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Maximum Common Subtree Isomorphism (MCSI) Problem
Input: Trees G and H

Output: An isomorphism between subtrees of G and H with the
maximum possible number of vertices

G H
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Motivation
Trees or graphs are often used as an abstract representation
for e.g. molecules, XML, or social networks

Natural measurement of similarity.
Application examples:

Chemistry, Biology [Ehrlich and Rarey, 2011]
Computer Vision [Englert and Kovács, 2015]
Binary Programs [Gao et al., 2008]
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Problem variants
Rooted MCSI

Map roots of input trees

Labelled Trees
Labels on vertices/edges must match

Weight function w : VG × VH → R on pairs of vertices
Maximize weight

Example: w(A,A) = w(B,B) = 2, w(A,B) = w(B,A) = 1
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Related problems
Maximum Common Subgraph Isomorphism

NP-hard

Subgraph Isomorphism
NP-hard

Graph Isomorphism
Unknown if NP-hard or in P
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Related problems, cont.
Tree Isomorphism: Solvable O(n)

Subtree Isomorphism, polynomial time solvable
O(n2.5), rooted trees [Matula, 1978]
O(n2.5), unrooted trees [Chung, 1987]
O(n2.5/ logn), unrooted trees [Shamir and Tsur, 1999]

MCSI, rooted
O(n2.5 logn), integer weights in O(n)
O(n3), unrestricted weights [Valiente, 2002]

MCSI on unrooted trees: O(n5) [Matula, 1978]

Faster Algorithms for the Maximum Common Subtree Isomorphism Problem A. Droschinsky, N. Kriege, P. Mutzel



Introduction MCSI between two trees G and H

The Maximum Common Subtree Isomorphism Problem (MCSI) 6/16

Related problems, cont.
Tree Isomorphism: Solvable O(n)
Subtree Isomorphism, polynomial time solvable

O(n2.5), rooted trees [Matula, 1978]
O(n2.5), unrooted trees [Chung, 1987]
O(n2.5/ logn), unrooted trees [Shamir and Tsur, 1999]

MCSI, rooted
O(n2.5 logn), integer weights in O(n)
O(n3), unrestricted weights [Valiente, 2002]

MCSI on unrooted trees: O(n5) [Matula, 1978]

Faster Algorithms for the Maximum Common Subtree Isomorphism Problem A. Droschinsky, N. Kriege, P. Mutzel



Introduction MCSI between two trees G and H

The Maximum Common Subtree Isomorphism Problem (MCSI) 6/16

Related problems, cont.
Tree Isomorphism: Solvable O(n)
Subtree Isomorphism, polynomial time solvable

O(n2.5), rooted trees [Matula, 1978]
O(n2.5), unrooted trees [Chung, 1987]
O(n2.5/ logn), unrooted trees [Shamir and Tsur, 1999]

MCSI, rooted
O(n2.5 logn), integer weights in O(n)
O(n3), unrestricted weights [Valiente, 2002]

MCSI on unrooted trees: O(n5) [Matula, 1978]

Faster Algorithms for the Maximum Common Subtree Isomorphism Problem A. Droschinsky, N. Kriege, P. Mutzel



Introduction MCSI between two trees G and H

The Maximum Common Subtree Isomorphism Problem (MCSI) 6/16

Related problems, cont.
Tree Isomorphism: Solvable O(n)
Subtree Isomorphism, polynomial time solvable

O(n2.5), rooted trees [Matula, 1978]
O(n2.5), unrooted trees [Chung, 1987]
O(n2.5/ logn), unrooted trees [Shamir and Tsur, 1999]

MCSI, rooted
O(n2.5 logn), integer weights in O(n)
O(n3), unrestricted weights [Valiente, 2002]

MCSI on unrooted trees: O(n5) [Matula, 1978]

Faster Algorithms for the Maximum Common Subtree Isomorphism Problem A. Droschinsky, N. Kriege, P. Mutzel



Introduction MCSI between two trees G and H

The Maximum Common Subtree Isomorphism Problem (MCSI) 7/16

Our contribution, main result
MCSI in time O(|G||H|∆(G,H)) ⊆ O(n3)

Unrooted trees G and H
Weight function
∆(G,H) := min{∆(G),∆(H)}+ log max{∆(G),∆(H)}
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In the following
1) Dynamic programming for MCSI between rooted trees, O(n3)

2) Adaption to unrooted trees, O(n5)
3) Improve the upper bound to O(|G||H|∆(G,H))

Reduce the number of subproblems
Efficiently solve similar subproblems

4) Lower bounds
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Dynamic Programming Approach between rooted trees
Rooted trees G and H, r 7→ s

Recursively compute rooted MCSIs between children of r and
s and their descendants
Compute a Maximum Weight Matching M on Br,s

Edges of M determine MCSI between G and H
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Computation time for an MCSI between two rooted trees
Compute O(n2) Maximum Weight Matchings (MWMs)

≤ 1 MWM for each pair (u, v) ∈ VG × VH

Solvable in time O(kl(k + log l)), k + l vertices, k ≤ l
Total time O(n3)
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Basic approach for MCSI between two unrooted trees
Compute rooted MCSIs for all roots (r, s) ∈ VG × VH

Select maximum solution
Total time O(n5)

Improvement 1: Reduce the number of subproblems

Determine arbitrary root r ∈ VG

Consider all s ∈ VH as root

Total time O(n4)

Correctness
If ∃ MCSI φ, where r ∈ dom(φ): Roots (r, φ(r)) yield an
MCSI between G,H X

If not, returned solution is no MCSI, but...
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Reduce the number of subproblems, cont.
Given: @ MCSI φ, where r ∈ dom(φ); let τ be any MCSI

For each u ∈ VG and its descendants compute rooted MCSI
between this subtree and H
Total time O(n4)

G H

r

u τ(u)

τ
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Improvement 2: Efficiently solve similar subproblems
Let G be rooted at r
Let k = degree of u, l = degree of v

1) Root v ∈ VH : bipartite graph Bu,v and MWM M

2) Root d2 ∈ VH : bipartite graph Bu,v,2 and MWM M

3) Root dj ∈ VH , j ∈ {1, 3}: derive MWMs Mj from M

r

u

c1 c2 d1

v

d2 d3

c1

d13

3

Bu,v

d2

111

d3

c2
3

M

4

3

3

1) Time O(kl(min{k, l}+ log max{k, l})),
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Theorem
An MCSI between two trees G and H can be computed in time
O(|G||H|∆(G,H)).

∆(G,H) := min{∆(G),∆(H)}+ log max{∆(G),∆(H)}

Proposition
For trees of bounded degree we obtain running time Θ(|G||H|),
which is optimal.
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Lower bound for unrestricted degree
Running time for trees with n nodes and unrestricted degree:
O(n3)

The best known time bound for the assignment problem in a
graph with n nodes and Θ(n2) edges of unrestricted weight
since more than 30 years: O(n3)
There is a linear time reduction from the assignment problem
to MCSI.
Time o(n3) for MCSI ⇒ Time o(n3) for the assignment
problem.
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Conclusion
We developed/showed

An algorithm for MCSI, time O(|G||H|∆(G, H))
Achieved this improved time bound by:

Rooting one tree, but also consider subtrees of this tree
Efficiently solving similar subproblems

Results about optimality

Next up
Improve time bound for MCSI on unweighted trees
Adapt our algorithm to other graph classes
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