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Considered Optimization Algorithms

“Two-stage algorithms”:
Here: meta-heuristics of two alternating components

Local
Phase

Global
Phase
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Historic Example

Multi-level single linkage (MLSL)

I Contains uniform sampling and clustering in global phase
I Solid theoretical foundation
I Reportedly bad performance in high dimensions
⇒ Disregarded MLSL

I But: low-discrepancy point sets can improve performance
(Ali and Storey 1994; Kucherenko and Sytsko 2005)
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Question

What about low-discrepancy points causes the improvement?

I High uniformity?
I Uniform coverage of the whole space
I Reasoning: Lack of knowledge about optima positions
I (How to measure?)

I High uniformity of low-dimensional projections?
I Reasoning: Better exploitation of a lower effective dimension

I Sequentiality?
I Ability of quasirandom sequences to continue with

high uniformity
I Reasoning: Subsequent iterations of the two-stage method

may augment the previous point samples
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Covering Radius (= Dispersion = Minimax Distance Crit.)
I Points P = {x1, . . . , xN} ⊂ X = [0, 1]n

I Distances d(x, x i )
I Distance to nearest neighbor dnn(x,P)
I dN(P,X ) = sup

x∈X

{
min

1≤i≤N
{d(x, x i )}

}
= sup

x∈X
{dnn(x,P)}

Example:

Figure : from https://spacefillingdesigns.nl
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Worst-case Bound

Theorem (Niederreiter 1992)
If (X , d) is a bounded metric space then, for any point set P of N
points in X with covering radius dN = dN(P,X ), we have

f̂ ∗ − f (x∗) ≤ ω(f , dN) ,

where
ω(f , t) = sup

x i ,x j∈X
d(x i ,x j )≤t

{|f (x i )− f (x j)|}

is, for t ≥ 0, the modulus of continuity of f .

Observation:
∀x ∈ X : |f (x)− f (nn(x,P))| ≤ ω(f , dnn(x,P)) ≤ ω(f , dN(P,X ))
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Multi-local Optimization

My original objective:

Approximate positions of all local
optima of f !

N = 75 points
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Ideas for Performance Measurement:

I Measure distances between optima and approximation set
I In search space or objective space
I Aggregate them, e. g., mean distance between optima O and

nearest neighbors in approximation set P
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Upper Bounds for Some Performance Measures
Peak distance

I PD(P) := 1
ν

∑ν
i=1 dnn(x∗i ,P)

I PD(P) ≤ dN(P,O) ≤ dN(P,X )

Peak inaccuracy
I PI(P) := 1

ν

∑ν
i=1 |f (x∗i )− f (nn(x∗i ,P))|

I PI(P) ≤ ω(f , dN(P,O)) ≤ ω(f , dN(P,X ))

Averaged Hausdorff distance
I AHD(P) :=

max
{(

1
ν

∑ν
i=1 dnn(x∗i ,P)p

)1/p
,
(

1
N
∑N

i=1 dnn(x i ,O)p
)1/p

}
I AHD(P) ≤ max {dN(P,O), dν(O,P)} ≤

max {dN(P,X ), dν(O,X )}
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Some Quotes

“Unfortunately, minimax distance designs are difficult to
generate and so are not widely used.”

(Santner, Williams, and Notz 2003, p. 149)

“If Q = r(d) is a correlation function and r is a
decreasing function, a maximin distance design S◦◦ of
lowest index is asymptotically D-optimum for %k as
k →∞.
[...], D-optimum designs are more readily obtained
(advantage) and have the property (disadvantage?) that
sites tend to lie toward or on boundaries.”

(Johnson, Moore, and Ylvisaker 1990)

Improved Sampling for Two-stage Methods 9 / 23



Developing a New Summary Characteristic

Proposition
The distance between a point x ∈ X and the nearest neighbor on
the boundary B = {x ∈ X | ∃i ∈ {1, . . . , n} : xi = ui ∨ xi = `i} is
under every Lp norm

dnn(x,B) = min
1≤i≤n

{
min{xi − `i , ui − xi}

}
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Expected Distance to the Boundary
Proposition
The expected distance between a random uniform point X in
[0, 1]n and the boundary B is

δn := E(dnn(X ,B)) =
1

2(1 + n)
.

Proof.

I Expected distance to the lower bounds =
1st-order statistic X(1) of sample X1, . . . ,Xn from U(0, 1).

I X(1) belongs to Beta(1, n) distribution with mean 1/(1 + n).
I 0 ≤ Yi = min{Xi − `i , ui − Xi} = min{Xi , 1− Xi} ≤ 0.5
I E(Y(1)) = E(0.5 · X(1)) = 0.5 · E(X(1)) = 0.5 · 1/(1 + n)
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New Summary Characteristic

Mean distance to the boundary B of a hypercube

I Expected value δn := E(dnn(X ,B)) = 1
2(1+n)

I Compare with Monte Carlo estimate d̄B = 1
N
∑N

i=1 dnn(x i ,B)

⇒ Can indicate deviation from uniform distribution
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Further Observations
I Known optimal solutions under L∞-norm:

I for maximin distance: conventional grid
I for covering radius: Sukharev grid

Examples with 121 points:
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Hypothesis

I d̄B and covering radius of a uniform point set are related

n = 2
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⇒ Try to use this to generate low-covering radius point sets
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Maximin Reconstruction Algorithm (MmR)
I Basic principle: maximization of minimal distance
I Complement with correction methods for edge effects

I Torus → periodic edge correction (PEC)
I Mirroring → reflection edge correction (REC)

⇒ d̄B is adjustable
I Optional: consider a set of existing points

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) p = 0.5
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) p = 2
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) +PEC, +REC, p = 2

Improved Sampling for Two-stage Methods 15 / 23



MmR Variants in Comparison
n = 5
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Incorporation into Optimization
Restarted Local Search (RLS)

1. Determine a starting point
2. Execute local search with this starting point
3. Go to 1.

Local
Phase

Global
Phase

New: starting points and/or found optima are saved in an archive
and considered by MmR in following iterations
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Influence of Archive
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RLS Variants with Different Sampling Algorithms

Figure : PR at different sampling algos (with S ∪ Ô or S in archive).
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Clustering-based Algorithms

Procedure:

1. Sample 50n starting point-candidates
2. Select a variable number of starting points

(via nearest-better clustering, Preuss 2015)
3. Execute local search with every starting point
4. Go to 1.

(using archives as before)
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Influence of Archive on Clustering-based Algos
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Conclusion

I Sampling with MmR and archive including starting points
yields significant improvement

I The higher n, the higher ν, and the lower Nf , the better is
RLS in comparison to CM

⇒ Do not aggregate results over different n and Nf !

Used these results to submit an algorithm to the Black-box
optimization competition (BBComp, at CEC 2015)

Procedure:
1. One L-BFGS-B run from the centroid of the search space
2. Then two-stage algorithm:

I If n ≤ 5: restarted Nelder-Mead
I If 8 ≤ n ≤ 20: clustering-based with CMA-ES
I If n > 20: restarted CMA-ES
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Results BBComp (CEC 2015)
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Rank Distributions BBComp (CEC 2015)
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Test Problems
Multiple-peaks model 2 (MPM2)
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f (x) = 1−max{g(x,p) | p ∈ P}

g(x,p) =
hp

1 + md(x,p)sp

rp

md(x,p) =
√

(x − p)>Σ−1
p (x − p)
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Experimental Setup RLS

Factor Type Symbol Level

Problem topology non-observable {random, funnel}
# local optima non-observable ν {5, 20, 100, 500}
# variables observable n {2, 3, 5, 10, 20, 40}
Budget observable Nf {103n, 104n}
Global algorithm control {SRS, MmR}
Archive control A {S, Ô,S ∪ Ô}
Local search control {Nelder-Mead,

L-BFGS-B, CMA-ES}

I Full-factorial design
I 50 replications per configuration
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Comparison CM/RLS (Nf = 103n)
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Edge Correction
I Distance criterion d(x) = dnn(x,Q), Q = P ∪ A
I PEC: dto(x, y) = (

∑n
i=1 min{|xi − yi |, ui − `i − |xi − yi |}p)1/p

I REC: d(x) = min{dnn(x,Q), 2dnn(x,B) · p
√
n}

(Hypothetical diagonal mirroring)
I The smaller p, the smaller the distance between x and the

next corner in relation to dnn(x,B)
I The larger the distance to the mirrored point, the weaker is

selection pressure at the boundary
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Figure : REC examples with p = 1, 2, ∞

Improved Sampling for Two-stage Methods 31 / 23



Pseudocode of MmR
Input: initial points P = {x1, . . . , xN}, distance criterion d(·)
Output: uniformly distributed points
1: A← {1, . . . , N} // indices of candidates for replacement
2: i ← random element of A // choose arbitrary candidate
3: A← A \ {i} // remove used index
4: repeat
5: y ← random point in X // sample potential substitute
6: if d(y) ≥ d(x i) then // if improvement found
7: x i ← y // replace the point in P
8: A← {1, . . . , N} \ {i} // dists have changed, reset available indices
9: else if A 6= ∅ then // try to find point that is easier to replace

10: i ′ ← random element of A
11: A← A \ {i ′}
12: if d(x i′) ≤ d(x i) then // if x i′ is easier to replace
13: i ← i ′ // use it as new candidate for replacement
14: end if
15: end if
16: until termination
17: return P
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