
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 12 • Winter 2011/12 • Jan 17

Carsten Gutwenger: Object-oriented Programming 2

How to debug programs with Visual Studio?

Preliminary remarks:

 This lecture targets Visual Studio 2010
(not 2008 as installed on the pool computers)

 Screenshots are from the German version (sorry!)

 Most discussed features and guidelines also apply to other
development environments (IDEs)

 Reference (MSDN):
http://msdn.microsoft.com/en-us/library/sc65sadd.aspx

http://msdn.microsoft.com/en-us/library/sc65sadd.aspx
http://msdn.microsoft.com/en-us/library/sc65sadd.aspx
http://msdn.microsoft.com/en-us/library/sc65sadd.aspx

Carsten Gutwenger: Object-oriented Programming 3

General procedure for developing programs

1. Build your program in Debug configuration.

2. Fix all compiler errors.

3. Do not ignore compiler warnings!
Warnings usually point you to potential problems in your code;
try to fix all warnings.

4. Test your program for correctness.
If errors / crashes / wrong results occur  Debugging
If you have to modify your program, go back to 1.

5. Build your program in Release configuration.
(In the rare case of compiler errors or
warnings, fix them too.)

6. Test your program with respect to runtime (and correctness).

Programs built in Debug
configuration contain

additional information used
by the debugger.

Programs built in Release
configuration are highly

optimized for speed.

Carsten Gutwenger: Object-oriented Programming 4

Main Features of the Debugger

 Break execution
– when an error occurs

– on request (anytime during execution)

– at breakpoints

 Stepping through the code
– line by line

– step into function calls

– resume execution until the current function returns

– run to cursor (resume execution until the program
reaches the cursor location)

 Viewing Data
– show the value of variables

– evaluate (simple) expressions

– navigating through the program’s call stack

Carsten Gutwenger: Object-oriented Programming 5

How to: Start Debugging

1. Build your program in Debug configuration.

2. On the Debug menu, choose Start Debugging (or press F5).

The programs runs until

 you choose Stop Debugging (SHIFT+F5) on the Debug menu
 program is aborted

 you choose Break All on the Debug menu
 program just stops in debugger

 a breakpoint is reached
 program just stops in debugger

 a runtime error (exception) occurs
 a dialog box appears which allows you to jump into the debugger

 the program is finished

Carsten Gutwenger: Object-oriented Programming 6

In the Debugger…

When your program stops in the debugger, you can

 see the current line
being executed

 execute the program
step by step

 navigate through the
call stack

 display variables and
evaluate expressions

Carsten Gutwenger: Object-oriented Programming 7

Stepping through the Code

The Debug menu and toolbar provide the following commands:

 Step Into (F11)
– Executes the next line of code.

– If this line contains a function call, execution halts again at the
beginning of that function.

 Step Over (F10)
– Same as Step Into except for function calls (executes the entire

function, then stops at first line outside the function).

 Step Out (SHIFT+F11)
– Resumes execution until the current function returns.

– Breaks at the return point in the calling function.

Carsten Gutwenger: Object-oriented Programming 8

Stepping through the Code

The Debug menu and toolbar provide the following commands:

 Run To Cursor (CTRL+F10)
– resumes execution until a specified line is reached

– right-click a line and choose Run to Cursor; or
move the cursor to the line and press CTRL+F10

– if any breakpoint is hit before the line is reached, execution will stop at
the breakpoint

 Continue (F5)
– resumes execution

 Stop Debugging (SHIFT+F5)
– aborts program

Carsten Gutwenger: Object-oriented Programming 9

Breakpoints

 Breakpoints allow to stop execution, when a particular line of
code is reached.

 Conditional breakpoints
– based on an expression like: pTail == 0

(here pTail is a variable in the program)
execution is only stopped at the breakpoint if the condition evaluates to
true

– based on the current hit count (how many times the breakpoint was hit)
execution only stops when the current hit count

• equals a specified value

• is  a specified value

• is a multiple of a specified value

Carsten Gutwenger: Object-oriented Programming 10

How to: Set Breakpoints

 Set a breakpoint:
– click in the grey left column

– right-click on a line and choose
Breakpoint  Insert Breakpoint

– choose Toggle Breakpoint (F9) from the
Debug menu

 Delete a breakpoint:
– click on the breakpoint symbol

– right-click a breakpoint and choose Delete
from the shortcut menu

– choose Toggle Breakpoint (F9) from the Debug menu

 Delete all breakpoints:
– choose Delete All Breakpoints (CTRL+SHIFT+F9) from the Debug menu

Carsten Gutwenger: Object-oriented Programming 11

How to: Enable / Disable Breakpoints

 Sometimes, you just want to disable
breakpoints temporarily

 Disable a breakpoint:
– right-click a breakpoint and choose

Disable Breakpoint (CTRL+F9)
from the shortcut menu

 Enable a breakpoint:
– right-click a breakpoint and choose

Enable Breakpoint (CTRL+F9)
from the shortcut menu

 Enable or disable all breakpoints:
– Chose Enable (Disable) All Breakpoints from the Debug menu

Carsten Gutwenger: Object-oriented Programming 12

How to: Specify a Breakpoint Condition

 Right-click a breakpoint and choose Condition from the shortcut
menu.
– In the dialog box, enter a valid expression.

This expression may contain all variables visible at the breakpoint location.

– Choose Is true if you want to break if the conditions is satisfied, or Has
changed if you want to break when the condition has changed.

Carsten Gutwenger: Object-oriented Programming 13

How to: Specify a Hit Count

 Right-click a breakpoint and choose Hit Count from the shortcut
menu.
– In the dialog box, select the behavior from the When the breakpoint is hit list.

– Enter an integer value in the text box (only visible if not Break always is
selected)

Carsten Gutwenger: Object-oriented Programming 14

Viewing Data

Various features allow you to view data during debugging:

 DataTips
– tooltips that appear when you move the mouse pointer over a variable

– very powerful since Visual Studio 2010

 Variable Windows
– Autos Window

• shows variables used in the current and preceding line of code, as well as
return values of functions

– Locals Window

• shows variables local to the current context and scope

– Watch Window

• allows you to add variables and expressions you want to watch

 QuickWatch dialog box
– a dialog box that works similar as the Watch window

Carsten Gutwenger: Object-oriented Programming 15

How to: DataTips

 Displaying a DataTip
– move the mouse cursor over a variable

symbol in the current scope

– the DataTip disappears when you
remove the mouse pointer

– to pin the DataTip, click the Pin to source icon

 A pinned DataTip
– can be dragged around in the source window

– click the Unpin from source icon to make it float (then you can move it
over other windows, too)

– close a pinned DataTip by clicking the Close icon

 Close all DataTips
– Choose Clear All DataTips from the Debug menu

Carsten Gutwenger: Object-oriented Programming 16

How to: DataTips

 DataTips also allow you to
– expand variables (e.g. structures, pointers to structures)

(use the + sign before the variable name)

– edit the values of variables
(click on the value and type a new value)

– add expressions to pinned DataTips
(right-click on the DataTip and choose Add Expression from the
shortcut menu)

Carsten Gutwenger: Object-oriented Programming 17

Variable Windows: Autos

 Autos Window
– shows name, value, and

type for currently
interesting variables

– you can expand variables,
e.g. (pointers to) structures

– you can edit the values of
variables (double-click the
value)

– you can switch to another
stack frame by double-
clicking the corresponding
row in the call stack window

Carsten Gutwenger: Object-oriented Programming 18

Variable Windows: Watch

 Watch Window
– shows name, value, and

type for variables and
expressions

– you can add an expression
by clicking into the last row

– you can edit an expression
by double-clicking on it

– you can remove an
expression by selecting the
row and pressing DEL

– otherwise behaves similar
as the Autos window

