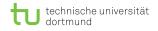
Improved Sampling for Two-stage Methods

Simon Wessing

Chair of Algorithm Engineering Computer Science Department Technische Universität Dortmund

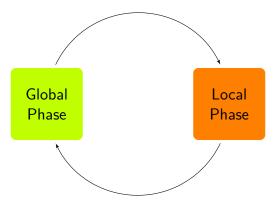
8 August 2016



Considered Optimization Algorithms

"Two-stage algorithms":

Here: meta-heuristics of two alternating components



(ㅁ) (曰) (曰) (曰)

Historic Example

Multi-level single linkage (MLSL)

- Contains uniform sampling and clustering in global phase
- Solid theoretical foundation
- Reportedly bad performance in high dimensions
- \Rightarrow Disregarded MLSL
 - But: low-discrepancy point sets can improve performance (Ali and Storey 1994; Kucherenko and Sytsko 2005)

《曰》《曰》《曰》 종리

Question

What about low-discrepancy points causes the improvement?

- ► High uniformity?
 - Uniform coverage of the whole space
 - Reasoning: Lack of knowledge about optima positions
 - (How to measure?)
- High uniformity of low-dimensional projections?
 - ▶ Reasoning: Better exploitation of a lower effective dimension
- Sequentiality?
 - Ability of quasirandom sequences to continue with high uniformity
 - Reasoning: Subsequent iterations of the two-stage method may augment the previous point samples

Covering Radius (= Dispersion = Minimax Distance Crit.)

- Points $\mathcal{P} = \{ \boldsymbol{x}_1, \dots, \boldsymbol{x}_N \} \subset \mathcal{X} = [0, 1]^n$
- Distances d(x, x_i)
- Distance to nearest neighbor $d_{nn}(\mathbf{x}, \mathcal{P})$

$$d_N(\mathcal{P},\mathcal{X}) = \sup_{\mathbf{x}\in\mathcal{X}} \left\{ \min_{1\leq i\leq N} \{ d(\mathbf{x},\mathbf{x}_i) \} \right\} = \sup_{\mathbf{x}\in\mathcal{X}} \{ d_{nn}(\mathbf{x},\mathcal{P}) \}$$

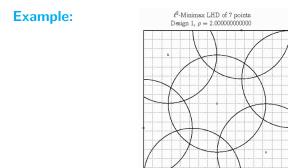


Figure : from https://spacefillingdesigns.nl

Improved Sampling for Two-stage Methods

Worst-case Bound

Theorem (Niederreiter 1992)

If (\mathcal{X}, d) is a bounded metric space then, for any point set \mathcal{P} of N points in \mathcal{X} with covering radius $d_N = d_N(\mathcal{P}, \mathcal{X})$, we have

$$\hat{f}^* - f(\boldsymbol{x}^*) \leq \omega(f, d_N) ,$$

where

$$\omega(f, t) = \sup_{\substack{\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X} \\ d(\mathbf{x}_i, \mathbf{x}_i) \le t}} \{ |f(\mathbf{x}_i) - f(\mathbf{x}_j)| \}$$

is, for $t \ge 0$, the modulus of continuity of f.

Observation: $\forall \mathbf{x} \in \mathcal{X} : |f(\mathbf{x}) - f(\operatorname{nn}(\mathbf{x}, \mathcal{P}))| \le \omega(f, d_{\operatorname{nn}}(\mathbf{x}, \mathcal{P})) \le \omega(f, d_{\mathcal{N}}(\mathcal{P}, \mathcal{X}))$

Improved Sampling for Two-stage Methods

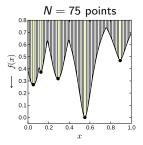
《曰》《曰》《曰》 [1] [1]

6 / 23

Multi-local Optimization

My original objective:

Approximate positions of all local optima of *f* !



Ideas for Performance Measurement:

- Measure distances between optima and approximation set
- In search space or objective space
- ► Aggregate them, e.g., mean distance between optima O and nearest neighbors in approximation set P

< 미 > < 圖 > < 문 > 문(日)

Upper Bounds for Some Performance Measures

Peak distance

- $\blacktriangleright \mathsf{PD}(\mathcal{P}) := \frac{1}{\nu} \sum_{i=1}^{\nu} d_{\mathsf{nn}}(\boldsymbol{x}_i^*, \mathcal{P})$
- ▶ $\mathsf{PD}(\mathcal{P}) \leq d_N(\mathcal{P}, \mathcal{O}) \leq d_N(\mathcal{P}, \mathcal{X})$

Peak inaccuracy

- $\blacktriangleright \mathsf{PI}(\mathcal{P}) := \frac{1}{\nu} \sum_{i=1}^{\nu} |f(\mathbf{x}_i^*) f(\mathsf{nn}(\mathbf{x}_i^*, \mathcal{P}))|$
- ► $\mathsf{PI}(\mathcal{P}) \leq \omega(f, d_N(\mathcal{P}, \mathcal{O})) \leq \omega(f, d_N(\mathcal{P}, \mathcal{X}))$

Averaged Hausdorff distance

$$\mathsf{AHD}(\mathcal{P}) := \max\left\{ \left(\frac{1}{\nu} \sum_{i=1}^{\nu} d_{\mathsf{nn}}(\mathbf{x}_{i}^{*}, \mathcal{P})^{p} \right)^{1/p}, \left(\frac{1}{N} \sum_{i=1}^{N} d_{\mathsf{nn}}(\mathbf{x}_{i}, \mathcal{O})^{p} \right)^{1/p} \right\}$$

► AHD(\mathcal{P}) ≤ max { $d_N(\mathcal{P}, \mathcal{O}), d_\nu(\mathcal{O}, \mathcal{P})$ } ≤ max { $d_N(\mathcal{P}, \mathcal{X}), d_\nu(\mathcal{O}, \mathcal{X})$ }

Some Quotes

"Unfortunately, minimax distance designs are difficult to generate and so are not widely used."

(Santner, Williams, and Notz 2003, p. 149)

"If Q = r(d) is a correlation function and r is a decreasing function, a maximin distance design $S^{\circ\circ}$ of lowest index is asymptotically D-optimum for ϱ^k as $k \to \infty$.

[...], D-optimum designs are more readily obtained (advantage) and have the property (disadvantage?) that sites tend to lie toward or on boundaries."

(Johnson, Moore, and Ylvisaker 1990)

Developing a New Summary Characteristic

Proposition

The distance between a point $\mathbf{x} \in \mathcal{X}$ and the nearest neighbor on the boundary $\mathcal{B} = \{\mathbf{x} \in \mathcal{X} \mid \exists i \in \{1, ..., n\} : x_i = u_i \lor x_i = \ell_i\}$ is under every L_p norm

$$d_{\mathsf{nn}}(\boldsymbol{x},\mathcal{B}) = \min_{1 \leq i \leq n} \{\min\{x_i - \ell_i, u_i - x_i\}\}$$

(ㅁㅏㅓ@ㅏㅓ 문ㅏ 문)ㅋ

Expected Distance to the Boundary

Proposition

The expected distance between a random uniform point X in $[0,1]^n$ and the boundary $\mathcal B$ is

$$\delta_n := \mathsf{E}(d_{\mathrm{nn}}(X,\mathcal{B})) = \frac{1}{2(1+n)}$$

Proof.

- Expected distance to the lower bounds = 1st-order statistic X₍₁₎ of sample X₁,..., X_n from U(0,1).
- > $X_{(1)}$ belongs to Beta(1, n) distribution with mean 1/(1 + n).

•
$$0 \le Y_i = \min\{X_i - \ell_i, u_i - X_i\} = \min\{X_i, 1 - X_i\} \le 0.5$$

• $E(Y_{(1)}) = E(0.5 \cdot X_{(1)}) = 0.5 \cdot E(X_{(1)}) = 0.5 \cdot 1/(1+n)$

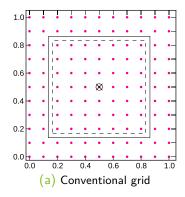
Mean distance to the boundary \mathcal{B} of a hypercube

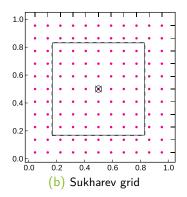
- Expected value $\delta_n := \mathsf{E}(d_{\mathsf{nn}}(X, \mathcal{B})) = \frac{1}{2(1+n)}$
- Compare with Monte Carlo estimate $\bar{d}_{\mathcal{B}} = \frac{1}{N} \sum_{i=1}^{N} d_{nn}(\mathbf{x}_i, \mathcal{B})$
- \Rightarrow Can indicate deviation from uniform distribution

Further Observations

- Known optimal solutions under L_{∞} -norm:
 - for maximin distance: conventional grid
 - for covering radius: Sukharev grid

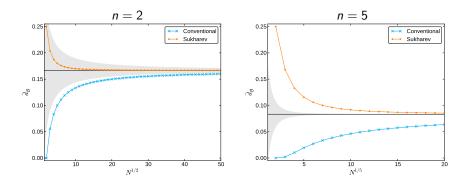
Examples with 121 points:





Hypothesis

• $\bar{d}_{\mathcal{B}}$ and covering radius of a uniform point set are related

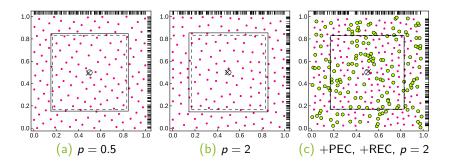


 \Rightarrow Try to use this to generate low-covering radius point sets

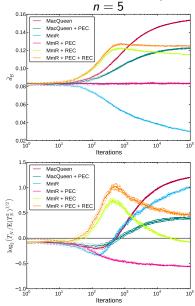
(ㅁ) (종) (종) (종)

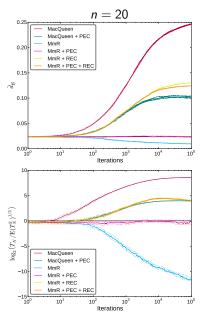
Maximin Reconstruction Algorithm (MmR)

- Basic principle: maximization of minimal distance
- Complement with correction methods for edge effects
 - ► Torus → periodic edge correction (PEC)
 - ► Mirroring → reflection edge correction (REC)
- $\Rightarrow \bar{d}_{\mathcal{B}}$ is adjustable
 - Optional: consider a set of existing points



MmR Variants in Comparison





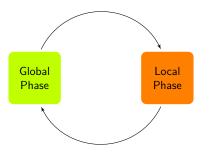
Improved Sampling for Two-stage Methods

16 / 23

Incorporation into Optimization

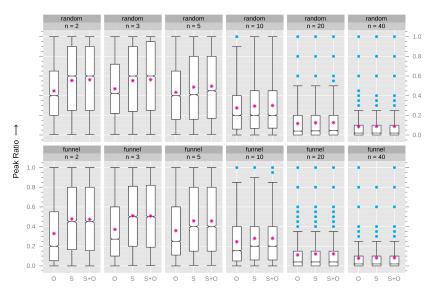
Restarted Local Search (RLS)

- 1. Determine a starting point
- 2. Execute local search with this starting point
- 3. Go to 1.



New: starting points and/or found optima are saved in an archive and considered by MmR in following iterations

Influence of Archive



Improved Sampling for Two-stage Methods

《曰》《曰》《曰》 종남

18 / 23

RLS Variants with Different Sampling Algorithms

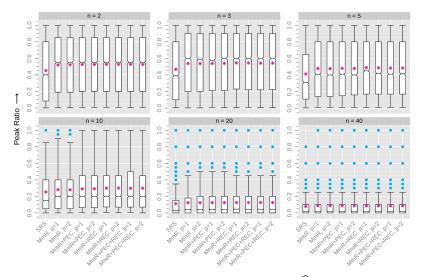


Figure : PR at different sampling algos (with $S \cup \widehat{O}$ or S in archive).

- 미 + 4 큔 + 4 폰 + 포니크

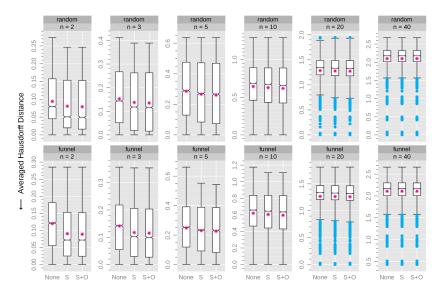
Clustering-based Algorithms

Procedure:

- 1. Sample 50*n* starting point-candidates
- 2. Select a variable number of starting points (via *nearest-better clustering*, Preuss 2015)
- 3. Execute local search with every starting point
- 4. Go to 1.

(using archives as before)

Influence of Archive on Clustering-based Algos



(ㅁ) (종) (종) (종)

Conclusion

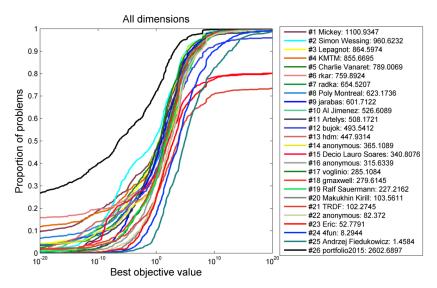
- Sampling with MmR and archive including starting points yields significant improvement
- The higher n, the higher ν, and the lower N_f, the better is RLS in comparison to CM
- \Rightarrow Do not aggregate results over different *n* and N_f !

Used these results to submit an algorithm to the Black-box optimization competition (BBComp, at CEC 2015)

Procedure:

- 1. One L-BFGS-B run from the centroid of the search space
- 2. Then two-stage algorithm:
 - If $n \leq 5$: restarted Nelder-Mead
 - If $8 \le n \le 20$: clustering-based with CMA-ES
 - If n > 20: restarted CMA-ES

Results BBComp (CEC 2015)



- ㅁ ▶ ◀ 🗗 ▶ ◀ 돈 ▶ 모[님

References I

Ali, Montaz M. and Colin Storey (1994). "Topographical Multilevel Single Linkage". In: Journal of Global Optimization 5.4, pp. 349–358. Johnson, Mark E., Leslie M. Moore, and Donald Ylvisaker (1990). "Minimax and maximin distance designs". In: Journal of Statistical Planning and Inference 26.2, pp. 131–148. Kucherenko, Sergei and Yury Sytsko (2005). "Application of Deterministic Low-Discrepancy Sequences in Global Optimization". In: Computational Optimization and Applications 30.3, pp. 297–318. Niederreiter, Harald (1992). Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics.

References II

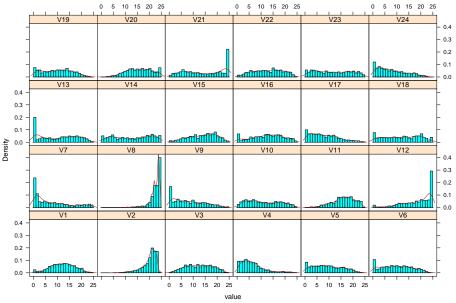
Preuss, Mike (2015). Multimodal Optimization by Means of Evolutionary Algorithms. Springer. Rinnooy Kan, Alexander H. G. and Gerrit T. Timmer (1987). "Stochastic global optimization methods part II: Multi level methods". In: Mathematical Programming 39.1, pp. 57–78. Rudolph, Günter and Simon Wessing (2016). "Linear Time Estimators for Assessing Uniformity of Point Samples in Hypercubes". In: Informatica 27.2, pp. 335–349. Santner, Thomas J., Brian J. Williams, and William I. Notz (2003). The Design and Analysis of Computer Experiments. Springer. Schoen, Fabio (2002). "Two-Phase Methods for Global Optimization". In: Handbook of Global Optimization. Ed. by Panos M. Pardalos and H. Edwin Romeijn. Vol. 62. Nonconvex Optimization and Its Applications. Springer, pp. 151–177.

References III

Schütze, Oliver et al. (2012). "Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization". In: IEEE Transactions on Evolutionary Computation 16.4, pp. 504–522. Wessing, Simon (2015). "Two-stage methods for multimodal optimization". PhD thesis. Technische Universität Dortmund. Wessing, Simon, Mike Preuss, and Günter Rudolph (2016). "Assessing Basin Identification Methods for Locating Multiple Optima". In: Advances in Stochastic and Deterministic Global Optimization. Ed. by Panos M. Pardalos, Anatoly Zhigljavsky, and Julius Žilinskas. Springer.

《曰》《圖》《문》 된는

Rank Distributions BBComp (CEC 2015)



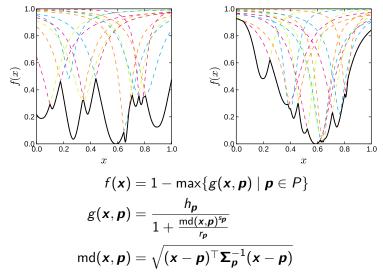
Improved Sampling for Two-stage Methods

《曰》《曰》《曰》 종종

7 / 23

Test Problems

Multiple-peaks model 2 (MPM2)



(미) (종) (종) (종) (종)

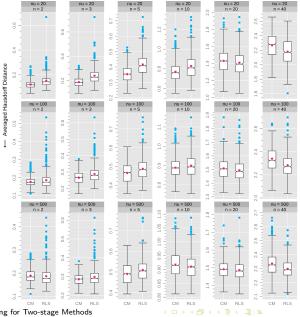
Experimental Setup RLS

Factor	Туре	Symbol	Level
Problem topology # local optima # variables	non-observable non-observable observable	ν n	$\{ random, funnel \} \\ \{ 5, 20, 100, 500 \} \\ \{ 2, 3, 5, 10, 20, 40 \} $
Budget Global algorithm	observable control	N _f	$\{10^3n, 10^4n\}$ $\{SRS, MmR\}$
Archive Local search	control control	\mathcal{A}	$\{\mathcal{S}, \widehat{\mathcal{O}}, \mathcal{S} \cup \widehat{\mathcal{O}}\}\$ $\{Nelder\operatorname{-Mead},\$ L-BFGS-B, CMA-ES}

Full-factorial design

50 replications per configuration

Comparison CM/RLS ($N_f = 10^3 n$)



30 / 23

Improved Sampling for Two-stage Methods

Edge Correction

- ▶ Distance criterion $d(\mathbf{x}) = d_{nn}(\mathbf{x}, Q), \ Q = P \cup A$
- PEC: $d_{to}(\mathbf{x}, \mathbf{y}) = (\sum_{i=1}^{n} \min\{|x_i y_i|, u_i \ell_i |x_i y_i|\}^p)^{1/p}$
- ► REC: d(x) = min{d_{nn}(x, Q), 2d_{nn}(x, B) · √n} (Hypothetical diagonal mirroring)
 - ► The smaller p, the smaller the distance between x and the next corner in relation to d_{nn}(x, B)
 - ► The larger the distance to the mirrored point, the weaker is selection pressure at the boundary

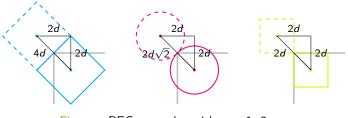


Figure : REC examples with $p = 1, 2, \infty$

Pseudocode of MmR

Input: initial points $\mathcal{P} = \{x_1, \ldots, x_N\}$, distance criterion $d(\cdot)$ **Output:** uniformly distributed points 1: $A \leftarrow \{1, \ldots, N\}$ // indices of candidates for replacement 2: $i \leftarrow$ random element of A // choose arbitrary candidate 3: $A \leftarrow A \setminus \{i\}$ // remove used index 4: repeat 5: $\mathbf{y} \leftarrow \text{random point in } \mathcal{X}$ // sample potential substitute 6: if $d(\mathbf{y}) \geq d(\mathbf{x}_i)$ then // if improvement found 7: // replace the point in \mathcal{P} $\mathbf{x}_i \leftarrow \mathbf{v}$ 8: $A \leftarrow \{1, \dots, N\} \setminus \{i\}$ // dists have changed, reset available indices 9: else if $A \neq \emptyset$ then // try to find point that is easier to replace $i' \leftarrow$ random element of A 10: 11: $A \leftarrow A \setminus \{i'\}$ if $d(\mathbf{x}_{i'}) \leq d(\mathbf{x}_i)$ then 12. // if $x_{i'}$ is easier to replace 13: *i ← i*′ // use it as new candidate for replacement 14. end if 15: end if 16: until termination 17: return \mathcal{P}

(비) (종) (종) (종)