Faster Algorithms for the Maximum Common Subtree Isomorphism Problem

Andre Droschinsky¹ Nils Kriege¹ Petra Mutzel¹

¹Dept. of Computer Science, Technische Universität Dortmund, Germany

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016) August 22 – 26, 2016

 \mbox{MCSI} between two trees G and H 00000000

2/16

The Maximum Common Subtree Isomorphism Problem (MCSI)

${\sf Maximum\ Common\ Subtree\ Isomorphism\ (MCSI)\ Problem}$

Input: Trees G and H

2/16

The Maximum Common Subtree Isomorphism Problem (MCSI)

Maximum Common Subtree Isomorphism (MCSI) Problem

Input: Trees G and H

Output: An isomorphism between subtrees of G and H with the maximum possible number of vertices

Motivation

• Trees or graphs are often used as an abstract representation for e.g. molecules, XML, or social networks

Motivation

- Trees or graphs are often used as an abstract representation for e.g. molecules, XML, or social networks
- Natural measurement of similarity.

3/16

3/16

Motivation

Introduction

000000

- Trees or graphs are often used as an abstract representation for e.g. molecules, XML, or social networks
- Natural measurement of similarity.
- Application examples:
 - Chemistry, Biology [Ehrlich and Rarey, 2011]
 - Computer Vision [Englert and Kovács, 2015]
 - Binary Programs [Gao et al., 2008]

Introduction 000000	MCSI between two trees G and H 00000000
The Maximum Common Subtree Isomorphism Problem (MCSI)	4/16

Problem variants

- Rooted MCSI
 - Map roots of input trees

Problem variants

Introduction

000000

- Rooted MCSI
 - Map roots of input trees
- Labelled Trees
 - Labels on vertices/edges must match

4/16

Problem variants

Introduction

000000

- Rooted MCSI
 - Map roots of input trees
- Labelled Trees
 - Labels on vertices/edges must match
- Weight function $w: V_G \times V_H \to \mathbb{R}$ on pairs of vertices
 - Maximize weight

• Example:
$$w(A,A) = w(B,B) = 2$$
, $w(A,B) = w(B,A) = 1$

Introduction 0000000	MCSI between two trees G and H 0000000
The Maximum Common Subtree Isomorphism Problem (MCSI)	5/16

Related problems

• Maximum Common Subgraph Isomorphism

NP-hard

Related problems

- Maximum Common Subgraph Isomorphism
 - NP-hard
- Subgraph Isomorphism
 - NP-hard

5/16

Related problems

- Maximum Common Subgraph Isomorphism
 - NP-hard
- Subgraph Isomorphism
 - NP-hard
- Graph Isomorphism
 - Unknown if NP-hard or in P

5/16

Related problems, cont.

• Tree Isomorphism: Solvable $\mathcal{O}(n)$

Introduction

0000000

Related problems, cont.

- Tree Isomorphism: Solvable $\mathcal{O}(n)$
- Subtree Isomorphism, polynomial time solvable
 - $\mathcal{O}(n^{2.5})$, rooted trees [Matula, 1978]
 - $\mathcal{O}(n^{2.5})$, unrooted trees [Chung, 1987]
 - $\mathcal{O}(n^{2.5}/\log n)$, unrooted trees [Shamir and Tsur, 1999]

6/16

Introduction

0000000

Related problems, cont.

- Tree Isomorphism: Solvable $\mathcal{O}(n)$
- Subtree Isomorphism, polynomial time solvable
 - $\mathcal{O}(n^{2.5})$, rooted trees [Matula, 1978]
 - $\mathcal{O}(n^{2.5})$, unrooted trees [Chung, 1987]
 - $\mathcal{O}(n^{2.5}/\log n)$, unrooted trees [Shamir and Tsur, 1999]
- MCSI, rooted
 - $\mathcal{O}(n^{2.5}\log n)$, integer weights in $\mathcal{O}(n)$
 - $\mathcal{O}(n^3)$, unrestricted weights [Valiente, 2002]

6/16

Introduction

0000000

Related problems, cont.

- Tree Isomorphism: Solvable $\mathcal{O}(n)$
- Subtree Isomorphism, polynomial time solvable
 - $\mathcal{O}(n^{2.5})$, rooted trees [Matula, 1978]
 - $\mathcal{O}(n^{2.5})$, unrooted trees [Chung, 1987]
 - $\mathcal{O}(n^{2.5}/\log n)$, unrooted trees [Shamir and Tsur, 1999]
- MCSI, rooted
 - $\mathcal{O}(n^{2.5}\log n)$, integer weights in $\mathcal{O}(n)$
 - $\mathcal{O}(n^3)$, unrestricted weights [Valiente, 2002]
- \bullet MCSI on unrooted trees: $\mathcal{O}(n^5)$ [Matula, 1978]

Our contribution. main result

MCSI in time $\mathcal{O}(|G||H|\Delta(G,H)) \subseteq \mathcal{O}(n^3)$

- Unrooted trees G and H
- Weight function
- $\Delta(G, H) := \min{\{\Delta(G), \Delta(H)\}} + \log \max{\{\Delta(G), \Delta(H)\}}$

Introduction 000000	MCSI between two trees G and H 00000000
The Maximum Common Subtree Isomorphism Problem (MCSI)	8/16

In the following

1) Dynamic programming for MCSI between rooted trees, $\mathcal{O}(n^3)$

In the following

- 1) Dynamic programming for MCSI between rooted trees, $\mathcal{O}(n^3)$
- 2) Adaption to unrooted trees, $\mathcal{O}(n^5)$

8/16

In the following

Introduction

000000

- 1) Dynamic programming for MCSI between rooted trees, $\mathcal{O}(n^3)$
- 2) Adaption to unrooted trees, $\mathcal{O}(n^5)$
- 3) Improve the upper bound to $\mathcal{O}(|G||H|\Delta(G,H))$
 - Reduce the number of subproblems
 - Efficiently solve similar subproblems

In the following

Introduction

- 1) Dynamic programming for MCSI between rooted trees, $\mathcal{O}(n^3)$
- 2) Adaption to unrooted trees, $\mathcal{O}(n^5)$
- 3) Improve the upper bound to $\mathcal{O}(|G||H|\Delta(G,H))$
 - Reduce the number of subproblems
 - Efficiently solve similar subproblems
- 4) Lower bounds

8/16

Introduction 0000000	MCSI between two trees G and H ${\bullet} 0000000$
Computing a Maximum Common Subtree Isomorphism between two trees G and H	9/16

• Rooted trees G and H, $r \mapsto s$

Faster Algorithms for the Maximum Common Subtree Isomorphism Problem

A. Droschinsky, N. Kriege, P. Mutzel

Introduction 0000000	$\begin{array}{l} MCSI \text{ between two trees } G \text{ and } H \\ \bullet \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	9/16

- Rooted trees G and H, $r \mapsto s$
- Recursively compute rooted MCSIs between children of *r* and *s* and their descendants

Introduction 0000000	$\begin{array}{l} MCSI \text{ between two trees } G \text{ and } H \\ \bullet \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	9/16

- Rooted trees G and H, $r \mapsto s$
- Recursively compute rooted MCSIs between children of r and s and their descendants

Introduction 0000000	$\begin{array}{l} MCSI \text{ between two trees } G \text{ and } H \\ \bullet \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	9/16

- Rooted trees G and H, $r \mapsto s$
- Recursively compute rooted MCSIs between children of *r* and *s* and their descendants

Introduction 0000000	MCSI between two trees G and H
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	9/16

- Rooted trees G and H, $r \mapsto s$
- Recursively compute rooted MCSIs between children of *r* and *s* and their descendants

- Rooted trees G and H, $r \mapsto s$
- Recursively compute rooted MCSIs between children of *r* and *s* and their descendants
- Compute a Maximum Weight Matching M on $B_{r,s}$

Introduction 0000000	MCSI between two trees G and H ${\bullet} \texttt{0000000}$
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	9/16

- Rooted trees G and H, $r \mapsto s$
- Recursively compute rooted MCSIs between children of *r* and *s* and their descendants
- Compute a Maximum Weight Matching M on $B_{r,s}$
- Edges of M determine MCSI between G and H

Introduction 0000000	$\begin{array}{l} MCSI \text{ between two trees } G \text{ and } H \\ \circ \bullet \circ \circ \circ \circ \circ \circ \circ \end{array}$
Computing a Maximum Common Subtree Isomorphism between two trees G and H	10/16

Computation time for an MCSI between two rooted trees

- \bullet Compute $\mathcal{O}(n^2)$ Maximum Weight Matchings (MWMs)
 - ≤ 1 MWM for each pair $(u, v) \in V_G \times V_H$

Introduction 0000000	MCSI between two trees G and H $\odot {\rm e}{\rm o}{\rm e}{\rm o}{\rm o}{\rm o}{\rm o}{\rm o}{\rm o}{\rm o}{\rm o$
Computing a Maximum Common Subtree Isomorphism between two trees G and H	10/16

Computation time for an MCSI between two rooted trees

- Compute $\mathcal{O}(n^2)$ Maximum Weight Matchings (MWMs)
 - ≤ 1 MWM for each pair $(u, v) \in V_G \times V_H$
 - Solvable in time $\mathcal{O}(kl(k + \log l))$, k + l vertices, $k \leq l$

Introduction 0000000	MCSI between two trees G and H $\odot {\rm e}{\rm o}{\rm e}{\rm o}{\rm o}{\rm o}{\rm o}{\rm o}{\rm o}{\rm o}{\rm o$
Computing a Maximum Common Subtree Isomorphism between two trees G and H	10/16

Computation time for an MCSI between two rooted trees

- Compute $\mathcal{O}(n^2)$ Maximum Weight Matchings (MWMs)
 - ≤ 1 MWM for each pair $(u, v) \in V_G \times V_H$
 - Solvable in time $\mathcal{O}(kl(k+\log l)), \ k+l$ vertices, $k\leq l$

• Total time $\mathcal{O}(n^3)$

Introduction 0000000	MCSI between two trees G and H 0000000
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	11/16

• Compute rooted MCSIs for all roots $(r,s) \in V_G \times V_H$

Introduction 0000000	MCSI between two trees G and H 00000000
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	11/16

- Compute rooted MCSIs for all roots $(r, s) \in V_G \times V_H$
- Select maximum solution

Introduction 000000	MCSI between two trees G and H 00000000
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	11/16

- Compute rooted MCSIs for all roots $(r, s) \in V_G \times V_H$
- Select maximum solution
- Total time $\mathcal{O}(n^5)$

Introduction 0000000	$\begin{array}{l} MCSI \text{ between two trees } G \text{ and } H \\ \texttt{OO} \bullet \texttt{OOOOO} \end{array}$
Computing a Maximum Common Subtree Isomorphism between two trees G and H	11/16

- Compute rooted MCSIs for all roots $(r,s) \in V_G \times V_H$
- Select maximum solution
- Total time $\mathcal{O}(n^5)$

- Determine arbitrary root $r \in V_G$
- Consider all $s \in V_H$ as root

Introduction 0000000	MCSI between two trees G and H 00000000
Computing a Maximum Common Subtree Isomorphism between two trees G and H	11/16

- Compute rooted MCSIs for all roots $(r,s) \in V_G \times V_H$
- Select maximum solution
- ${\ensuremath{\, \bullet \, }}$ Total time ${\ensuremath{\mathcal O}}(n^5)$

- Determine arbitrary root $r \in V_G$
- Consider all $s \in V_H$ as root
 - ${\ensuremath{\, \bullet \, }}$ Total time ${\ensuremath{\mathcal O}}(n^4)$

000000 00000	000
Computing a Maximum Common Subtree Isomorphism between two trees G and H	11/16

- Compute rooted MCSIs for all roots $(r,s) \in V_G \times V_H$
- Select maximum solution
- ${\ensuremath{\, \bullet \, }}$ Total time ${\ensuremath{\mathcal O}}(n^5)$

- Determine arbitrary root $r \in V_G$
- Consider all $s \in V_H$ as root
 - ${\ensuremath{\, \bullet \, }}$ Total time ${\ensuremath{\mathcal O}}(n^4)$
- Correctness
 - If \exists MCSI $\phi,$ where $r\in {\rm dom}(\phi):$ Roots $(r,\phi(r))$ yield an MCSI between G,H \checkmark

000000 00000	000
Computing a Maximum Common Subtree Isomorphism between two trees G and H	11/16

- Compute rooted MCSIs for all roots $(r,s) \in V_G \times V_H$
- Select maximum solution
- ${\ensuremath{\, \bullet \, }}$ Total time ${\ensuremath{\mathcal O}}(n^5)$

- Determine arbitrary root $r \in V_G$
- Consider all $s \in V_H$ as root
 - ${\ensuremath{\, \bullet \, }}$ Total time ${\ensuremath{\mathcal O}}(n^4)$
- Correctness
 - If \exists MCSI ϕ , where $r \in \text{dom}(\phi)$: Roots $(r, \phi(r))$ yield an MCSI between $G, H \checkmark$
 - If not, returned solution is no MCSI, but...

Reduce the number of subproblems, cont.

• Given: \nexists MCSI ϕ , where $r \in \text{dom}(\phi)$; let τ be any MCSI

Introduction 0000000	MCSI between two trees G and H 0000000
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	12/16

Reduce the number of subproblems, cont.

- Given: \nexists MCSI ϕ , where $r \in \text{dom}(\phi)$; let τ be any MCSI
- For each $u \in V_G$ and its descendants compute rooted MCSI between this subtree and H

Introduction 0000000	MCSI between two trees G and H 0000000
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	12/16

Reduce the number of subproblems, cont.

- Given: \nexists MCSI ϕ , where $r \in \text{dom}(\phi)$; let τ be any MCSI
- For each $u \in V_G$ and its descendants compute rooted MCSI between this subtree and H
- Total time $\mathcal{O}(n^4)$

Introduction 0000000	MCSI between two trees G and H 00000000
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	13/16

Improvement 2: Efficiently solve similar subproblems

- Let G be rooted at r
- Let k = degree of u, l = degree of v

- Let k = degree of u, l = degree of v
- 1) Root $v \in V_H$: bipartite graph $B_{u,v}$ and MWM M

Introduction 0000000	MCSI between two trees G and H 00000000
Computing a Maximum Common Subtree Isomorphism between two trees G and H	13/16
	,
Improvement 2: Efficiently solve similar su	Ibproblems

- $\bullet~$ Let G be rooted at r
- Let k = degree of u, l = degree of v
- 1) Root $v \in V_H$: bipartite graph $B_{u,v}$ and MWM M
- 2) Root $d_2 \in V_H$: bipartite graph $B_{u,v,2}$ and MWM M

Introduction 0000000	MCSI between two trees G and H 0000000
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	13/16
Improvement 2: Efficiently solve similar subp	problems
• Let G be rooted at r	

- Let k = degree of u, l = degree of v
- 1) Root $v \in V_H$: bipartite graph $B_{u,v}$ and MWM M
- 2) Root $d_2 \in V_H$: bipartite graph $B_{u,v,2}$ and MWM M
- 3) Root $d_j \in V_H$, $j \in \{1, 3\}$: derive MWMs M_j from M

1) Time $\mathcal{O}(kl(\min\{k,l\} + \log \max\{k,l\}))$, 2) $\mathcal{O}(1)$, 3) as 1) for all M_j

Introduction 0000000	$\begin{array}{l} MCSI \text{ between two trees } G \text{ and } H \\ \texttt{OOOOO} \bullet \texttt{OO} \end{array}$
Computing a Maximum Common Subtree Isomorphism between two trees G and H	14/16

Theorem

An MCSI between two trees G and H can be computed in time $\mathcal{O}(|G||H|\Delta(G,H)).$

• $\Delta(G, H) := \min\{\Delta(G), \Delta(H)\} + \log \max\{\Delta(G), \Delta(H)\}$

Introduction 0000000	$\begin{array}{l} MCSI \text{ between two trees } G \text{ and } H \\ \texttt{OOOOO} \bullet \texttt{OO} \end{array}$
Computing a Maximum Common Subtree Isomorphism between two trees G and H	14/16

Theorem

An MCSI between two trees G and H can be computed in time $\mathcal{O}(|G||H|\Delta(G,H)).$

• $\Delta(G, H) := \min\{\Delta(G), \Delta(H)\} + \log \max\{\Delta(G), \Delta(H)\}$

Proposition

For trees of bounded degree we obtain running time $\Theta(|G||H|),$ which is optimal.

Introduction 0000000	$\begin{array}{l} MCSI \text{ between two trees } G \text{ and } H \\ \texttt{OOOOOOOO} \end{array}$
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	15/16

 $\bullet\,$ Running time for trees with n nodes and unrestricted degree: $\mathcal{O}(n^3)$

Computing a Maximum Common Subtree Isomorphism between two trees G and H 15/16	Introduction 0000000	$\begin{array}{l} MCSI \text{ between two trees } G \text{ and } H \\ \texttt{00000000} \end{array}$
	Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	15/16

- $\bullet\,$ Running time for trees with n nodes and unrestricted degree: $\mathcal{O}(n^3)$
- The best known time bound for the assignment problem in a graph with n nodes and $\Theta(n^2)$ edges of unrestricted weight since more than 30 years: $\mathcal{O}(n^3)$

0000000 OC	
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	15/16

- $\bullet\,$ Running time for trees with n nodes and unrestricted degree: $\mathcal{O}(n^3)$
- The best known time bound for the assignment problem in a graph with n nodes and $\Theta(n^2)$ edges of unrestricted weight since more than 30 years: $\mathcal{O}(n^3)$
- There is a linear time reduction from the assignment problem to MCSI.

Introduction 0000000	$\begin{array}{l} MCSI \text{ between two trees } G \text{ and } H \\ \texttt{OOOOOOOO} \end{array}$
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	15/16

- $\bullet\,$ Running time for trees with n nodes and unrestricted degree: $\mathcal{O}(n^3)$
- The best known time bound for the assignment problem in a graph with n nodes and $\Theta(n^2)$ edges of unrestricted weight since more than 30 years: $\mathcal{O}(n^3)$
- There is a linear time reduction from the assignment problem to MCSI.
- Time $o(n^3)$ for MCSI \Rightarrow Time $o(n^3)$ for the assignment problem.

Introduction 0000000	$\begin{array}{l} MCSI \text{ between two trees } G \text{ and } H \\ \texttt{OOOOOOO} \end{array}$
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	16/16

Conclusion

We developed/showed

- \bullet An algorithm for MCSI, time $\mathcal{O}(|G||H|\Delta(G,H))$
- Achieved this improved time bound by:
 - Rooting one tree, but also consider subtrees of this tree
 - Efficiently solving similar subproblems
- Results about optimality

Next up

- Improve time bound for MCSI on unweighted trees
- Adapt our algorithm to other graph classes

Introduction 0000000	$\begin{array}{l} MCSI \text{ between two trees } G \text{ and } H \\ \texttt{OOOOOOO} \end{array}$
Computing a Maximum Common Subtree Isomorphism between two trees ${\cal G}$ and ${\cal H}$	16/16

Conclusion

We developed/showed

- \bullet An algorithm for MCSI, time $\mathcal{O}(|G||H|\Delta(G,H))$
- Achieved this improved time bound by:
 - Rooting one tree, but also consider subtrees of this tree
 - Efficiently solving similar subproblems
- Results about optimality

Next up

- Improve time bound for MCSI on unweighted trees
- Adapt our algorithm to other graph classes

Introduction 0000000	$\begin{array}{l} MCSI \text{ between two trees } G \text{ and } H \\ \texttt{OOOOOOO} \end{array}$
Computing a Maximum Common Subtree Isomorphism between two trees ${\boldsymbol{G}}$ and ${\boldsymbol{H}}$	16/16

- A. Abboud, A. Backurs, T. D. Hansen, V. V. Williams, and O. Zamir. Subtree isomorphism revisited. In *Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA '16, pages 1256–1271. SIAM, 2016. ISBN 978-1-611974-33-1.
- A. Droschinsky, B. Heinemann, N. Kriege, and P. Mutzel. Enumeration of maximum common subtree isomorphisms with polynomial-delay. In H.-K. Ahn and C.-S. Shin, editors, *Algorithms and Computation (ISAAC)*, LNCS, pages 81–93. Springer, 2014. ISBN 978-3-319-13074-3. doi:10.1007/978-3-319-13075-0_7.
- H.-C. Ehrlich and M. Rarey. Maximum common subgraph isomorphism algorithms and their applications in molecular science: a review. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1(1):68–79, 2011. ISSN 1759-0884. doi:10.1002/wcms.5. URL http://dx.doi.org/10.1002/wcms.5.
- D. W. Matula. Subtree isomorphism in $O(n^{5/2})$. In P. H. B. Alspach and D. Miller, editors, Algorithmic Aspects of Combinatorics, volume 2 of Annals of Discrete Mathematics, pages 91–106. Elsevier, 1978. doi:10.1016/S0167-5060(08)70324-8.
- G. Valiente. *Algorithms on Trees and Graphs.* Springer-Verlag, Berlin, 2002. ISBN 3-540-43550-6.