
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 10 • Winter 2011/12 • Dec 20

Carsten Gutwenger: Object-oriented Programming 2

Default Constructors

 A constructor without any parameters is called a default
constructor

 If you do not write any constructor, a default constructor is
created automatically:
– calls the default constructors of all base classes and data members

(If any base class or data member of custom type has no default
constructor, a default constructor cannot be generated!)

– leaves data members of built-in types (like int) uninitialized!

 Caution: If you implement any (other) constructor, no default
constructor will be generated automatically.

point::point() : x(0), y(0) { }

Carsten Gutwenger: Object-oriented Programming 3

Copy Constructors

 A constructor taking a const reference of its class as
parameter is called a copy constructor.

 Copy constructors are created automatically if you do not
provide one:
– call copy constructors of all data members of custom types

– copy the values of data members of built-in types

 Copy constructors are called in the following situations:
– initialize an object with an object

– pass an object using call-by-value

– return an object

point::point(const point &p)

 : x(p.x), y(p.y) { }

point p(q);

point r = t;

point f(point p){

 return 2*p;

}

r = f(q);

Carsten Gutwenger: Object-oriented Programming 4

Destructors

 A destructor is called whenever an object of a class is
destroyed (e.g. goes out of scope)

 Destructors are used to do some clean-up work like freeing
resources

 Destructors that do nothing are created by default
 Write your own destructor if you need to free resources

point::~point() { } // does nothing

Carsten Gutwenger: Object-oriented Programming 5

Assignment Operator

 The assignment operator is called whenever an object
is assigned to an object.

 Assignment operators are created automatically if you do not
provide one:
– calls the assignment operator for each data member

 If your class requires to write a copy constructor, it will require
to write an assignment operator as well.

point &point::operator=(const point &p) {

 x = p.x; y = p.y;

 return *this;

}

p = q;

Carsten Gutwenger: Object-oriented Programming 6

Memory Addresses

 All the values of variables are stored in the memory of the
computer

 Every location has a unique address (an integer value)

 int x = 10;

 double y = 2.1;

 int z = 15;

address value

…

10240 – 10243 10

10244 – 10251 2.1

10252 – 10255 15

…

Carsten Gutwenger: Object-oriented Programming 7

Pointers

 We can manipulate these addresses directly using pointers

 Pointers are frequently used in C, but not so much in C++,
since it is better to use references in many cases

 Pointers look similar as iterators, but they are not the same
– pointers are built-in types of C++

– iterators are part of the C++ standard library
(you can also define your own containers and iterators)

– iterators have been designed such that they look like pointers

Carsten Gutwenger: Object-oriented Programming 8

Notation for Pointers

 Address operator:
If var is a variable, then &var denotes its address in memory

 Dereference operator:
If addr is an address, then *addr denotes its content (the
value stored there)

 An address is frequently also called a pointer

 Pointers are typed
– the type denotes the type stored in memory at the address

– if T is the type stored, then T * is the corresponding pointer type

– e.g.: int *, char *

Carsten Gutwenger: Object-oriented Programming 9

Example (1)

int a = -1, b = 9;

int *p1, *p2; // undefined values

variable value

a -1

b 9

variable value

p1 ?

p2 ?

pointers int-variables

Carsten Gutwenger: Object-oriented Programming 10

Example (2)

int a = -1, b = 9;

int *p1, *p2; // undefined values

p1 = &a;

variable value

a -1

b 9

variable value

p1

p2 ?

pointers int-variables

Carsten Gutwenger: Object-oriented Programming 11

Example (3)

int a = -1, b = 9;

int *p1, *p2; // undefined values

p1 = &a;

*p1 = b;

variable value

a 9

b 9

variable value

p1

p2 ?

pointers int-variables

Carsten Gutwenger: Object-oriented Programming 12

Example (4)

int a = -1, b = 9;

int *p1, *p2; // undefined values

p1 = &a;

*p1 = b;

b = b * b;

p2 = &b;

variable value

a 9

b 81

variable value

p1

p2

pointers int-variables

Carsten Gutwenger: Object-oriented Programming 13

Example (5)

int a = -1, b = 9;

int *p1, *p2; // undefined values

p1 = &a;

*p1 = b;

b = b * b;

p2 = &b;

*p1 = *p2;

variable value

a 81

b 81

variable value

p1

p2

pointers int-variables

Carsten Gutwenger: Object-oriented Programming 14

0-Pointers

 You cannot assign arbitrary integer values to pointers

 But you can always assign 0 to any pointer:

 0 is never used as address of an object
 0 is used as a special value to mark an invalid pointer

int *ptr = 0;

Carsten Gutwenger: Object-oriented Programming 15

Address Operator and References

 Beware of the difference between

and

int a;

int &ref = a;

int a;

int *ptr = &a;

& means:
declare a reference type

& means:
take address of variable

Carsten Gutwenger: Object-oriented Programming 16

The -> Operator

 The -> operator can be used with pointers to structs/classes:

struct S {

 int a;

};

int main() {

 S s;

 S *ptr = &s;

 ptr->a = 10; // short-hand for: (*ptr).a = 10;

 return 0;

}

 The -> operator is simply a short-hand for dereferencing (*)
and selection (.)

– Compare iterators for maps!

Carsten Gutwenger: Object-oriented Programming 17

Polymorphism

 Given the following declaration

we may use an object of class D wherever a reference or a
pointer to an object of class B is expected.
 Polymorphism

 A D object is a (special) B object.

class D : public B { … };

void f(B &b) { … }

int main() {

 D d;

 f(d);

 …

}

Carsten Gutwenger: Object-oriented Programming 18

Polymorphism and Redefining

 Recall that we may redefine member functions of the base
class in the derived class.

 This is very useful, since derived classes are specialized
versions of the base class that might behave differently.

class B {

public:

 void id() { cout << "Hi, I'm B\n"; }

};

class D : public B {

public:

 void id() { cout << "Hi, I'm D\n"; }

};

Carsten Gutwenger: Object-oriented Programming 19

Redefining: Problem

 Unfortunately, d2.id() invokes the id()-method of B;
although d2 actually refers to d which is of type D.

– How can we make sure that always the id() method of the actual
object type is invoked?

int main() {

 B b;

 D d;

 b.id();

 d.id();

 B& b2 = b;

 B& d2 = d; // polymorphism

 b2.id(); // ok

 d2.id(); // not what we want...

 return 0;

}

Output:
Hi, I'm B

Hi, I'm D

Hi, I'm B

Hi, I'm B

Carsten Gutwenger: Object-oriented Programming 20

Virtual Member Functions

 If we want to change the behavior of a member function in a
derived class, we declare it as virtual:

class B {

public:

 virtual void id() { cout << "Hi, I'm B\n"; }

};

class D : public B {

public:

 void id() { cout << "Hi, I'm D\n"; }

};

Output:
Hi, I'm B

Hi, I'm D

Hi, I'm B

Hi, I'm D

 This enables the compiler to always choose the “right” version
of id(), even when accessed via a reference (or pointer) to a
B object.

Carsten Gutwenger: Object-oriented Programming 21

Virtual Member Functions

 Virtual member functions allow us
– to redefine the behavior of member functions in derived classes

and (at the same time)

– to collect objects of derived classes using references or pointers to
objects of the base class.

 We can treat objects of (different) derived classes in a
uniform way, even without knowing the derived class!

 Examples:
– ostream and its derived classes (ofstream, ostringstream) in

the C++ standard library

– draw.cpp (on the web page)

Carsten Gutwenger: Object-oriented Programming 22

Abstract Classes

 Suppose we want to write a simple drawing program
(for simplicity, we can only draw circles and squares)

 Class hierarchy:

Shape

Circle Square

 Thus, Shape serves as a common interface for drawing, and
Circle and Square shall implement this interface

 Observe that it makes no sense to draw a Shape itself

Carsten Gutwenger: Object-oriented Programming 23

Implementing Shape: First try

 We have declared the draw() method as virtual, since each
derived class has to provide its own implementation.

 Its implementation in Shape simply prints an error message

class Shape {

public:

 virtual void draw() {

 cout << "Error: Cannot draw a Shape!" << endl;

 }

};

Carsten Gutwenger: Object-oriented Programming 24

Pure Virtual Functions

 Problem:
We can still create objects of type Shape and call their draw()
method, even though this just prints an error message.

 Better solution:
Declare the draw() method of shape to be pure virtual:

class Shape {

public:

 virtual void draw() = 0;

};

 Trying to create an object of type Shape will now cause an
error at compile time

pure virtual function

Carsten Gutwenger: Object-oriented Programming 25

Abstract Classes

 A class containing pure virtual functions is called an abstract
class

 Abstract classes can only be used as base classes, like:

class Circle : public Shape {

 int radius;

public:

 void draw() {

 // ...

 }

 // ...

};

 Abstract classes allow us to define an interface to some
methods without giving any implementation

Carsten Gutwenger: Object-oriented Programming 26

Preparations for next week

 Static variables

 Global variables

 Static data members

 Dynamic memory allocation (new and delete)

