
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 13 • Winter 2011/12 • Jan 24

Carsten Gutwenger: Object-oriented Programming 2

Today’s Agenda

 Smart Pointers
– pointer-like objects with “automatic garbage collection”

 Function Objects
– … with applications in C++ standard library algorithms!

– overloading the function call operator

 Final Exam FAQ
– Topics & organizational stuff

3rd place
in voting

Carsten Gutwenger: Object-oriented Programming 3

Smart Pointers

 Smart pointers
– are data types that simulate a pointer.

– provide additional features like automatic deletion of the object they
point to.

 Main benefits
– Avoid typical programming errors like dangling pointers and memory

leaks.

– Express e.g. who is responsible for the objects pointed to (Who needs
to delete the object when a function returns a pointer?)
 Explicit transfer of ownership

 Different variants
– Unique pointers: Implement strict ownership (explicit transfer of

ownership is possible).

– Shared pointers: Use reference counting for deciding when to delete
the object pointed to.

Carsten Gutwenger: Object-oriented Programming 4

Smart Pointers: History in C++

 “Old” C++-standard (C++ 98, C++ 03)
– class std::auto_ptr

– deprecated in the latest standard

 “New” C++-standard: C++ 11
– class std::unique_ptr

– class std::shared_ptr

– VS 2008:
Only std::tr1::shared_ptr available (C++ TR1)

 In this lecture:
– We use VS 2010 / C++ 11

Carsten Gutwenger: Object-oriented Programming 5

Unique Pointers: unique_ptr

 unique_ptr<type>

– a smart pointer that retains sole ownership of an object through a
pointer.

– no copy possible:
no two instances of unique_ptr can manage the same object!

– stores a pointer to an object (allocated with new), or a 0-pointer.

 Transfer of ownership
– Use function std::move.

– Member function swap exchanges the pointers stored in two unique
pointers.

 Automatic deletion of the object pointed to
– When the unique pointer is destroyed (e.g. goes out of scope).

– Using member function reset.

Carsten Gutwenger: Object-oriented Programming 6

unique_ptr: Example
#include <memory>

#include <iostream>

using namespace std;

int main() {

 unique_ptr<int> p1(new int(10));

 unique_ptr<int> p2(new int(20));

 unique_ptr<int> p3 = p1; // compiler error

 unique_ptr<int> q1 = move(p1); // p1 now empty!

 q1.swap(p2);

 p1.reset(new int(30));

 // prints "30 20 10"

 cout << *p1 << " " << *p2 << " " << *q1 << endl;

 q1.reset(); // explicit "delete"; q1 now empty

 return 0;

}

Output:
30 10 20

contains definitions
for smart pointers

transfer ownership

Carsten Gutwenger: Object-oriented Programming 7

Shared Pointers: shared_ptr

 shared_ptr<type>

– similar as unique_ptr, but allows several owners.

 copying shared pointers is possible.

– maintains a reference count, which counts how many shared pointers
point to that object.

– object is deleted when the last shared pointer pointing to that object
is destroyed.

Carsten Gutwenger: Object-oriented Programming 8

shared_ptr: Example
…

 shared_ptr<int> p1(new int(10));

 shared_ptr<int> p2(new int(20));

 shared_ptr<int> p3 = p1; // copy possible!

 shared_ptr<int> q1 = move(p1); // p1 now empty!

 q1.swap(p2);

 p1.reset(new int(30));

 // prints "30 10 10 20"

 cout << *p1 << " " << *p2 << " " << *p3 << " " << *q1 << endl;

 cout << *p3 << ": use count = " << p3.use_count() << endl;

 p2.reset(); // decreases use count for "10"

 cout << *p3 << ": use count = " << p3.use_count() << endl;

…

Output:
30 10 10 20

10: use count = 2

10: use count = 1

Carsten Gutwenger: Object-oriented Programming 9

Function Objects

 A function object (functor) is an object that can be invoked
using the same syntax as for invoking a function.

 How does this work?
– We have overloaded the function call operator in the structure
IsGreaterThan, such that it takes two ints as input and returns a
bool.

– compare(4,2) is short for compare.operator()(4,2)

IsGreaterThan compare;

cout << boolalpha <<

 "4 > 2 ? " << compare(4,2) << endl;

Carsten Gutwenger: Object-oriented Programming 10

Overloading the Function Call Operator

 Overloading (as usual)

 Any number of parameters is possible (0, 1, 2, …).

 We could also implement several function call operators.
[Same rules as for overloading functions apply.]

 Advantage compared to a function
– We have access to local data members of the function object (e.g.

these can be initialized when constructing the function object).

struct IsGreaterThan {

 bool operator()(int x, int y) {

 return x > y;

 }

};

Carsten Gutwenger: Object-oriented Programming 11

Example: Sorting in descending order

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

struct IsGreaterThan {

 bool operator()(int x, int y) {

 return x > y;

 }

};

ostream &operator<<(ostream &os, const vector<int> &v) {

 for(vector<int>::const_iterator it = v.begin();

 it != v.end(); ++it)

 os << *it << endl;

 return os;

}

Carsten Gutwenger: Object-oriented Programming 12

Example: Sorting in descending order

int main() {

 // create a vector of random integers

 vector<int> v; srand(4711);

 for(int i = 0; i < 8; ++i)

 v.push_back(rand() % 100);

 cout << v;

 IsGreaterThan compare;

 sort(v.begin(), v.end(), compare);

 cout << "----------" << endl;

 cout << v;

 return 0;

}

Output:

22

2

26

96

71

69

26

53

96

71

69

53

26

26

22

2

Carsten Gutwenger: Object-oriented Programming 13

Predicates

 A predicate is a function object that returns a bool (true or
false)

 Predicates are widely used in the C++ standard library.

 Examples:
– IsGreaterThan is a binary predicate defining an order.

– Algorithms:
sort, stable_sort, nth_element, binary_seach, merge
min_element, max_element

– Unary predicate: IsOdd

– Algorithms:
find_if, count_if, replace_if, remove_if

Carsten Gutwenger: Object-oriented Programming 14

Example: replace_if
struct IsOdd

{

 bool operator()(int x)

 {

 return x % 2 == 1;

 }

};

int main() {

 const vector<int>::size_type n = 16;

 vector<int> v(n);

 vector<int>::size_type i;

 for(i = 0; i < n; ++i)

 v[i] = i+1;

 IsOdd is_odd;

 replace_if(v.begin(), v.end(), is_odd, 0);

 for(i = 0; i < n; ++i)

 cout << v[i] << " ";

 cout << endl;

 return 0;

}

Output:

0 2 0 4 0 6 0 8 0 10 0 12 0 14 0 16

Carsten Gutwenger: Object-oriented Programming 15

Final Exam: FAQ

 Who can attend the final exam?
– Everyone with three successful exam sheets.

– No registration required.

 Where will the final exam take place?
– January 31

– Group A: 10:30-12:30, Retina pool 108a & 108b

– Group B: 13:30-15:30, Retina pool 108b

– There will be a list assigning you to group A or B. Go to that group!

– You will have 90 minutes for solving the exercises, plus extra time for
filling out name, matriculation number etc.

 What do you need?
– Your student ID and passport

– A pen

Carsten Gutwenger: Object-oriented Programming 16

Final Exam: FAQ

 Which additional material can you use?
– Only the printed lecture slides

 What is not allowed? ( Cheating = Failing the exam)
– Hand-written notes on the print-outs

– Computers / laptops / smartphones / mobile phones

– Any source-code, like the solutions to the assignment and exam sheets

 What should you do for preparation?
– The topics are listed on Assignment Sheet No. 12

– You should carefully study and understand the solutions to the
exercises listed there

– Try to solve some of these exercises with pen & paper

Carsten Gutwenger: Object-oriented Programming 17

Final Exam: FAQ

 Which tasks will you be given?
– Write C++ source code

(Solutions will typically be short, sometimes part of the code is given.)

– Read and understand a given piece of C++ source-code
(Answer questions about the output of a program or the values of
variables at “checkpoints”.)

 What is required to pass the final exam?
– Similar as for the other exam sheets:

Solve at least half of the four exercises successfully!

– Exercises will be rated with 0 / 0.5 / 1 points
 You need at least 2 points in total

– And: Write readable! I am very bad in deciphering bad handwriting,
and if I cannot read something I assume it is wrong.

