
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 6 • Winter 2011/12 • Nov 22

Carsten Gutwenger: Object-oriented Programming 2

Functions

 Functions group commonly used code into a unit which can
be reused.

 Functions
– are used to organize programs into smaller, independent units
 makes program easier to understand

– encapsulate algorithms that apply to a specific set of data
 allows easy (and flexible) reuse of code

 We have already implemented and used functions!
– We always implement the main() function in a program.

– We used the std::sort() function for sorting a container

 excellent example for a flexible algorithm

– std::getline() is also a function

Carsten Gutwenger: Object-oriented Programming 3

A Function

 We must specify:
– a return type: double

– a name for the function: power

– a list of parameters with their types:
double base, unsigned int exponent

– a block of code, the body of the function

 Inside the body, we have to return a value using return

// power(a,b) computes a to the power of b

double power(double base, unsigned int exponent)

{

 double p = 1.0;

 for(unsigned int i = 0; i < exponent; ++i)

 p *= base;

 return p;

}

return type name

parameters

body

return a value

Carsten Gutwenger: Object-oriented Programming 4

Using our power function
double power(double base, unsigned int exponent)

{

 double p = 1.0;

 for(unsigned int i = 0; i < exponent; ++i)

 p *= base;

 return p;

}

int main()

{

 for(double i = 1.0; i < 8.0; ++i) {

 for(unsigned int j = 0; j < 5; ++j)

 cout << setw(8) << power(i,j);

 cout << endl;

 }

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 5

Output of the program

 1 1 1 1 1

 1 2 4 8 16

 1 3 9 27 81

 1 4 16 64 256

 1 5 25 125 625

 1 6 36 216 1296

 1 7 49 343 2401

Carsten Gutwenger: Object-oriented Programming 6

Invoking (Calling) a Function

 We call a function as follows:

 The following happens:
– The arguments in the function call (here: 2 and 4) are evaluated

(trivial in this case, but could also be arbitrary expressions)

– The values of the function’s parameters are set to the corresponding
arguments:

• power’s base is set to 2.0

• power’s exponent is set to 4

– The body of the function is executed

– The function returns once a return statement is executed

– The value returned by the function is the value of the expression after
return

 double number = power(2.0, 4);

Carsten Gutwenger: Object-oriented Programming 7

Example: Nested function calls
int inc(int a) {

 return ++a;

}

int add(int a, int b) {

 return a + b;

}

int triple(int a) {

 return 3 * a;

}

int main() {

 int a = 4, b = 2;

 cout << add(triple(a), inc(b)) << endl;

 return 0;

}

The program returns:

15

It computes:

 (3*4) + (2+1)

has no effect on a or b
in the main function!

Carsten Gutwenger: Object-oriented Programming 8

Flow of Control
#include <iostream>

using namespace std;

void print_2_3_4(int value, int number)

{

 cout << "\n" << value <<

 " " << value;

 if(number <= 2)

 return;

 cout << " " << value;

 if(number <= 3)

 return;

 cout << " " << value;

}

int main()

{

 int a = 2;

 print_2_3_4(0, a);

 print_2_3_4(2, ++a);

 ++a;

 // NEVER do something

 // like this!

 print_2_3_4(++a, a++);

 cout << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 9

Flow of Control Explained

 A function without return type can be declared as void
– In this case we can use return without a value

– If a function is declared as void, we can also omit the return
statement
 The function returns when we reach the end of the function body

 The execution of a function stops immediately when we hit a
return statement

 There may be any number of return statements within a
function body

 A function can also have an empty parameter list:

int doSomething() { … }

Carsten Gutwenger: Object-oriented Programming 10

Flow of Control Explained

 When a function is called, its arguments are evaluated first,
then the function is executed

 You can rely on the fact that all arguments will be evaluated
before the execution of the function begins.

 You cannot rely on the order in which the arguments are
evaluated!

 Do not write code like this:

 It is unspecified what happens!

 // NEVER do something

 // like this!

 print_2_3_4(++a, a++);

Carsten Gutwenger: Object-oriented Programming 11

Declaration of Functions

 Like variables, functions must be declared before they can be
used:
– Either by writing the code of the whole function;

– or by just giving its prototype, e.g.

– in the latter case, you must write the whole function somewhere, e.g.
in a different source file

int power(double base, unsigned int exponent);

Carsten Gutwenger: Object-oriented Programming 12

Call by Value

 Functions work on the values of their arguments (call by value)

 Possible disadvantages:
– The values are copied to the parameter variables, this might be costly

– Modifications on the parameter variables are lost once the function call
returns

 The following example does not work as expected:

void swap(int a, int b)

{

 int tmp = a;

 a = b;

 b = tmp;

}

int main() {

 int c = 4, d = 7;

 cout << c << " " << d << endl;

 swap(c,d);

 cout << c << " " << d << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 13

References

 To solve this problem, we can use references

 A reference is just a new name or alias for a variable

 By using references, we can have multiple “variable names”
for the same memory location.

 References are declared as follows:

Here, b becomes a new name for the location of variable a.

 The following code sequence will print 8:

 References are in particular useful for function parameters!

 int a = 7;

 int &b = a;

 b = 8;

 cout << a;

Carsten Gutwenger: Object-oriented Programming 14

Call by Reference

 Let’s use reference parameters for swap:

 Now our program works as expected and exchanges the values
of c and d.

void swap(int &a, int &b)

{

 int tmp = a;

 a = b;

 b = tmp;

}

int main() {

 int c = 4, d = 7;

 cout << c << " " << d << endl;

 swap(c,d);

 cout << c << " " << d << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 15

Example: Passing a vector to a function

 Reference parameters are useful to avoid unnecessary
copying of data

 Example: We want to print a vector

// call-by-value variant

void print_vector_cbv(vector<int> v)

{

 cout << "{";

 vector<int>::iterator it;

 for(it = v.begin(); it != v.end(); ++it)

 cout << " " << *it;

 cout << " }" << endl;

}

Call-by-Value

The whole vector
must be copied!

Carsten Gutwenger: Object-oriented Programming 16

Example: Passing a vector to a function

 Reference parameters are useful to avoid unnecessary
copying of data

 Example: We want to print a vector

// call-by-reference variant

void print_vector_cbv(vector<int> &v)

{

 cout << "{";

 vector<int>::iterator it;

 for(it = v.begin(); it != v.end(); ++it)

 cout << " " << *it;

 cout << " }" << endl;

}

Call-by-Reference

No copy required

Carsten Gutwenger: Object-oriented Programming 17

Const References

 Sometimes we want to explicitly express that a reference
parameter is not changed (we just want to avoid copying)

 Use a const reference!

// call-by-const-reference variant

void print_vector_cbv(const vector<int> &v)

{

 cout << "{";

 vector<int>::const_iterator it;

 for(it = v.begin(); it != v.end(); ++it)

 cout << " " << *it;

 cout << " }" << endl;

}

Call-by-
Const-Reference

No copy required

We have to use a
const_iterator!

Carsten Gutwenger: Object-oriented Programming 18

The Conditional Operator

 The conditional operator is a convenient notational
alternative to simple if-else statements

 Example:
– Instead of writing:

– We can write:

 The general form is

– If condition evaluates to true expr1 is evaluated and returned

– Otherwise expr2 is evaluated and returned

 if (x > 0) a = b else a = c+1;

 a = (x > 0) ? b : c+1;

 condition ? expr1 : expr2

Carsten Gutwenger: Object-oriented Programming 19

The switch statement
 char c; cin.get(c);

 while(c != 'x')

 {

 switch(c)

 {

 case 'a':

 ++count_a; break;

 case 'e':

 ++count_e; break;

 case 'i':

 ++count_i; break;

 default:

 ++count_other;

 }

 cin.get(c);

 }

 switch(expression)

– evaluates expression and jumps to
the corresponding case

– expression must be integral

 case constant:

– constant must be a constant

– execution continues until a break
statement occurs

– no break statement: next case will
also be executed, but not default

 default:

– this (optional) case is executed if none
of the above cases applies

Carsten Gutwenger: Object-oriented Programming 20

Preparations for next week

 Overloading functions

 Comma operator

