
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 10 • Winter 2011/12 • Dec 20

Carsten Gutwenger: Object-oriented Programming 2

Default Constructors

 A constructor without any parameters is called a default
constructor

 If you do not write any constructor, a default constructor is
created automatically:
– calls the default constructors of all base classes and data members

(If any base class or data member of custom type has no default
constructor, a default constructor cannot be generated!)

– leaves data members of built-in types (like int) uninitialized!

 Caution: If you implement any (other) constructor, no default
constructor will be generated automatically.

point::point() : x(0), y(0) { }

Carsten Gutwenger: Object-oriented Programming 3

Copy Constructors

 A constructor taking a const reference of its class as
parameter is called a copy constructor.

 Copy constructors are created automatically if you do not
provide one:
– call copy constructors of all data members of custom types

– copy the values of data members of built-in types

 Copy constructors are called in the following situations:
– initialize an object with an object

– pass an object using call-by-value

– return an object

point::point(const point &p)

 : x(p.x), y(p.y) { }

point p(q);

point r = t;

point f(point p){

 return 2*p;

}

r = f(q);

Carsten Gutwenger: Object-oriented Programming 4

Destructors

 A destructor is called whenever an object of a class is
destroyed (e.g. goes out of scope)

 Destructors are used to do some clean-up work like freeing
resources

 Destructors that do nothing are created by default
 Write your own destructor if you need to free resources

point::~point() { } // does nothing

Carsten Gutwenger: Object-oriented Programming 5

Assignment Operator

 The assignment operator is called whenever an object
is assigned to an object.

 Assignment operators are created automatically if you do not
provide one:
– calls the assignment operator for each data member

 If your class requires to write a copy constructor, it will require
to write an assignment operator as well.

point &point::operator=(const point &p) {

 x = p.x; y = p.y;

 return *this;

}

p = q;

Carsten Gutwenger: Object-oriented Programming 6

Memory Addresses

 All the values of variables are stored in the memory of the
computer

 Every location has a unique address (an integer value)

 int x = 10;

 double y = 2.1;

 int z = 15;

address value

…

10240 – 10243 10

10244 – 10251 2.1

10252 – 10255 15

…

Carsten Gutwenger: Object-oriented Programming 7

Pointers

 We can manipulate these addresses directly using pointers

 Pointers are frequently used in C, but not so much in C++,
since it is better to use references in many cases

 Pointers look similar as iterators, but they are not the same
– pointers are built-in types of C++

– iterators are part of the C++ standard library
(you can also define your own containers and iterators)

– iterators have been designed such that they look like pointers

Carsten Gutwenger: Object-oriented Programming 8

Notation for Pointers

 Address operator:
If var is a variable, then &var denotes its address in memory

 Dereference operator:
If addr is an address, then *addr denotes its content (the
value stored there)

 An address is frequently also called a pointer

 Pointers are typed
– the type denotes the type stored in memory at the address

– if T is the type stored, then T * is the corresponding pointer type

– e.g.: int *, char *

Carsten Gutwenger: Object-oriented Programming 9

Example (1)

int a = -1, b = 9;

int *p1, *p2; // undefined values

variable value

a -1

b 9

variable value

p1 ?

p2 ?

pointers int-variables

Carsten Gutwenger: Object-oriented Programming 10

Example (2)

int a = -1, b = 9;

int *p1, *p2; // undefined values

p1 = &a;

variable value

a -1

b 9

variable value

p1

p2 ?

pointers int-variables

Carsten Gutwenger: Object-oriented Programming 11

Example (3)

int a = -1, b = 9;

int *p1, *p2; // undefined values

p1 = &a;

*p1 = b;

variable value

a 9

b 9

variable value

p1

p2 ?

pointers int-variables

Carsten Gutwenger: Object-oriented Programming 12

Example (4)

int a = -1, b = 9;

int *p1, *p2; // undefined values

p1 = &a;

*p1 = b;

b = b * b;

p2 = &b;

variable value

a 9

b 81

variable value

p1

p2

pointers int-variables

Carsten Gutwenger: Object-oriented Programming 13

Example (5)

int a = -1, b = 9;

int *p1, *p2; // undefined values

p1 = &a;

*p1 = b;

b = b * b;

p2 = &b;

*p1 = *p2;

variable value

a 81

b 81

variable value

p1

p2

pointers int-variables

Carsten Gutwenger: Object-oriented Programming 14

0-Pointers

 You cannot assign arbitrary integer values to pointers

 But you can always assign 0 to any pointer:

 0 is never used as address of an object
 0 is used as a special value to mark an invalid pointer

int *ptr = 0;

Carsten Gutwenger: Object-oriented Programming 15

Address Operator and References

 Beware of the difference between

and

int a;

int &ref = a;

int a;

int *ptr = &a;

& means:
declare a reference type

& means:
take address of variable

Carsten Gutwenger: Object-oriented Programming 16

The -> Operator

 The -> operator can be used with pointers to structs/classes:

struct S {

 int a;

};

int main() {

 S s;

 S *ptr = &s;

 ptr->a = 10; // short-hand for: (*ptr).a = 10;

 return 0;

}

 The -> operator is simply a short-hand for dereferencing (*)
and selection (.)

– Compare iterators for maps!

Carsten Gutwenger: Object-oriented Programming 17

Polymorphism

 Given the following declaration

we may use an object of class D wherever a reference or a
pointer to an object of class B is expected.
 Polymorphism

 A D object is a (special) B object.

class D : public B { … };

void f(B &b) { … }

int main() {

 D d;

 f(d);

 …

}

Carsten Gutwenger: Object-oriented Programming 18

Polymorphism and Redefining

 Recall that we may redefine member functions of the base
class in the derived class.

 This is very useful, since derived classes are specialized
versions of the base class that might behave differently.

class B {

public:

 void id() { cout << "Hi, I'm B\n"; }

};

class D : public B {

public:

 void id() { cout << "Hi, I'm D\n"; }

};

Carsten Gutwenger: Object-oriented Programming 19

Redefining: Problem

 Unfortunately, d2.id() invokes the id()-method of B;
although d2 actually refers to d which is of type D.

– How can we make sure that always the id() method of the actual
object type is invoked?

int main() {

 B b;

 D d;

 b.id();

 d.id();

 B& b2 = b;

 B& d2 = d; // polymorphism

 b2.id(); // ok

 d2.id(); // not what we want...

 return 0;

}

Output:
Hi, I'm B

Hi, I'm D

Hi, I'm B

Hi, I'm B

Carsten Gutwenger: Object-oriented Programming 20

Virtual Member Functions

 If we want to change the behavior of a member function in a
derived class, we declare it as virtual:

class B {

public:

 virtual void id() { cout << "Hi, I'm B\n"; }

};

class D : public B {

public:

 void id() { cout << "Hi, I'm D\n"; }

};

Output:
Hi, I'm B

Hi, I'm D

Hi, I'm B

Hi, I'm D

 This enables the compiler to always choose the “right” version
of id(), even when accessed via a reference (or pointer) to a
B object.

Carsten Gutwenger: Object-oriented Programming 21

Virtual Member Functions

 Virtual member functions allow us
– to redefine the behavior of member functions in derived classes

and (at the same time)

– to collect objects of derived classes using references or pointers to
objects of the base class.

  We can treat objects of (different) derived classes in a
uniform way, even without knowing the derived class!

 Examples:
– ostream and its derived classes (ofstream, ostringstream) in

the C++ standard library

– draw.cpp (on the web page)

Carsten Gutwenger: Object-oriented Programming 22

Abstract Classes

 Suppose we want to write a simple drawing program
(for simplicity, we can only draw circles and squares)

 Class hierarchy:

Shape

Circle Square

 Thus, Shape serves as a common interface for drawing, and
Circle and Square shall implement this interface

 Observe that it makes no sense to draw a Shape itself

Carsten Gutwenger: Object-oriented Programming 23

Implementing Shape: First try

 We have declared the draw() method as virtual, since each
derived class has to provide its own implementation.

 Its implementation in Shape simply prints an error message

class Shape {

public:

 virtual void draw() {

 cout << "Error: Cannot draw a Shape!" << endl;

 }

};

Carsten Gutwenger: Object-oriented Programming 24

Pure Virtual Functions

 Problem:
We can still create objects of type Shape and call their draw()
method, even though this just prints an error message.

 Better solution:
Declare the draw() method of shape to be pure virtual:

class Shape {

public:

 virtual void draw() = 0;

};

 Trying to create an object of type Shape will now cause an
error at compile time

pure virtual function

Carsten Gutwenger: Object-oriented Programming 25

Abstract Classes

 A class containing pure virtual functions is called an abstract
class

 Abstract classes can only be used as base classes, like:

class Circle : public Shape {

 int radius;

public:

 void draw() {

 // ...

 }

 // ...

};

 Abstract classes allow us to define an interface to some
methods without giving any implementation

Carsten Gutwenger: Object-oriented Programming 26

Preparations for next week

 Static variables

 Global variables

 Static data members

 Dynamic memory allocation (new and delete)

