
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 6 • Winter 2011/12 • Nov 22

Carsten Gutwenger: Object-oriented Programming 2

Functions

 Functions group commonly used code into a unit which can
be reused.

 Functions
– are used to organize programs into smaller, independent units
 makes program easier to understand

– encapsulate algorithms that apply to a specific set of data
 allows easy (and flexible) reuse of code

 We have already implemented and used functions!
– We always implement the main() function in a program.

– We used the std::sort() function for sorting a container

 excellent example for a flexible algorithm

– std::getline() is also a function

Carsten Gutwenger: Object-oriented Programming 3

A Function

 We must specify:
– a return type: double

– a name for the function: power

– a list of parameters with their types:
double base, unsigned int exponent

– a block of code, the body of the function

 Inside the body, we have to return a value using return

// power(a,b) computes a to the power of b

double power(double base, unsigned int exponent)

{

 double p = 1.0;

 for(unsigned int i = 0; i < exponent; ++i)

 p *= base;

 return p;

}

return type name

parameters

body

return a value

Carsten Gutwenger: Object-oriented Programming 4

Using our power function
double power(double base, unsigned int exponent)

{

 double p = 1.0;

 for(unsigned int i = 0; i < exponent; ++i)

 p *= base;

 return p;

}

int main()

{

 for(double i = 1.0; i < 8.0; ++i) {

 for(unsigned int j = 0; j < 5; ++j)

 cout << setw(8) << power(i,j);

 cout << endl;

 }

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 5

Output of the program

 1 1 1 1 1

 1 2 4 8 16

 1 3 9 27 81

 1 4 16 64 256

 1 5 25 125 625

 1 6 36 216 1296

 1 7 49 343 2401

Carsten Gutwenger: Object-oriented Programming 6

Invoking (Calling) a Function

 We call a function as follows:

 The following happens:
– The arguments in the function call (here: 2 and 4) are evaluated

(trivial in this case, but could also be arbitrary expressions)

– The values of the function’s parameters are set to the corresponding
arguments:

• power’s base is set to 2.0

• power’s exponent is set to 4

– The body of the function is executed

– The function returns once a return statement is executed

– The value returned by the function is the value of the expression after
return

 double number = power(2.0, 4);

Carsten Gutwenger: Object-oriented Programming 7

Example: Nested function calls
int inc(int a) {

 return ++a;

}

int add(int a, int b) {

 return a + b;

}

int triple(int a) {

 return 3 * a;

}

int main() {

 int a = 4, b = 2;

 cout << add(triple(a), inc(b)) << endl;

 return 0;

}

The program returns:

15

It computes:

 (3*4) + (2+1)

has no effect on a or b
in the main function!

Carsten Gutwenger: Object-oriented Programming 8

Flow of Control
#include <iostream>

using namespace std;

void print_2_3_4(int value, int number)

{

 cout << "\n" << value <<

 " " << value;

 if(number <= 2)

 return;

 cout << " " << value;

 if(number <= 3)

 return;

 cout << " " << value;

}

int main()

{

 int a = 2;

 print_2_3_4(0, a);

 print_2_3_4(2, ++a);

 ++a;

 // NEVER do something

 // like this!

 print_2_3_4(++a, a++);

 cout << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 9

Flow of Control Explained

 A function without return type can be declared as void
– In this case we can use return without a value

– If a function is declared as void, we can also omit the return
statement
 The function returns when we reach the end of the function body

 The execution of a function stops immediately when we hit a
return statement

 There may be any number of return statements within a
function body

 A function can also have an empty parameter list:

int doSomething() { … }

Carsten Gutwenger: Object-oriented Programming 10

Flow of Control Explained

 When a function is called, its arguments are evaluated first,
then the function is executed

 You can rely on the fact that all arguments will be evaluated
before the execution of the function begins.

 You cannot rely on the order in which the arguments are
evaluated!

 Do not write code like this:

 It is unspecified what happens!

 // NEVER do something

 // like this!

 print_2_3_4(++a, a++);

Carsten Gutwenger: Object-oriented Programming 11

Declaration of Functions

 Like variables, functions must be declared before they can be
used:
– Either by writing the code of the whole function;

– or by just giving its prototype, e.g.

– in the latter case, you must write the whole function somewhere, e.g.
in a different source file

int power(double base, unsigned int exponent);

Carsten Gutwenger: Object-oriented Programming 12

Call by Value

 Functions work on the values of their arguments (call by value)

 Possible disadvantages:
– The values are copied to the parameter variables, this might be costly

– Modifications on the parameter variables are lost once the function call
returns

 The following example does not work as expected:

void swap(int a, int b)

{

 int tmp = a;

 a = b;

 b = tmp;

}

int main() {

 int c = 4, d = 7;

 cout << c << " " << d << endl;

 swap(c,d);

 cout << c << " " << d << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 13

References

 To solve this problem, we can use references

 A reference is just a new name or alias for a variable

 By using references, we can have multiple “variable names”
for the same memory location.

 References are declared as follows:

Here, b becomes a new name for the location of variable a.

 The following code sequence will print 8:

 References are in particular useful for function parameters!

 int a = 7;

 int &b = a;

 b = 8;

 cout << a;

Carsten Gutwenger: Object-oriented Programming 14

Call by Reference

 Let’s use reference parameters for swap:

 Now our program works as expected and exchanges the values
of c and d.

void swap(int &a, int &b)

{

 int tmp = a;

 a = b;

 b = tmp;

}

int main() {

 int c = 4, d = 7;

 cout << c << " " << d << endl;

 swap(c,d);

 cout << c << " " << d << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 15

Example: Passing a vector to a function

 Reference parameters are useful to avoid unnecessary
copying of data

 Example: We want to print a vector

// call-by-value variant

void print_vector_cbv(vector<int> v)

{

 cout << "{";

 vector<int>::iterator it;

 for(it = v.begin(); it != v.end(); ++it)

 cout << " " << *it;

 cout << " }" << endl;

}

Call-by-Value

The whole vector
must be copied!

Carsten Gutwenger: Object-oriented Programming 16

Example: Passing a vector to a function

 Reference parameters are useful to avoid unnecessary
copying of data

 Example: We want to print a vector

// call-by-reference variant

void print_vector_cbv(vector<int> &v)

{

 cout << "{";

 vector<int>::iterator it;

 for(it = v.begin(); it != v.end(); ++it)

 cout << " " << *it;

 cout << " }" << endl;

}

Call-by-Reference

No copy required

Carsten Gutwenger: Object-oriented Programming 17

Const References

 Sometimes we want to explicitly express that a reference
parameter is not changed (we just want to avoid copying)

 Use a const reference!

// call-by-const-reference variant

void print_vector_cbv(const vector<int> &v)

{

 cout << "{";

 vector<int>::const_iterator it;

 for(it = v.begin(); it != v.end(); ++it)

 cout << " " << *it;

 cout << " }" << endl;

}

Call-by-
Const-Reference

No copy required

We have to use a
const_iterator!

Carsten Gutwenger: Object-oriented Programming 18

The Conditional Operator

 The conditional operator is a convenient notational
alternative to simple if-else statements

 Example:
– Instead of writing:

– We can write:

 The general form is

– If condition evaluates to true expr1 is evaluated and returned

– Otherwise expr2 is evaluated and returned

 if (x > 0) a = b else a = c+1;

 a = (x > 0) ? b : c+1;

 condition ? expr1 : expr2

Carsten Gutwenger: Object-oriented Programming 19

The switch statement
 char c; cin.get(c);

 while(c != 'x')

 {

 switch(c)

 {

 case 'a':

 ++count_a; break;

 case 'e':

 ++count_e; break;

 case 'i':

 ++count_i; break;

 default:

 ++count_other;

 }

 cin.get(c);

 }

 switch(expression)

– evaluates expression and jumps to
the corresponding case

– expression must be integral

 case constant:

– constant must be a constant

– execution continues until a break
statement occurs

– no break statement: next case will
also be executed, but not default

 default:

– this (optional) case is executed if none
of the above cases applies

Carsten Gutwenger: Object-oriented Programming 20

Preparations for next week

 Overloading functions

 Comma operator

