
SFB 876 Verfügbarkeit von Information
durch Analyse unter Ressourcenbeschränkung

An Automaton-Based View on Error-Tolerant Pattern Matching
with Backward Search

Dominik Kopczynski* Sven Rahmann†

*Collaborative Research Center SFB 876, Computer Science XI, TU Dortmund, Germany dominik.kopczynski@tu-dortmund.de
† Genome Informatics, Institute of Human Genetics, Faculty of Medicine, University of Duisburg-Essen, Germany sven.rahmann@uni-due.de

Introduction: Backward search is used as a computational core in many read mapping applications in the context of next generation sequencing data
analysis. Here we introduce an automaton-based view on error-tolerant backward search by combining the non-deterministic finite automaton from the
error-tolerant NFA with exact backward search. This leads to a conceptually simple, efficient and easily implementable version of error-tolerant backward
search.

B
ac

kg
ro

un
d

Input: text T , pattern P , n = |T |, m = |P |, k errors at most
Output: all occurrences of P in T with 0 ≤ i ≤ k errors

Error-tolerant NFA in O(k · n):

A C T G T

A C T G T

A C T G T

Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ

k=0

k=1

k=2

-1 0 1 2 3 4

ε ε ε ε ε

ε ε ε ε εΣ

Σ

Σ

Σ

Σ

Exact Backward Search [1] in O(m):
• Uses suffix array pos of T and Burrows-Wheeler transform (BWT)

• Needs auxiliary tables:
– less[c]: number of characters in T lexicographically smaller

than c

– occ[c][r]: number of c ’s in BWT up to index r

• Updates an interval containing possible suffixes in pos

• Starts with whole interval L = 0, R = n − 1 for empty pattern

• Updates interval processing reversed pattern, using:
L+(c) = less[c] + occ[c][L− 1]
R+(c) = less[c] + occ[c][R]− 1

A
ut

om
at

on
B

S

Automaton-based error-tolerant Backward Search:

• Initialize empty matrix M with (k + 1)× (m + 1) nodes

• Use reversed pattern P ′

• Store full interval [0, n − 1] in node M [0][0]

• For every interval in every node:
– If after BS update new interval is valid, perform:

* A match with c = P ′[j] and store in M [i][j + 1]
* An insertion with c ∈ Σ and store in M [i + 1][j]
* A substitution with c ∈ Σ\P ′[j] and store in M [i + 1][j + 1]

– Perform a deletion, store current interval in M [i + 1][j + 1]

• Example:
– Text: AAAACGTACCT$, pattern: ACTGT, k = 2
– No exact match, one match with single error, four matches

with two errors

Σ\T
ε

Σ Σ\G
ε

Σ Σ\T
ε

Σ Σ\C
ε

Σ Σ\A
ε

Σ

[1,3]A
[1,5]
[4,5]A
[6,6]C
 ⁝
[11,11]

[1,3]A
[4,5]A
[6,6]C
[7,7]C
 ⁝
[11,11]T

[0,11]
[1,3]A
[1,5]
[5,5]A
 ⁝
[11,11]

[5,5]A
[6,6]C
[7,7]
[8,8]
 ⁝
[11,11]

[5,5]A
[6,6]
[7,7]
[7,7]
[8,8]
[9,9]

[3,3]
[4,4]
[5,5]
[7,7]

T G T C A

Σ\T
ε

Σ Σ\G
ε

Σ Σ\T
ε

Σ Σ\C
ε

Σ Σ\A
ε

Σ

 0

 1 [0,11]
[1,5]A
[6,8]C
[8,8]G
[9,9]G
[11,11]

[1,5]A
[6,8]C
[9,9]G
[10,11]T

[7,7]C
[8,8]C
[9,9]
[10,11]

[7,7]C
[9,9]

[7,7] [5,5]

[9,9][10,11][0,11] T G T C A

T G T C A

 j: 0 1 2 3 4 5

 2

 i:

Im
pl

em
en

ta
tio

n

Memory saving:
• Only two columns needed, current and subsequent column
• After processing current column all important data stored in sub-
sequent column

Traceback:
• Needs complete matrix M
• Is applicable without considering pos and BWT after processing
• Auxiliary data must be stored per interval:
– Its ancestor interval
– Operation it was computed (mat, ins, del, sub)
– Character involved in operation

Reasonable improvements for read mapping:
• Omit computation of first column, exponential growing, in-
sertions at the left and right of a read not reasonable

• Restrict error bound for the first j matches
• Precompute lower bound errors for every suffix in P ′ (con-
sider D(·) array in [2])

Conclusion: We presented a novel view on error-tolerant
pattern matching using backward search, combining error-
tolerant NFA with backward search. Certain improvements
lead to a dramatically acceleration of computation time. This
method is additionally well suited e.g. for teaching in class.

References

[1] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium on, pages 390–398. IEEE, 2000.

[2] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

