Object-oriented Programming

for Automation & Robotics

Carsten Gutwenger
LS 11 Algorithm Engineering

Lecture 8 ¢ Winter 2011/12 e Decb6

i
technische universitat ﬁ department of
dortmund computer science

Custom Types

= So far we have used built-in types (int, float, ...) and types
defined in the C++ standard library (std::string, std::vector)

= Now we define our own data types

= C++ allows us to define new data types that behave just like
built-in and std:: types

Carsten Gutwenger: Object-oriented Programming

Example: A data type for points

= We will implement a custom data type for representing points
on the screen

= Requirements:
— a point has an x- and y-coordinate, both shall be integers
— possible values for x-coordinates are O, ..., 1919
— possible values for y-coordinates are O, ..., 1079
— it shall be possible to add two points
— it shall be possible to scale a point by some floating point value
— it shall be possible to print points using the output operator
— it shall be possible to read points using the input operator in a
convenient way
= We will start with a basic implementation and add the
functionality step-by-step

Carsten Gutwenger: Object-oriented Programming 3

Data type for points: version 0.1

// represents one point on the screen

struct point <€ We define a new data
int x; type called point

<—_| We declare two data members.

int y; .
No memory is allocated yet!

};

int main ()

t We declare a variable p of type point.

point p; € : :
i Now memory (for two ints) is allocated.
p.x|= 2;
P.Y
cout << = (" K p.x <K '"," KK p.y << ")\n";
We access the data members of p.

return O;)

) Note the usage of the .-notation

Carsten Gutwenger: Object-oriented Programming

What about our requirements?

point q;
g.x = 3000; // this shouldn’t be possible
qg.y = -20; // and this shouldn’t be possible, as well

= Solution: Use member functions to ensure integrity of data

Carsten Gutwenger: Object-oriented Programming

Point 0.2: Adding a member function

struct point {

int x; 1int y;

void assign(int new _x, int new_y) {
if (0 <= new_x && new_x < 1920)

X = new Xxj;

We add a member function
assignto point.
i£(0 <= new_y && new_y < 1080) <« | DY Usingassign, wecan
y = new y; make sure that onIY valid
} coordinates are assigned

};

int main() {

point p; assign can only be applied to an object
p.assign(2, 45);<€ of type point, and not just on its own.
point q; Again, we have to use the . -notation.
g.assign (3000, 20);

cout << "g = (" <K g.x << ',' << q.y << ")\n";

return 0;

}

Carsten Gutwenger: Object-oriented Programming 6

Adding a Constructor

= Constructors are invoked when an object is created
— initializes the object

= They are special member functions:
— have the same name as their struct

— have no return type
= |f we don’t implement our own constructors, some

constructors are created automatically:

— Initializing the new object with an object of the same type by
memberwise initialization:
point p = q;

— Default constructor: Initializes each member to its default value:
point p;

Carsten Gutwenger: Object-oriented Programming

Adding a Constructor

= Constructors can be overloaded

= We can define different constructors for a struct, each with
different parameter types

= Constructors shall ensure that the instances (variables) of the
structure are in a proper state.

= We will add the following constructors to point:

— default constructor:

point() { } // initializes point to (0,0)
— // initializes point to (xc,yc)

point (int xc¢, int yc) { }

Carsten Gutwenger: Object-oriented Programming

Point 1.0: Overloaded Constructors

struct point {

int x;
int y;
point() : x(0), y(0){ }

point (int xc, int yc)

void truncate() {

if(x < 0) x =20;
if(x >= 1920) x 1919;
if(y < 0) y =0;
if(y >= 1080) y = 1079;

}
}; // end of struct point

: x(xc), y(yc)
truncate() ;

Initialize d

ata members

void assign(int new _x, int new_y)
X =

y=
truncate() ;

new Xxj;

new y;

Carsten Gutwenger: Object-oriented Programming 9

Using Point 1.0

int main()

{

point p; € Using our default constructor

cout << "p = (" <K p.x <K ", KK p.y << ")\n";

point q(50, 40); <€— Usingour own constructor
cout << "g = (" <K g.x << ',' << q.y << ")\n";

point r (2000, 78);
cout << "r = (" <K r.x << ',' <K r.y << ")\n";

return 0;

Carsten Gutwenger: Object-oriented Programming

10

The story so far...

= What we have done:
— We defined a data type (structure) for points

— Using constructors and the assign member function, we can make sure
that a point has only valid coordinates

= Not yet possible:
— Adding two points and scaling a point in a nice way
— Testing for equality in a nice way
— Printing and reading points in a convenient way

= Solution: Operator overloading!

Carsten Gutwenger: Object-oriented Programming 11

Operator Overloading

= C++ allows us to overload the various operators (like ==, <, +)
for new data types.

= However, you cannot redefine operators for built-in types
Would you like to have a new “version” for adding two integers? No you

wouldn’t!

= We overload an operator by writing a normal function (not a
member function) with the operator keyword
(e.g. operator==

= Example for the equality operator:

bool operator==(const point &p, const point &q)

{
return (p.x == g.X && p.y == q.VY);

Carsten Gutwenger: Object-oriented Programming 12

Adding overloaded operators for point

bool operator==(const point &p, const point &q) {
return (p.x == g.x && p.y == q.V)

bool operator!=(const point &p, const point &q) ({
return !(p == q);

point operator+ (const point &p, const point &q) ({
return point(p.x+qg.x, p.y+q.y),

point operator* (float s, const point &p) {
return point (
static cast<int>(s*p.x), static cast<int>(s*p.y)
) ;

Carsten Gutwenger: Object-oriented Programming 13

Using our oveloaded operators

int main()

{
point p (35, 5);
cout < '"'p = (" KK p.x <K< ',

point g = p + point (100, 50);
cout < '"g = (" <K g.x << ',

point r(3.8f * p);
cout < '"r = ("KLK r.x L ',

point s(-10.£f * p);
cout < "s = (" K s.x L ',"!

return 0;

<< p.y <<

<< q.y <<

<< r.y <<

<< s.y <<

n) \n" ;

n) \n" ;

n) \nn :

n) \nn :

Carsten Gutwenger: Object-oriented Programming

14

Overloading Output Operators

= Writing an overloaded output operator is usually easy.

= But: compatibility with the various formatting options of the
output stream can be a problem

" Solution: Use an std: :ostringstream, a string which
can be used as output stream.

#include <sstream>

ostream &operator<<(ostream &os, const point &p)

{

ostringstream oss;
oss << "(' <K p.x <K ',' KK p.y < ")';
os <L oss.str();

return os;

Carsten Gutwenger: Object-oriented Programming

15

Reading points from an input stream

= Reading points is slightly more complicated
— e.g. we also have to deal with malformed input

= General strategy for writing input operators
— Try to read input, if this is not possible set an error flag
— The following error flags are available
* goodbit: noerrors
* eofbit: end of file reached
e failbit: invalid input (or output)
* badbit: unrecoverable error

— We can set any of the error flags by calling the setstate member
function of an input (or output) stream

Carsten Gutwenger: Object-oriented Programming 16

Implementing the input operator

istream &operator>>(istream &is, point &p)
{
int x =0, y =0;
char opar = '\0', cpar = '\0', sep = '\0';

if (! (is >> opar >> x >> sep >> y >> cpar)
|| opar '= "(' || sep !'= '"," || cpar !'= ")")
is.setstate(istream: :failbit) ;

else

p.assign(x,y);

return 1is;

Carsten Gutwenger: Object-oriented Programming

17

Using Custom Types

= We can now use our point structure like any built-in type
= E.g.creating a vector of points: vector<point>

vector<point> pv;

// add something to vector pv
for(int 1 = 0; i < 10; ++1i)
pv.push back(point(2*i, 2*i+l));

// iterate over vector and print elements
for (vector<point>::iterator it = pv.begin(); it != pv.end(); ++it)
cout << *it << endl;

When using iterators, the —=> operator is useful:
— eg.it->x

10; // is a short-hand for (*it).x = 10;

Carsten Gutwenger: Object-oriented Programming 18

Preparations for next week

= Access control:
— publicand private
— the const modifier for member functions

= |nheritance:
— classes and derived classes

Carsten Gutwenger: Object-oriented Programming

19

