
April 11, 2012

Diversified Virtual Camera Composition Mike Preuss, Paolo Burelli, Georgios N. Yannakakis

Contents

2 Objectives

- 3 Test Problems
- 4 Algorithms and Setup
- 5 Experimental Results
- 6 Take Home Message

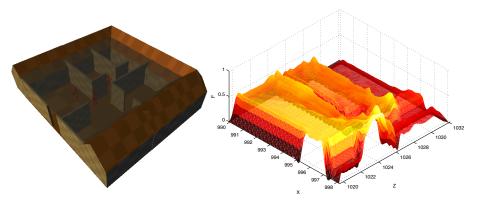
VCC: What is it about?

growing need to automatically determine good camera position

- in games and related 3D applications
- influenced by cinematographic techniques, e.g. tracking shots
- in response to growing content complexity (e.g. PCG!)

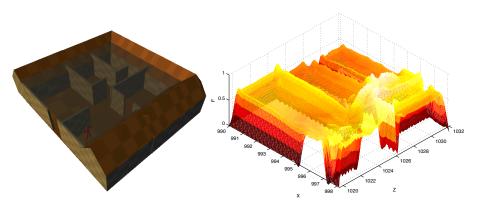
Desired visual properties

- visibility
- projection size
- shot angle

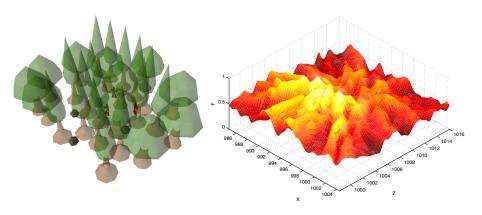

- 5 dimensions:
 - 3 spatial coordinates
 - 2 angles

main objectives of this work:

- explore diversity vs quality tradeoffs: how difficult is it to obtain good but different shots? runtimes?
- compare with existing solutions (optimization algorithms): can we do quicker and/or more reliable?
- obtain problem knowledge (landscape structure)


Eavesdropping

birdseye view, (scanned) maximum over x and z axis


- includes three characters, two of them facing each other (chatting), one eavesdropping
- demanded properties: full visibility of all characters, projection size 1/3 of the screen for all characters

Ambush

- two characters on two sides of a wall
- demanded properties: full visibility of all characters, projection size 1/2 for all characters, horizontal angle of 90 degrees to the right of each character

Chat

- based on chat scene by Thawonmas et al.
- three characters with one ideally chatting to the other two
- demanded properties: visibility and projection size equal to problem 1, camera on the back of listening characters

Evaluation

Virtual Camera Sandbox 0.5	
Scare Square Add Randon Subject Subject • Kadd Randon Subject Subject • Projection Size • Subject • Subject • Subject • Subject • Subject • Projection Size • Subject • Subject • Subject	Score: Sc
	Command executed in 2.00ms (Value: 0.493133) 1 - +

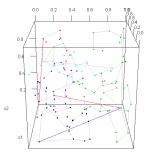
sandbox by Paolo, implemented for the Unity engine
communication via TCP/IP, no realtime (realtime: 16ms)

Algorithms

three 'default' solutions (have been used in the context before):

- Particle Swarm Optimisation (PSO)
- Differential Evolution (DE)
- Sliding Octree (SO)
- two 'new' solutions (not used yet):
 - CMA-ES without any population heuristic (short runs!)
 - related niching method (on base of CMA-ES): NEA2

and NEA1 (old version) as reference for NEA2

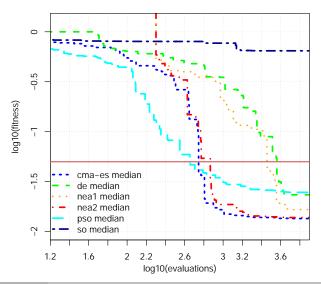

Restart/niching based methods

we apply a single parameter change (expert knowledge):

- TolFun stopping criterion parameter for restarts set to 10^{-3}
- this triggers restarts earlier (short runs!)
- does not affect other 3 methods (no restarts)

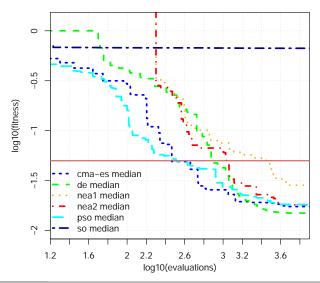
differences CMA-ES / NEA2:

- NEA2 does initial LHS sample and detects clusters
- CMA restarts located randomly, NEA2 works down clusters

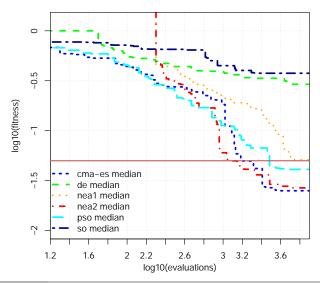


Experimental setup

- 5000 evaluations per run
- 20 runs per algorithm on each problem
- all default parameters (except TolFun)
- we measure the ERT until less than 5% error to optimal value
- times to 2nd and 3rd diverse solution (min Euclidean distance 1 in 3 spatial coordinates)


$$ERT = \frac{\#fevals > f_{target}}{\#succ}$$

Problem 1: Eavesdropping


Preuss/Burelli/Yannakakis Diversified Virtual Camera Composition

Problem 2: Ambush

Preuss/Burelli/Yannakakis Diversified Virtual Camera Composition

Problem 3: Chat

Preuss/Burelli/Yannakakis Diversified Virtual Camera Composition

Some numbers...

divers.	ERT1	ERT2	ERT3	sd1	alg	inst.
0.151	1580	4710	-	417	pso	1
5.458	5868	7503	8250	1313	de	1
-	-	-	-	-	SO	1
7.370	740	1437	2018	524	cma-es	1
2.237	4266	5881	11314	1047	nea1	1
8.968	1031	1444	2286	599	nea2	1
4.568	1095	3004	8509	806	pso	2
44.755	989	1238	1395	526	de	2
0.131	95290	95501	-	-	SO	2
15.286	851	1266	2020	917	cma-es	2
7.351	3807	6094	10809	1226	nea1	2
10.648	1338	2509	5276	1051	nea2	2
0.150	5752	8203	-	750	pso	3
4.018	18566	19596	49899	414	de	3
0.141	95354	96265	-	-	SO	3
4.650	2433	3937	11109	1069	cma-es	3
0.745	10252	11902	99635	718	nea1	3
4.501	1587	3564	10687	1013	nea2	3

Observations/Discussion

- PSO good on problems 1 and 2
- CMA-ES always good
- NEA2 quite good, best on problem 3
- problem 3 seems to be more difficult than 1 and 2 (due to softer basin shapes?)
- SO and DE are not reliably able to provide valid solution
- CMA-ES and NEA2 most reliable for providing second solution

- for diverse solutions we need some kind of restart
- multiple solutions require a bit more time (linear factor?)
- overall still too slow for realtime (pprox 1500 evaluations)
- formerly applied algorithms (without restart) not reliable
- problem landscape topologies 'reflect' the visual impression
- huge differences, multimodal, ridges, plateaus