers)
Implement a class hierarchy for arithmetic expressions.
e The base class of the hierarchy shall be the abstract class Expression with a pure virtual

function double evaluate().

e ConstExp shall represent just a constant; its constructor shall take a constant x and its value
is x. Furthermore, a ConstExp shall have a set method for changing the constant.

e AddExp shall represent an addition of two expressions; its constructor shall take two pointers
to expressions e; and e; and its value is the sum of the values of e; and e,.

¢ Analogously, implement expressions SubExp, MulExp, and DivExp.

e SqrtExp shall represent the square root function; its constructor takes a pointer to an ex-
pression e and its value is the square root of the value of e.

Override evaluate in derived classes such that it returns the value of the expression. Take care to
deal with potential errors (null pointers, division by zero, square root of a negative number).

Example: The following code sequence

ConstExp cexp1(10.0);
ConstExp cexp2(64.0);

SqrtExp sqrtexp(&cexp2);
AddExp addexp(&cexpl, &sqrtexp);

cout << addexp.evaluate() << endl;
cexpl.set(20.5);
cout << addexp.evaluate() << endl;

shall print:

18
28.5



